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Abstract

In this paper we study the problem of estimating the mixingfficients between two random vari-
ables. Three different mixing coefficients are studied, elgralpha-mixing, beta-mixing and phi-mixing
coefficients. The random variables can either assume valugefinite set or the set of real numbers. We
derive upper and lower bounds for both the alpha-mixing &edphi-mixing coefficients. Moreover, in
case the marginal distributions of the two random variahtesuniform, an exact expression is given for
the phi-mixing coefficient. This situation arises when encpilly generated samples are binned using
percentile binning. We also prove analogs of the data-mging inequality from information theory for
each of the three kinds of mixing coefficients. Then we movemreal-valued random variables, and
show that by using percentile binning and allowing the nunidfebins to increase more slowly than
the number of samples, we can generate empirical estimad¢sate consistent, i.e., converge to the

true values as the number of samples approaches infinity.

|. INTRODUCTION
The notion of independence of random variables is centrardbability theory. In [7, p. 8],
Kolmogorov says:

“Indeed, as we have already seen, the theory of probabdityle regarded from the
mathematical point of view as a special application of theegal theory of additive

set functions.
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and
“Historically, the independence of experiments and rand@mables represents the
very mathematical concept that has given the theory of fméhaits peculiar stamp.”
In effect, Kolmogorov is saying that, if the notion of indeplence is removed, then probability
theory reduces to just measure theory.

Independence is a binary concept: Either two random vasabte independent, or they are
not. It is therefore worthwhile to replace the concept ofeipendence with a more nuanced
measure thatuantifiesthe extent to which given random variables are dependerthdrcase
of stationary stochastic processes, there are variousnmsotf ‘mixing’, corresponding to long
term asymptotic independence. These notions can be readfigted to define various mixing
coefficients between two random variables. Several suchitiefis are presented in [4, p. 3],
out of which three are of interest to us, namely the - and ¢-mixing coefficients. While
the definitions themselves are well-known, there is vetlelivork on actuallycomputing(or at
least estimating) these mixing coefficients in a given situ The 5-mixing coefficient is easy
to compute but this is not the case for theand theg-mixing coefficients.

Against this background, the present paper makes the fmitpgpecific contributions:

1) For discrete random variables, simple upper and lowenti®@are derived for both the-

and theg-mixing coefficients.

2) Inthe special case where the discrete random variablesumaform marginal distributions,

a closed-form formula is given for themixing coefficient. This situation arises when two
real-valued random variables are sampled, and the sampledsvare discretized using
percentile binning, that is, the end points of the grids &@sen such that the marginals are
(nearly) uniform. It is well-known in the statistics litetae that this kind of ‘data-dependent
partitioning’, also referred as ‘partitioning into staitslly equivalent blocks’, offers better
performance than using a fixed partitioning for discret@gtsee the introduction of [9].

3) We study the case whePg, Y, Z are discrete random variables, akidZ are conditionally

independent givey’, or equivalently X — Y — Z is a short Markov chain. In this case

a well-known inequality from information theory [3, p. 34ipges that
I(X,Z) < min{I(X,Y),I(Y, Z)}, 1)
where (-, -) denotes the mutual information. This inequality is usuaflferred to as the
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‘data processing inequality (DPI)’. We state and prove egslof the DPI for each of the
a-, B- and ¢-mixing coefficients.

4) SupposeX,Y are real-valued random variables whose joint distributias a density with
respect to the Lebesgue measure, and {hat, v, ), . . ., (z;,v;)} are independent samples
of (X,Y). If we compute the empirical joint distribution ¢fX,Y") from these samples,
then the Glivenko-Cantelli Lemma states that the empijaiat distribution converges with
probability one to the true joint distribution; in other vagr, the empirical distribution gives
a consistentestimate. However, it is shown here that if the empiricatrdiation is used
to estimate the mixing coefficients, then with probabilityedboth the estimated-mixing
coefficient and the estimate@mixing coefficient approach one as— oo, irrespective of
what the true value might be. Thus a quantity derived from @sisbent estimator need
not itself be consistent.

5) On the other hand, if we bin thesamples intdk; bins such that the quantized versions
of X andY have nearly uniform distributions, and chodsen such a way thakt; — o
andk;/l — 0 asl — oo, and a few technical conditions are satisfied, then the écafir
estimatedn-, 5- and ¢-mixing coefficients converge to their true valuesias oo, with
probability one.

The problems of efficiently computing mixing coefficientsdaproving analogs of the data
processing inequality are not just of academic interesteRework on reverse-engineering
genome-wide interaction networks from gene expressioa fabased on using the-mixing
coefficient as a measure of the interaction between two geees[11]. If there are genes in
the study, this approach requires the computationf-mixing coefficients. So for a typical
genome-wide study involving0, 000 genes, it becomes necessary to compid@ million ¢-
mixing coefficients. Hence efficient computation is mandatom order to have a practically
viable implementation. The approach suggested in [13]] [#1to compute all pair-wisep-
mixing coefficients, start with a complete directed grapmamodes, and then to use the analog
of the data processing inequality for themixing coefficient to prune the network. The results

presented in this paper provide the analytical justificafar the approach in [11].
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II. DEFINITIONS OFMIXING COEFFICIENTS

The notion of mixing originated in an attempt to establisk thw of large numbers for
stationary stochastic processes that are not i.i.d. Gedefiaitions of thea-, 5- and ¢-mixing
coefficients of a stationary stochastic process can be fcamdng other places, in [12, pp. 34-
35]. Thea-mixing coefficient was introduced by Rosenblatt [10]. Acting to Doukhan [4, p.
5], Kolmogorov introduced th@-mixing coefficient, but it appeared in print for the first Bnm
a paper published by some other authors. $hmrixing coefficient was introduced by Ibragimov
[6].

