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Abstract
Let A(t) be an n-times-p matrix with independent standard complex Brownian 
entries and set M(t)=A(t)*A(t). This is a process version of the Laguerre ensemble 
and as such we shall refer to it as the Laguerre process. The purpose of this note is 
to remark that, assuming n>p, the eigenvalues of M(t) evolve like p independent 
squared Bessel processes of dimension 2(n-p+1), conditioned (in the sense of 
Doob) never to collide. More precisely, the function h(x)=prodi<j(xi-xj) is harmonic 

with respect to p independent squared Bessel processes of dimension 2(n-p+1), 
and the eigenvalue process has the same law as the corresponding Doob h-
transform. In the case where the entries of A(t) are real Brownian motions, (M(t))t>0 

is the Wishart process considered by Bru (1991). There it is shown that the 
eigenvalues of M(t) evolve according to a certain diffusion process, the generator of 
which is given explicitly. An interpretation in terms of non-colliding processes does 
not seem to be possible in this case. We also identify a class of processes 
(including Brownian motion, squared Bessel processes and generalised Ornstein-
Uhlenbeck processes) which are all amenable to the same h-transform, and 
compute the corresponding transition densities and upper tail asymptotics for the 
first collision time. 
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