

Cornell University Library

arXiv.org > math > arXiv:1105.3423

Mathematics > Statistics Theory

Asymptotic Inference of Autocovariances of Stationary Processes

Han Xiao, Wei Biao Wu

(Submitted on 17 May 2011)

The paper presents a systematic theory for asymptotic inference of autocovariances of stationary processes. We consider nonparametric tests for serial correlations based on the maximum (or ℓL^{Λ}) and the quadratic (or ℓL^{Λ}) deviations. For these two cases, with proper centering and rescaling, the asymptotic distributions of the deviations are Gumbel and Gaussian, respectively. To establish such an asymptotic theory, as byproducts, we develop a normal comparison principle and propose a sufficient condition for summability of joint cumulants of stationary processes. We adopt a simulation-based block of blocks bootstrapping procedure that improves the finite-sample performance.

Comments:46 pages, 1 figureSubjects:Statistics Theory (math.ST)MSC classes:Primary 60F05, 62M10, secondary 62E20Cite as:arXiv:1105.3423 [math.ST](or arXiv:1105.3423v1 [math.ST] for this version)

Submission history

From: Han Xiao [view email] [v1] Tue, 17 May 2011 16:12:51 GMT (129kb,D)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Search or Article-id	(<u>Help</u> <u>Advanced searc</u>
	All papers 🖵 Go!
	Download: PDF Other formats
,	Current browse context: math.ST < prev next > new recent 1105
	Change to browse by: math stat
tests for	References & Citations