Essentially, all notions of mixing try to quantify the iddweat, in a stationary stochastic process
of the form { X}
|t — 7| approaches infinity, in other words, there is an asympteotigiterm near-independence.

_.» the random variableX’; and X, become more and more independent as
However, these very general notions can be simplified andilyeadapted to define mixing
coefficients between a pair of random variabfésand Y.! Though they can be defined for
arbitrary random variables, in the interests of avoidingotdf technicalities we restrict our
attention in this paper to just two practically importanses: real-valued and discrete random
variables. We first define mixing coefficients between redived random variables, and then
between discrete random variables.

Definition 1: SupposeX and Y are real-valued random variables. Li8tdenote the Borel
o-algebra of subsets d&. Then we define

a(X)Y) = SS:IFIEB |Pr{X € S&Y €T} —Pr{X € S} -Pr{Y € T}|. 2

H(X|Y) = sup |Pr{X e S)Y eT}—Pr{X € S}
S.TeB

< Pr{X e S&Y €T}
= u
sres|  Pr{y €T}

In applying the above definition, in cas&{Y € T} = 0, we use the standard convention
that

—Pr{X € S}|. 3)

Pr{X e S|Y € T} =Pr{X € S}.

IStrictly speaking, mixing is a property not of the randomiakles X andY’, but rather of ther-algebras generated by
andY. This is how they are defined in [4].
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Note that thea-mixing coefficient is symmetrica(X,Y) = a(Y, X). However, in general
P(X]Y) # o(Y]X).

The third coefficient, called thé-mixing coefficient, has a somewhat more elaborate defmitio
at least in the general case. Ledenote the probability measure of the joint random variable
(X,Y), and lety, v denote the marginal measures &fand Y respectively. Note thaf is a
measure ofiR? while ., v are measures dR. If X andY were independent, thehwould equal

u x v, the product measure. With this in mind, we define
BX,Y) = p(0, pxv), (4)

wherep denotes the total variation distance between two measthess-mixing coefficient is
also symmetric.

Next we deal with discrete random variables, and for thigppse we introduce some notation
that is used throughout the remainder of the paper. The myzirtant notational change is that,
since probability distributions on finite sets are vectars,use bold-face Greek letters to denote
them, whereas we use normal Greek letters to denote measuRe®r R?. For each integen,

let S,, denote then-dimensional simplex. Thus
S, i={veR":vy > OVi,ZUi =1}
=1
If A={a,...,a,} andp € S,, thenp defines a measurg, on the setA according to

Pu(S) = Z/Mfs(ai),

where I5(-) denotes the indicator function &f. To avoid more notation, we will writgs(.S)
instead of the more precise,(.5).
Supposeu, v € S,, are probability distributions on a sét of cardinalityn. Then thetotal

variation distance betweeny andv is defined as
P, v) :=max|p(S) — v(S)].

It is easy to give several equivalent closed-form formutastiie total variation distance.

n n

p(p,v) =05l — vl = (s —vi)s == > (i —vi)-,
i=1 i=1
where as usual-), and(-)_ denote the nonnegative and the nonpositive parts of a number
(x)4+ = max{z,0}, (z)- = min{z, 0}.
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Now supposeA, B denotes sets of cardinality, m respectively, and that € S,,,v € S,,.
Then the distributiornyp € S,,,, defined byvy;; = u,v; is called theproduct distribution on
A x B. In the other direction, i1 € S,,, is a distribution onA x B, then@, € S,,,0 € S,,

defined respectively by

m

(64); =) _ 0ij, (B); Z%

j=1
are called thanarginal distributions of & on A and B respectively.

The earlier definitions of mixing coefficients become quigpliit in the case wher&, Y are
discrete random variables assuming values in the finiteAsé&sof cardinalitiesn, m respectively.
In this case it does not matter whether the range¥ af are finite subsets a& or some abstract
finite sets. Definition 1 can now be restated in this contexteNhat, sincel\, B are finite sets,
the associated-algebras are just the power sets, that is, the collectioallfubsets.

Definition 2: With the above notation, we define

o X,Y) = max |0(S x T) — pu(S)v(T), (5)
BIX,Y) = p(0, 1 x v), (6)
o(XY) = max |2 XD ) @)

scarce | v(T)
WhetherX, Y are real-valued or discrete random variables, the mixirgffiodents satisfy the

following inequalities:
0<a(X,Y) < B(X,Y) < min{o(X]Y), o(Y[X)} < max{¢(X]Y), ¢(Y]X)} < 1.

Also, the following statements are equivalent:

1) X andY are independent random variables.

2) a(X,Y) =0.
3) B(X,Y) =0.
4) ¢(X[Y) =
5) ¢(Y]X) =
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Ill. COMPUTATION OF MIXING COEFFICIENTS FORDISCRETE RANDOM VARIABLES

In this section, we present explicit upper and lower bound$ifea- and¢-mixing coefficients,
as well as an exact formula for themixing coefficient in the case where one of the random
variables has a uniform marginal distribution. This sitiatarises when a real-valued random
variable is quantized using percentile binning.

From the definitions, it is obvious that X, Y") can be readily computed in closed form. As

before, let us defin@> = u x u to be the product distribution of the two marginals, and daefin
Vij 1= by — iy, T =[] € [=1, 1]

Then it is obvious that

n m n

BX,Y) = p(6,¢) = 0-522 73| = ZZ(%J')Jr = —ZZ(%’)—-

i=1 j=1 i=1 j=1 i=1 j=1

On the other hand, computing( X, Y) or ¢(X|Y) directly from Definition 2 would require
2"tm computations, sincé, T’ must be allowed to vary over all subsetsAfB respectively. It
is shown later that the number of computations can be brodgivh to O(2™) but this is still
exponential. Thus the objectives of the present sectiontaerive explicit upper and lower
bounds for these mixing coefficients, and also to derive atteformula forg(X|Y) in casev
is the uniform distribution.

