Eigenvalues of the Laguerre Process as Non-Colliding Squared Bessel Processes

Wolfgang König, BRIMS, HP Labs
Neil O'Connell, BRIMS, HP Labs

Abstract

Let $A(t)$ be an n-times-p matrix with independent standard complex Brownian entries and set $M(t)=A(t)^{*} A(t)$. This is a process version of the Laguerre ensemble and as such we shall refer to it as the Laguerre process. The purpose of this note is to remark that, assuming $n>p$, the eigenvalues of $M(t)$ evolve like p independent squared Bessel processes of dimension $2(n-p+1)$, conditioned (in the sense of Doob) never to collide. More precisely, the function $h(x)=\operatorname{prod}_{i<j}\left(x_{i}-x_{j}\right)$ is harmonic with respect to p independent squared Bessel processes of dimension $2(n-p+1)$, and the eigenvalue process has the same law as the corresponding Doob h transform. In the case where the entries of $A(t)$ are real Brownian motions, $(M(t))_{t>0}$ is the Wishart process considered by Bru (1991). There it is shown that the eigenvalues of $M(t)$ evolve according to a certain diffusion process, the generator of which is given explicitly. An interpretation in terms of non-colliding processes does not seem to be possible in this case. We also identify a class of processes (including Brownian motion, squared Bessel processes and generalised OrnsteinUhlenbeck processes) which are all amenable to the same h-transform, and compute the corresponding transition densities and upper tail asymptotics for the first collision time.

Full text: PDF | PostScript
Pages: 107-114
Published on: August 31, 2001

Bibliography

1. T. Akuzawa and M. Wadati (1997), Laguerre ensemble and integrable systems. Chaos, Solitons and Fractals 8, no. 1, 99-107. Math. Review number not available.
2. A.N. Borodin and P. Salminen (1996), Handbook of Brownian Motion: Facts and Formulae. Birkhäuser, Berlin. Math. Review 98i: 60077
3. M.-F. Bru (1991), Wishart processes. J. Theoret. Probab. 3, no. 4, 725-751. Math. Review 93b:60176
4. P. Carmona, F. Petit and Marc Yor (2001), Exponential functionals of Lévy processes. to appear in a Birkhäuser volume on Lévy processes, edited by T. Mikosch. Math. Review number not available.
5. F.J Dyson (1962), A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191-1198. Math. Review 26 \#5904
6. D. Grabiner (1999), Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré Probab. Statist. 35, no. 2, 177204. Math. Review 2000i: 60091
7. D. Hobson and W. Werner (1996), Non-colliding Brownian motion on the circle. Bull. Math. Soc. 28, 643-650. Math. Review 97k: 60217
8. A.T. James (1964), Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35, 475-501. Math. Review 31:5286
9. S.P. Karlin and G. MacGregor (1959), Coincidence probabilities. Pacif. J. Math. 9, 1141--1164. Math. Review 22:5072
10. W.S. Kendall (1990). The diffusion of Euclidean shape. In: Disorder in Physical Systems, eds. G. Grimmett and D. Welsh, Oxford University Press, 203-217. Math. Review 92e: 60024
11. I.G. Macdonald (1979), Symmetric Functions and Hall Polynomials. Oxford University Press. Math. Review 84g: 05003
12. M.L. Mehta (1991), Random Matrices. Second Edition. Academic Press. Math. Review 92f: 82002
13. J.R. Norris, L.C.G. Rogers and David Williams (1986), Brownian motions of ellipsoids. Trans. Amer. Math. Soc. 294, 757-765. Math. Review 87k: 60185
14. E.J. Pauwels and L.C.G. Rogers (1988). Skew-product decompositions of Brownian motions. Contemporary Mathematics 73, 237-262. Math. Review 89i:58157
15. D. Revuz and Marc Yor (1991), Continuous Martingales and Brownian Motion. Springer, Berlin. Math. Review 92d:60053

Home | Contents | Submissions, editors, etc.| Login | Search | EJP
Electronic Communications in Probability. ISSN: 1083-589X

