Mathematics > Numerical Analysis

Inverting Non-Linear Dimensionality Reduction with Scale-Free Radial Basis Interpolation

Nathan D. Monnig, Bengt Fornberg, Francois G. Meyer
(Submitted on 1 May 2013)

A numerical method is proposed to approximate the inverse of a general biLipschitz nonlinear dimensionality reduction mapping, where the forward and consequently the inverse mappings are only explicitly defined on a discrete dataset. A radial basis function (RBF) interpolant is used to independently interpolate each component of the high-dimensional representation of the data as a function of its low-dimensional representation. The scale-free cubic RBF kernel is shown to perform better than the Gaussian kernel, as it does not require the difficult-to-choose scale parameter as an input, and does not suffer from ill-conditioning. The proposed numerical inverse is shown to be mathematically similar to the eigenvector interpolation known as the Nystrl"om method, a commonly used numerical method for rapid approximation of eigenvectors of a dense weight matrix. Based on this observation, a critique of the Nystrl"om method is provided, with suggestions for improvement.

Comments: Submitted to Applied and Computational Harmonic Analysis Subjects: Numerical Analysis (math.NA); Numerical Analysis (cs.NA); Data Analysis, Statistics and Probability (physics.data-an); Machine Learning (stat.ML)
Cite as: arXiv:1305.0258 [math.NA] (or arXiv:1305.0258v1 [math.NA] for this version)

Submission history

From: Nathan Monnig [view email]
[v1] Wed, 1 May 2013 19:55:06 GMT (4761kb,D)
Which authors of this paper are endorsers?

Download:

- PDF
- Other formats

Current browse context: math.NA
< prev | next >
new | recent | 1305
Change to browse by: CS
cs.NA
math
physics
physics.data-an stat
stat.ML
References \& Citations

- NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