For this purpose we recall the definition of the matrix induc®rm. For indices and j, let

~v',~; denote respectively theth row andj-th column of the matriX". The quantity

Ty = 1g1§2|%jl = max |
1=

is called the/;-induced matrix norm of I'. It is well-known that

r
IT|l;1 = max ||Tv||; = max I V||1.
vl <1 v£0 HVHI

With this notation we are ready to state the main results isf ghction.

Theorem 1:We have that
0.5[[0flir < (X, Y) < 0.25m|[I'[[;1. (8)
Theorem 2:We have that
< 03[0

0500 _ iy

I'Ilan Vj Il’llIlj I/j

(9)
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In particular, ifv is the uniform distribution o, then
(XY) = 0.5m|[T"[|i1. (10)

In proving Theorems 1 and 2, the first step is to get rid of thgohlie value signs in the
definitions of thea- and ¢-mixing coefficients.

Theorem 3:lt is the case that

A X,Y) = max [0(SxT)—p(S)v(T)], (11)
o(XIV) = max_ |2EXD) )] (12)

scaTcs | v(T)
Proof: Define
Ro :={0(S xT)—u(Sv(T),SCATCB}

ThenR, is a subset of the real line consisting of at m@st™ elements. Now it is claimed that
the setR,, is symmetric; that isy € R,, implies that—z € R,,. If this claim can be established,

then (11) follows readily. So supposec R., and choose C A, T C B such that
0SxT)—puSv(T) ==
Let S¢ denote the complement ¢f in A. Then, using the facts that
p(S9) =1 —p(S),
O(SxT)=0AxT)—0(SxT)=v(T)—0(SxT),

it is easy to verify that
0(S°xT)— pS)W(T) =—=x.

So R, is symmetric and (11) follows. By analogous reasoning, tte s

_[O(SxT) _
Ry = {W—M(S).SQA,TQIB%}

is also symmetric, which establishes (12). |
To facilitate the proofs of Theorems 1 and 2, we introduce @ fnam the power set of\
into {0, 1}". For a subset C A, we defineh(S) € {0,1}" by

h(S)— 1, if CLZ'ES,
Z 0, if a; ¢S
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The maph : 2% — {0,1}™ is defined analogously. With these definitions, it is obvithe, for
S CA,TCB, we have

u(S) = [h(S))'n = p'h(S), v(T) = [A(T))'v = V'W(T),
6(S x T) = [1(S)|'Oh(T),

where © = [6,;]. By replacingh(S) and h(7") by arbitrary binary vectora € {0,1}",b €
{0,1}™, it readily follows from (11) and (12) that

a(X)Y) = max a'l'b, (13)
ae{0,1}",be{0,1}™
a'l'b
X|Y) = : 14
oY) ae{o,lﬁi}é{m}m vtb (14)
Now we are in a position to prove Theorems 1 and 2.
Proof of Theorem 1. It is obvious that
max a'Tb= max max a'lb.
ac{0,1}",be{0,1}™ be{0,1}™ ac{0,1}"
Now, for fixedb € {0,1}™, it is obvious that
Tbh = ‘b
JJhax a 2 (YD),
corresponding to the choice
1, if ~4'b>0,
a; = )
0, if 4'b<0.
Therefore .
X,)Y)= b),. 15
a(X,Y) palax 2 (Y'b)+ (15)

Next, lete denote a column vector consisting of all ones, with the sifisdenoting its

dimension, and observe that

p'=e,0=e,¥ = el'=0, similarly e, =0,.

August 22, 2012 DRAFT



10

Therefore, for any vectov € R™, it follows that

effv=0 = ) 4v=0

i=1

= D (YV)e+ ) (¥'v)-=0
i=1 1=1
= D (YV)e=-) (¥'v)-
=1 i=1
= Y (YV)e=05) |[y'v|=05|Tv]:. (16)
=1 1=1
So in particular it follows that
X,Y)= 5||T'b 17
a(X,Y) béﬁ%m%“ 1 (17)
To prove the lower bound in (8), choose an inggx {1,...,m} such that|~; ||, = ||T}i.

Then choosé, € {0,1}™ to be the binary vector with;,, = 1 andb; = 0 for all j # j,. Now
it follows from (16) that

n

> (¥'bo)r = 05> |v'by|
=1

=1

= 0.52 Vigol = 0-5]7;,l1 = 0.5 a1
i=1

Hence the maximum over ali € {0,1}™ is at least equal to this much.

To prove the upper bound in (8), observe from the definitiaat th

T ]lix = 121%@”%”1-

Now for anyb € {0, 1}™, we have

b =" ~,b;.
j=1
Therefore

> bk

j=1
The proof is completed by showing that an optinbatan be chosen with no more thamn/2

0.5/Tblly = 0.5] Y v;b;ll1 < 0.5

i=1

(18)

nonzero entries. Chooseld € {0,1}™ that achieves the maximum in (17). b hasm/2 or

fewer nonzero entries, we are done, because we can substitot(18) and conclude that

0.5|Tb*||; < 0.25m 1%zig>§n||7j]\1 = 0.25m||T[|1.
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11

