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Critical Exponents in Percolation via Lattice Animals 

Alan Hammond, U.C. Berkeley, USA

Abstract
We examine the percolation model on $mathbb{Z}^d$ by an approach involving 
lattice animals and their surface-area-to-volume ratio. For $beta in [0,2(d-1))$, let 
$f(beta)$ be the asymptotic exponential rate in the number of edges of the number 
of lattice animals containing the origin which have surface-area-to-volume ratio 
$beta$. The function $f$ is bounded above by a function which may be written in an 
explicit form. For low values of $beta$ (mbox{$beta leq 1/p_c - 1$}), equality 
holds, as originally demonstrated by F.Delyon. For higher values ($beta > 1/p_c - 1
$), the inequality is strict. 

We introduce two critical exponents, one of which describes how quickly $f$ falls 
away from the explicit form as $beta$ rises from $1/p_c - 1$, and the second of 
which describes how large clusters appear in the marginally subcritical regime of 
the percolation model. We demonstrate that the pair of exponents must satisfy 
certain inequalities. Other such inequalities yield sufficient conditions for the 
absence of an infinite cluster at the critical value (c.f. cite{techrep}). The first 
exponent is related to one of a more conventional nature in the scaling theory of 
percolation, that of correlation size. In deriving this relation, we find that there are 
two possible behaviours, depending on the value of the first exponent, for the 
typical surface-area-to-volume ratio of an unusually large cluster in the marginally 
subcritical regime. 
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