If b* has more tham:/2 nonzero entries, definke = e,, — b*, and note thab has fewer than

m/2 nonzero entries. Also, sindee,, = 0,,, it follows thatI'b = —I'b*. So by earlier reasoning
ITb[; = [[Tb*||,

and the bound follows. [
Proof of Theorem 2: By reasoning analogous to that in the proof of Theorem 1, wieeaat
a'l'b

max -
ac{0,1}7,be{0,1}m Utb

a'l'b
= max max —
be{0,1}m ac{0,1}» v'b

= max - <7ib) . (29)
1 +

be{0,1}m & Vb

Pp(X[Y) =

To prove the lower bound, choose an indgxsuch that||v, [l = [[I'l|;1, and chooseé, €
{0,1}™ such thath;, = 1 andb; = 0 for all j # j,. Then

Z (Vbo )+ s Z<7i,jo)+

=1 1=1

0.5 «

= Z |’Yi,jo‘
Vio i=1
0.5 L[
Vjo

0.5 T
I'Ilan I/j '

To prove the upper bound, note that for Bl {0,1}™, we have

n

(D) _ -5~ 1Bl _ 17Dl
Do _0.5; i =05

=1

Now we change the variable of optimization fradmto v := Diag(v)b, and use the fact that
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12

the induced matrix nornf - ||;; is submultiplicative. This leads to
[Tb]:

be{0,1}™ vb

bl

vb|

. -1
0 e ITDRRE )]y
veR™ ||V||1

— 0.5|[Diag(¥)] |l

S(X]Y) = 05

IA

0.5 max
beR'nL

< 05| - [[Diag(¥)] [l
0-5[|T"[lix

mlnj I/j

Finally, if v is the uniform distribution, themin; v; = max; v; = 1/m. So the two inequalities
in (9) become equalities. |
For later use, we collect (15) and (19) and state them a deptr@orem.
Theorem 4:With all notation as above, we have

n

a(X)Y) = max [Pr{X =&Y € T} — Pr{X =i} Pr{Y € T}];. (20)
and i .
(X|Y) = r%lé%Z[Pr{X —ilY € T} — Pr{X = i}];. (21)

- =1
V. DATA PROCESSINGTYPE INEQUALITIES FORMIXING COEFFICIENTS

In this section we study the case where two random variabbke€@nditionally independent
given a third, and prove inequalities of the data processipg for the associated mixing
coefficients. The nomenclature ‘data processing-type’ ®tivated by the well-known data
processing inequality in information theory.

Definition 3: SupposeX, Y, Z are discrete random variables assuming values in finite sets

A, B, C respectively. ThenX, Z are said to be conditionally independent giveénif

Pr{X =i&Z =k|Y =5} =Pr{X =4|Y =5} Pr{Z =Y =k}, Viec A, jeB, ke C.
(22)
If X, Z are conditionally independent givén, we denote this byX | Z)|Y. Some authors
also write this asX — Y — Z is a short Markov chain’, ignoring the fact that the threed@mn

variables can belong to quite distinct sets. In this casmakes no difference whether we write
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13

X—>Y —>ZorZ —Y — X, because it is obvious from (22) that conditional indep&icde

is a symmetric relationship. Thus
(X L2)|)Y & (Z LX)
Also, from the definition, it follows readily that ifX 1 Z)|Y, then

Pr{X € S&Z € U|Y = j} =Pr{X € S|Y = j}Pr{Z € U[Y = j}, VS CA,j € B,U C C.
(23)

However, in general, it isot truethat
Pr{XeS&ZecU|lY eT}=Pr{X eS|YeT}Pr{ZecU|Y €T}, VSCATCB,U CC.

In fact, by setting?’” = B, it would follow from the above relationship that and Z are
independent, which is a stronger requirement than comditimdependence.
Given two random variableX’, Y with joint distribution® and marginal distributiong, v of

X, Y respectively, the quantity .
H(p) == pilog
=1
is called theentropy of u, with analogous definitions fol (v) and H(6); and the quantity
I(X,)Y)=H(p)+H(v)— H(O)

is called themutual information betweenX andY'. It is clear that/(X,Y) = I(Y, X). The
following well-known inequality, referred to as tliata-processing inequality, is the motivation
for the contents of this section; see [3, p. 34]. Supposel Z)|Y. Then

[(X,Z) <min{I(X,Y),1(Y, Z)}. (24)
Theorem 5:Suppose X L Z)|Y. Then

a(X, Z) < min{a(X,Y), (Y, 2)}. (25)
Theorem 6:Suppose X L Z)|Y. Then

B(X,Z) <min{B(X,Y),B(Y, 2)}. (26)
Theorem 7:Suppose X L Z)|Y. Then

$(X|Z) < min{¢(X]Y), (Y|2)}, (27)
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14

$(Z|X) < min{¢(Z|Y), (Y| X)}. (28)
Proof of Theorem 5: Let S C A, U C C be arbitrary, and define
ro(S,U) :=Pr{X € S&Z e U} —Pr{X € S} Pr{Z € U}.
Then

ro(S,U) = [Pr{X € S&Y = j&Z € U} — Pr{X € S&Y = j} Pr{Z € U}]

NE

— Z[Pr{X e S|y = j}Pr{Z e U|Y = j} Pr{Y = j}

— Pr{X eS)Y =j}P{Y =4} Pr{Z € U}]

= iPr{X e S|Y =j}Pr{Z e U&Y = j} —Pr{Y = j} Pr{Z € U}]
Zm:Pr{X e S|Y =j}Pr{Z e U&Y =j} —Pr{Y =4} Pr{Z € U}|;

i=1

IA

zm:[Pr{Z ceU&Y =j} —Pr{Y =4} Pr{Z € U}]+

J=1

IN

< max Y [Pr{Z e U&Y =j} —Pr{Y =3} Pr{Z € U}]+
j=1
= a(Y,2).
Since S and U are arbitrary, this implies that(X,7) < a(Y, Z) wheneverX — Y — 7 is
a short Markov chain. Sinc& — Y — 7 is the same a¥ — Y — X, it also follows that
a(Z,X) < a(Y, X). Finally, sincea is symmetric, the desired conclusion (25) follows. B
Proof of Theorem 6: Suppose that, B, C have cardinalities, m, [ respectively. (The symbols
n, m have been introduced earlier and nows introduced.) Letd denote the joint distribution
of (X,Y, Z), ¢ the joint distribution of( X, Z), n the joint distribution of(Y, Z), and as before,
0 the joint distribution of(X,Y"). Let ¢ the marginal distribution ofZ, and as before, lgt, v
denote the marginal distributions of andY'. Finally, define
Cji = % = Pr{Z = k|Y = j}.

J

As can be easily verified, the fact tha L Z)|Y (or (22)) is equivalent to

0ijn; -
Ml = eszjk, VZ,j,k.

Oijk = .

J
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Also note the following identities:

Zeij = vy, Z‘gij = M, Z 5ijk = Gik, V1,7, k.
i=1 Jj=1

J=1

Now it follows from the various definitions that

BIX,Z) = Y ) (Gin— pie)+

=1 k=1
n l m

= > Y (Z(@jk—eim)
i=1 k=1 \j=1 N
n l m

< ZZZ ik — 0i5&k)+
i=1 k=1 j=1

l

m
E eljcjk 2j£k

i=1 k=1 j=1

> [Z 9@';'] (cjr — &r)+

M3

3

= B(Y,Z).

Now the symmetry of3(-, -) serves to show that(X, Z) < 5(X,Y). Putting both inequalities
together leads to the desired conclusion. [ |
Proof of Theorem 7: Supposé X L Z)|Y. Since thep-mixing coefficient is not symmetric, it
is necessary to prove two distinct inequalities, name)yy (X |Z) < ¢(X|Y), and (i) (X |Z) <
o(Y|2).
Proof that ¢(X|Z) < ¢(X|Y): For S C A, define

r4(S) = rjr%ﬁfPr{X eS|y e T},

and observe that
P(X|Y) = rggg[w(& — p(9)].
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For a givenS C A, choosel™ = T*(S) C B such that
Pr{X € S|Y € T*} = ry(9).
Suppose’ C C is arbitrary. Then

Pr{X € S&Z e U} = ) Pr{X € S&Y =j&Z €U}

Jj=1

_ ipr{x € S|Y = j}Pr{Z e U|Y = j} Pr{Y = j}

J=1

= ) Pr{X €S|y =j}Pr{Z € ULY = j}
j=1

< 14(9) iPr{Z e U&Y = j}
=1
= r4(9) ]j?r{Z e U}.
Dividing both sides byPr{Z € U} leads to
Pr{X € S|Z e U} < ry(95),
Pr{X € 5|2 e U} — p(5) < 74(5) — mu(S) < o(X[Y).
Proof that ¢(X|Z) < ¢(Y|Z): Let us define

c(S,U) :=Pr{X € S|Z € U} — u(S),
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and reason as follows:

c(S,U) = Pr{XeS|ZeU}-Pr{X €S}
= i[Pr{X € S&Y =j|Z e U} — Pr{X € S&Y = j}]
= zm:[Pr{X eS)Y =j&ZecU}Pr{Y =j|Z €U} —-Pr{X € S|Y =4} Pr{Y = j}]

J=1

— ZPI{X € S|Y = j}[Pr{Y = j|Z € U} — Pr{Y = j}]

m

< Y Pr{X € S|V =j}[Pr{Y = j|Z € U} - Pr{Y = j}]+
j=1
< Y [Pr{Y =j|Z e U} - Pr{Y = j}]+
j=1
< =] - =
< max 2. [Pr{Y = j&Z € U} — Pr{Y = j}|+
= o(Y]2).
Since the right side is independent of bathand U, the desired conclusion follows. [ J

V. INCONSISTENCY OF ANESTIMATOR FORMIXING COEFFICIENTS

SupposeX, Y are real-valued random variables with some unknown joistritution, and
suppose we are given an infinite sequence of independentlesfip;,v;),: = 1,2,...}. The
guestion studied in this section and the next is whether piassible to construct empirical
estimates of the various mixing coefficients that convem¢he true values as the number of
samples approaches infinity.

Let

Oxy(a,b) =Pr{X <a&Y < b}

denote the true but unknown joint distribution function &f and Y, and let®x(-), ®y ()
denote the true but unknown marginal distribution fundiaf X, Y respectively. Using the
sample$(x;,y;),7 = 1,2,...}, we can construct three ‘stair-case functions’ that are iecap

estimates ofby, &y and®x y based on the first samples, as follows:

l

A 1

(bx(a; l) = Z E I{xiga}, (29)
i=1
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. 1<
Oy (0:1) =5 > Tyy<ny. (30)
i=1

l
A 1
(I)X7Y(av b; l) = 7 Z I{l‘z‘éa&yiﬁb}? (31)

i=1
where as usual denotes the indicator function. Thds (a;[) counts the fraction of the first
samples that are less than or equakt@nd so on. With this construction, a well-known result
called the Glivenko-Cantelli lemma (see [5], [2] or [8, p]RStates that the empirical estimates
converge uniformly and almost surely to their true funcsi@s the number of samplés- oco.
Thus <i>X,y is a consistent estimator of the true joint distributionu¥lone might be tempted to
think that an empirical estimate of any (or all) of the threing coefficients based Ofi’X,y
will also converge to the true value &s-> oco. The objective of this brief section is to show that
this is not so. Hence estimates of mixing coefficients derivem a consistent estimator of the
joint distribution need themselves be consistent.

Theorem 8:Suppose<i>X7y is defined by (31), and that; # z; andy,; # y; whenever: # j.
Let Bl denote thes-mixing coefficient associated with the joint distributié&,y(-, -;1). Then
Bi=(—-1)/L

Proof: Fix the integer! in what follows. Note that the empirical distributioi!x,y(',-;l)
depends only the totality of thé samples, and not the order in which they are generated.
Without loss of generality, we can replace the samples. .., z,) by their ‘order statistics’,
that is, the same samples arranged in increasing order, aridedsame for they;. Thus the
assumption is that; < z, < ... < z; and similarlyy; < y, < ... < y;,. With this convention,
the empirical samples will be of the forq(z1, y-q)), - .., (z1, y=@))} for some permutation
of {1,...,1}. Therefore the probability measure associated with theirdzrapdistributioni) is
purely atomic, with jumps of magnitude/! at the points{(z1, y-«)), - - -, (21, y=@)) }- SO we can
simplify matters by replacing the real line on th&axis by the finite se{x,...,z;}, and the
real line on theY -axis by the finite se{y,, ...,y }. With this redefinition, the joint distribution
0 assigns a weight of /I to each of the pointér;, y.;)) and a weight of zero to all other points
(z;,y;) wheneverj # 7(i), while the marginal measurgs, v of X andY will be uniform on
the respective finite sets. Thus the product meaguser assigns a weight of /I*> to each of

the ? grid points(z;, y;). From this, it is easy to see that
Bi=pO,uxv)=(1-1)L
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This is the desired conclusion. |
Corollary 1: Suppose the true but unknown distributidr - has density with respect to the
Lebesgue measure. Then— 1, ¢, — 1 almost surely a$ — oco.
Proof: If the true distribution has a density, then it is nonatomitiich means that with

probability one, samples will be pairwise distinct. It noalléws from Theorem 8 that

N N [ —1
¢zZﬁz=—l — 1 asl — co.

This is the desired conclusion. [

VI. CONSISTENTESTIMATORS FORMIXING COEFFICIENTS

The objective of the present section is to show that a simpbelification of the ‘naive’
algorithm proposed in Section V does indeed lead to comgist&timates, provided appropriate
technical conditions are satisfied.

The basic idea behind the estimators is quite simple. Sepplost one is given samples
{(z4,y:),7 > 1} generated independently and at random from an unknown pwinibability
measure) € M(RR?). Givenl samples, choose an integerof bins. Divide the real line intd;
intervals such that each bin contaifigk;| or [I/k;] + 1 samples for bothX andY. In other
words, carry out percentile binning of both random variabl@ne way to do this (but the proof
is not dependent on how precisely this is done) is as foll@®efinem; = |I/k;|,r =1 — kymy,
and placen, + 1 samples in the first bins andm, samples in the nexi, — r bins. This gives
a way of discretizing the real line for botk andY such that the discretized random variables
have nearly uniform marginals. With this binning, compute torresponding joint distribution,
and the associated empirical estimates of the mixing cosftie. The various theorems below
show that, subject to some regularity conditions, the eicgdiestimates produced by this scheme
do indeed converge to their right values with probabilite@s! — oo, provided thatm; — oo,
or equivalently,k;/l — 0, asl — oo. In other words, in order for this theorem to apply, the
number of bins must increase more slowly than the number ropkes, so that the number of
samples per bin must approach infinity. In contrast, in TeepB, we have effectively chosen
k; = [ so that each bin contains precisely one sample, which explahy that approximation
scheme does not work.

To state the various theorems, we introduce a little bit dation, and refer the reader to [1]

for all concepts from measure theory that are not expliaitfined here. LetM (R), M (R?)
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denote the set of all measures Bnor R? equipped with the Boreb-algebra. Recall that if
6,m € M(R) or M(R?), thend is said to beabsolutely continuous with respect ta;, denoted
by 6 <« n, if for every measurable sét, n(E) =0 = u(E)=0.

Next, letd denote the joint probability measure @K, Y'), and letu, v denote the marginal
measures. Thus, for every measuralsebsetS C R, the measure(S) is defined a®9(S x R)
and similarly for allT" C R, the measure/(T) is defined a®(R x 7). Now the key assumption
made here is thdhe joint measuré is absolutely continuous with respect to the product measur
uxv. Inthe case of discrete random variables, this assumpiantomatically satisfied. Suppose
that for some pair of indicesg j, it is the case that; - v; = 0. Then either; = 0 or v; = 0. If
i = 0, then it follows from the identityzj, 6, = p; thatd;;; = 0 for all j/, and in particular
¢;; = 0. Similarly if »; = 0, then it follows from the identity) ., 6;,; = v; thatd,;; = 0 for all 7,
and in particula;; = 0. In either case it follows that;; = 0, so thatd < p x v. However, in
the case of real random variables, this need not be so. Fon@aareplaceR x R by the unit
square, and lef be the diagonal measure. Then both marginals are the uniform measures
on the unit interval, and the produgtx v is the uniform measure on the unit square — and
is singular with respect to the uniform measure.

Next we introduce symbols for the various densities. Siheg 1 x v, it follows thatd has
a Radon-Nikodym derivative with respect tox v, which is denoted by (-, -). So for any sets
S, T C R, it follows that

(S x T) //fxydu Vdp(z //fxyd,u )dv(y).

For anyT C R with v(T") > 0, the conditional probability’r{ X € S|Y € T} is given by

Pr{X e S&Y €T} 0(SxT)
Pr{Y € T} (T

UL o] avee

Theorem 9:With the above notation and conditions, the empiricallyneated 5-mixing co-

Pr{X € S|Y € T}

efficient 3, converges almost surely to the true valgi@s! — oo, provided thati, — oo and

ki /l = 0 asl — oo.

Hereafter we drop this adjective; it is assumed that all #eis are encountered are measurable.
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Theorem 10:Suppose that the densify-, -) belongs tal.,(R?), and thatk; /I — 0 asl — oc.
Then the empirically estimated-mixing coefficienta; converges almost surely to the true value
a asl — oo, and the empirically estimateg-mixing coefficient¢, converges almost surely to
the true valuep asl! — oo.

Note that the densityf(-,-) € Li(R? u x v). So the sequence of empirical estimates
converges to its true value without any additional techrdoaditions. The sequences of empirical
estimatesa, and ¢, converge to their true values provided the dengitys bounded almost
everywhere. This condition is intended to ensure that d¢oordil densities do not ‘blow up’.
In the case of discrete variables, we have already seen hbkatdnditionfd < u x v holds
automatically, which means that the ‘density;6;;/(u;v;) is always well-defined. Since there
are only finitely many values of and j, this ratio is also bounded. However, in the case of
real-valued random variables, this condition needs to h@osad explicitly.

The proofs of these two theorems are based on arguments {149] In the proof of Theorem
9, we can use those arguments as they are, whereas in thegirdbkorem 10, we need to
adapt them. To facilitate the discussion, we first reprigertievant results from [9], [14].

Definition 4: Let (£, ) be a measurable space, and(ebe a probability measure dfe, F).
Suppose 1, . .., I} is afinite partition of2, and that{]l(m), e Iém)} is a sequence of partitions
of Q. Then {Il(m), : ..,Ig”)} is said toconverge to {I;, I} with respect toQ if, for every

probability measure® on (€2, F) such thatP < @), it is the case that
P(I™) — P(I;) asm — oo.

See [14, Definition 1].
Theorem 11:Suppose) is a probability measure ofR, B) that is absolutely continuous with
respect to the Lebesgue measutes a fixed integer, and thdt/y, ..., I, } is an equiprobable

partitioning of R. In other words, choose numbers
—0o=q<a <...<ap_1 <ar =+
such that the semi-open intervals= (a;_1, a;] satisfy
Q(L;)=1/L,i=1,...,L.

Suppose{yi, ...,y } are ii.d. samples generated in accordance Wthand thatm = [,,T

with [,, € N, an integer. Let{Il(m),...,]ém)} denote the empirical equiprobable partitioning
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associated with the samplés,, . .., y,.}. Then{I\™ ... 1™} converges td I, ..., I} with
respect tol) asm — oo.

Proof: See [14, Lemma 1].

Theorem 12:Let (2, F) be a measurable space, and(ebe a probability measure dfe, F).
Suppose{I{™, ..., ]é’”)} is a sequence of partitions 6f that converges with respect @ to
another partition{/;,I;,} asm — oo. Suppose{zy,...,z,} are i.i.d. samples generated in
accordance with a probability measufe< @, and let P, the empirical measure generated by
these samples. Then

lim lim P,(I'™) = P(I,), a.s. Vi.

m—00 N—00

Proof: See [14, Lemma 2].
Before proceeding to the proofs of the two theorems, we espitee three mixing coefficients

in terms of the densities. As stated in (4), we have that

BX,Y) =05 / / (@) — 1du(e)dv(y). (32)

Here we take advantage of the fact that the ‘density.ofvith respect to itself is one, and
similarly for v. Next, as in Theorem 3, we can drop the absolute value sigtineidefinitions of
a(X,Y) and of (X

Y'). Therefore the various mixing coefficients can be expressellows:

a(X,Y) = supsup / / (2. y) — dv(y)dp(z), (33)

oo =spap [ 55

Now, for each fixed sef’, let us define signed measures and é as follows:

() = / () — dv(y),

f(z,y)
IJ(T) dl/(y) - 17

dv(y) — 1| dp(x). (34)

5T(IL') =

T
T
and associated support sets

A (T)={z € R:kp(x) >0}, B.(T) ={x € R: ép(zx) > 0}.

Then it is easy to see that, for each fixed Bethe supremum in (33) is achieved by the choice
S = A, (T) while the supremum in (34) is achieved by the chaofte- B, (T'). Therefore

a(X.Y) = sup / @) = sup / o ()] dpa), (35)
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o(x1y) =su [ | Br(wduz) = sup [ tr(e)dta). (36)

T T

These formulas are the continuous analogs of (20) and (2pgeaotively.

Proof of Theorem 9: For a fixed integel. > 2, choose real numbers
—0o=qy< a1 <...<ap_1 <ap=-+00,
—00o=by< b <...<br_; <bp,=+00

such that the semi-open intervals= (a;_1, a;}, J; = (bi—1, b;] satisfy
w(l;) =1/L,v(J;) =1/L,i=1,..., L.

Now define the equiprobable partition®f consisting of thel. x L grid {I; x J;,4,5 = 1,..., L}.
Next, based on thelength empirical samplé(x1,v1), ..., (z;, y;) }, construct empirical marginal
distributions; for X and > for Y. Based on these empirical marginals, divide both xhaxis
R andY-axisR into L bins each having nearly equal fractions of treamples in each bin. This
gives an empiricall x L partitioning of R?, which is denoted b){Ii(L) X J;L),i,j =1,...,L}.
Using this grid, compute the associated empirical jointritigtion 6, on R2. Then the proof of
[14, Lemma 1] can be adapted to show that the empirical arty,” < J\" i, j =1,..., L}
converges to the true partitiofY; x .J;,i,5 =1,..., L} asl — oo, with respect to the product
measure: x v. The only detail that differs from [14] is the computationtbé so-called ‘growth
function’. Given a setd C R? of cardinality m, the number of different ways in which this
set can be partitioned by a rectangular grid of dimendior L is called the growth function,
denoted byA,,. It is shown in [14, Eq. (15)] that when the partition consisf L intervals and
the set being partitioned R, then4,, is given by the combinatorial parameter

m+ L (m+L)!
A, = =,
L m!L!

It is also shown in [14, Eq. (21)] that

ilog [( mt L >:| <2mh(1/L),
m L

h(xz) = —xlogx — (1 —z)log(1 — z), Vo € (0,1).

whereh(-) is defined by
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WhenR is replaced byR? and a set of. intervals is replaced by a grid df? rectangles, it is

easy to see that the growth functionnie larger than
2
m+ L
. .

< 4mh(1/L).

A, <

Therefore
log A,

In any case, sincé, the number of grid elements, approachesas! — oo, it follows that the
growth condition proposed in [9] is satisfied. Therefore ¢nepirical partition converges to the
true partition ad — oo.

Next, let{/; x J;.i,j = 1,..., L} denote, as before, the true equiprobable L gridding of
R%. Suppose that, aftdrsamples(z,,y,),r = 1,...,1 have been drawn, the data is put irito

bins. Then the expression (32) defining the trsenixing coefficient can be rewritten as
kK

B =053 3 [ [ 1) = 1ldntyinty).

i=1 j=1
Now suppos€ is an exact multiple of;. Then the empirical estimate based on thex k;

empirical grid can be written as

ki ki

Br=05Y > |Cy—1|k2,

i=1 j=1
where C;; denotes the number of samples., y,) in the ij-th cell of theempirical (not true)
equiprobable grid. If is not an exact multiple of;, then some bins will havél/k; | elements
while other bins will have|l/k;| + 1 elements. As a result, the terkf > gets replaced by
(sit;)/1> wheres; is the number of samples if}fl) andt; is the number of samples iﬂi](”.
Now, just as in [14, Eq. (36§t sed], the error|3, — 5(X,Y)| can be bounded by the sum of
two errors, the first of which is caused by the fact that the ieogb equiprobable grid is not
the same as the true equiprobable grid (the teyrof [14]), and the second is the error caused
by approximating an integral by a finite sum over the true galdable grid (the terna, of
[14]). Out of these, the first error term goes to zerd as oo because, if;/l — 0 so that each
bin contains increasingly many samples, the empirical ggbable grid converges to the true
equiprobable grid. The second error terms goes to zero bedhe integrand in (32) belongs to
L, (R?, i x v), as shown in [14, Eq. (37)]. [ |
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Proof of Theorem 10: The main source of difficulty here is that, whereas the exgioasfor
B(X,Y) involves just a single integral, the expressionsd0X,Y") and for¢(X,Y') involve the
supremum over all set§ C R. Thus, in order to show that the empirical estimates comverg
to the true values, we must show not only that empirical estids of integrals of the form
Jelrr)+du(z) and [, [67]du(x) converge to their correct values for each fixed Bebut also
that the convergence is in some sense uniform with respegt. tdhis is where we use the
boundedness of the densify-,-). The details are fairly routine modifications of argumemts i
[14]. Specifically, (switching notation to that of [14]), moose that in their Equation (27), we
have not just one measufge but rather a family of measurgs;, indexed by7’, and suppose
there exists a finite constansuch that for every sef we haveur(S) < cQ(S). Then it follows
from Equation (27)t seq.of [14] that

pr((a; AN ajya; Vall) < cQ(a; Aajya; Val']), VT.

Therefore

lim sup pr((a; A @], a; V ai']) = 0.

m—0oQ T
With this modification, the rest of the proof in [14] can be noked to show the following: In

the interests of brevity, define
re = /[HT]+d/~b(5€)
R
and let7p; denote its empirical approximation. Then, using the abowlifitation of the
argument in [14], it follows that

lim sup |ry — 77| = 0.
l—=o0 T

As a consequence,

lim sup 7y = supry = a(X,Y).
l—=o0 T T

The proof for thep-mixing coefficient is entirely similar. |

VIl. CONCLUDING REMARKS

In this paper we have studied the problem of estimating thengicoefficients between two
random variables. Three different mixing coefficients wettedied, namelyy-mixing, 5-mixing

and ¢-mixing coefficients. The random variables can either agswalues in a finite set or
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the set of real numbers. We derived upper and lower bound&dtr the a-mixing and the
¢-mixing coefficients. Moreover, in case the marginal dmttions of the two random variables
are uniform, an exact expression was given for ¢hmixing coefficient. This situation arises
when empirically generated samples are binned using pecbmning. We also proved analogs
of the data-processing inequality from information thefoyeach of the three kinds of mixing
coefficients. Then we moved on to real-valued random vagldnd showed that, even though
the empirically estimated joint distribution convergesthe true joint distribution, estimates of
the 5- or ¢-mixing coefficients based on the empirical joint distribatconverges to 1 under mild
conditions. However, by using percentile binning and allmwthe number of bins to increase
more slowly than the number of samples, we can generate iealpaéistimates that converge to
the true values.

In general both thex- and the¢-mixing coefficient are solutions of integer programming
problems, as shown in (17) and (19) respectively. So it winéldnteresting to explore whether
the computation of these mixing coefficients is NP-hard.oAlg is clear from these same
two equations that it is possible to construct a convex @ogning relaxation of (17) and a
nonlinear programming relaxation of (19). It would be ieting to analyze how close, if at
all, the solutions of these relaxed problems are to thosénefariginal integer programming
problems.

The later parts of the paper [14] contain some proposals entbspeed up the convergence
of the empirical estimates of the Kullback-Leibler divenge between two unknown measures.
It might be worthwhile to explore whether similar speed-wps be found for the algorithms

proposed here for estimating mixing coefficients from emoplrdata.
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