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Mixing Coefficients Between

Discrete and Real Random Variables:

Computation and Properties

Mehmet Eren Ahsen and M. Vidyasagar

Abstract

In this paper we study the problem of estimating the mixing coefficients between two random vari-

ables. Three different mixing coefficients are studied, namely alpha-mixing, beta-mixing and phi-mixing

coefficients. The random variables can either assume valuesin a finite set or the set of real numbers. We

derive upper and lower bounds for both the alpha-mixing and the phi-mixing coefficients. Moreover, in

case the marginal distributions of the two random variablesare uniform, an exact expression is given for

the phi-mixing coefficient. This situation arises when empirically generated samples are binned using

percentile binning. We also prove analogs of the data-processing inequality from information theory for

each of the three kinds of mixing coefficients. Then we move onto real-valued random variables, and

show that by using percentile binning and allowing the number of bins to increase more slowly than

the number of samples, we can generate empirical estimates that are consistent, i.e., converge to the

true values as the number of samples approaches infinity.

I. INTRODUCTION

The notion of independence of random variables is central toprobability theory. In [7, p. 8],

Kolmogorov says:

“Indeed, as we have already seen, the theory of probability can be regarded from the

mathematical point of view as a special application of the general theory of additive

set functions.
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and

“Historically, the independence of experiments and randomvariables represents the

very mathematical concept that has given the theory of probability its peculiar stamp.”

In effect, Kolmogorov is saying that, if the notion of independence is removed, then probability

theory reduces to just measure theory.

Independence is a binary concept: Either two random variables are independent, or they are

not. It is therefore worthwhile to replace the concept of independence with a more nuanced

measure thatquantifiesthe extent to which given random variables are dependent. Inthe case

of stationary stochastic processes, there are various notions of ‘mixing’, corresponding to long

term asymptotic independence. These notions can be readilyadapted to define various mixing

coefficients between two random variables. Several such definitions are presented in [4, p. 3],

out of which three are of interest to us, namely theα-, β- and φ-mixing coefficients. While

the definitions themselves are well-known, there is very little work on actuallycomputing(or at

least estimating) these mixing coefficients in a given situation. Theβ-mixing coefficient is easy

to compute but this is not the case for theα- and theφ-mixing coefficients.

Against this background, the present paper makes the following specific contributions:

1) For discrete random variables, simple upper and lower bounds are derived for both theα-

and theφ-mixing coefficients.

2) In the special case where the discrete random variables have uniform marginal distributions,

a closed-form formula is given for theφ-mixing coefficient. This situation arises when two

real-valued random variables are sampled, and the sampled values are discretized using

percentile binning, that is, the end points of the grids are chosen such that the marginals are

(nearly) uniform. It is well-known in the statistics literature that this kind of ‘data-dependent

partitioning’, also referred as ‘partitioning into statistically equivalent blocks’, offers better

performance than using a fixed partitioning for discretization; see the introduction of [9].

3) We study the case whereX, Y, Z are discrete random variables, andX,Z are conditionally

independent givenY , or equivalently,X → Y → Z is a short Markov chain. In this case

a well-known inequality from information theory [3, p. 34] states that

I(X,Z) ≤ min{I(X, Y ), I(Y, Z)}, (1)

whereI(·, ·) denotes the mutual information. This inequality is usuallyreferred to as the
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‘data processing inequality (DPI)’. We state and prove analogs of the DPI for each of the

α-, β- andφ-mixing coefficients.

4) SupposeX, Y are real-valued random variables whose joint distributionhas a density with

respect to the Lebesgue measure, and that{(x1, y1), . . . , (xl, yl)} are independent samples

of (X, Y ). If we compute the empirical joint distribution of(X, Y ) from these samples,

then the Glivenko-Cantelli Lemma states that the empiricaljoint distribution converges with

probability one to the true joint distribution; in other words, the empirical distribution gives

a consistentestimate. However, it is shown here that if the empirical distribution is used

to estimate the mixing coefficients, then with probability one both the estimatedβ-mixing

coefficient and the estimatedφ-mixing coefficient approach one asl → ∞, irrespective of

what the true value might be. Thus a quantity derived from a consistent estimator need

not itself be consistent.

5) On the other hand, if we bin thel samples intokl bins such that the quantized versions

of X andY have nearly uniform distributions, and choosekl in such a way thatkl → ∞

andkl/l → 0 as l → ∞, and a few technical conditions are satisfied, then the empirically

estimatedα-, β- andφ-mixing coefficients converge to their true values asl → ∞, with

probability one.

The problems of efficiently computing mixing coefficients and proving analogs of the data

processing inequality are not just of academic interest. Recent work on reverse-engineering

genome-wide interaction networks from gene expression data is based on using theφ-mixing

coefficient as a measure of the interaction between two genes; see [11]. If there aren genes in

the study, this approach requires the computation ofn2 φ-mixing coefficients. So for a typical

genome-wide study involving20, 000 genes, it becomes necessary to compute400 million φ-

mixing coefficients. Hence efficient computation is mandatory in order to have a practically

viable implementation. The approach suggested in [13], [11] is to compute all pair-wiseφ-

mixing coefficients, start with a complete directed graph onn nodes, and then to use the analog

of the data processing inequality for theφ-mixing coefficient to prune the network. The results

presented in this paper provide the analytical justification for the approach in [11].
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II. DEFINITIONS OFM IXING COEFFICIENTS

The notion of mixing originated in an attempt to establish the law of large numbers for

stationary stochastic processes that are not i.i.d. General definitions of theα-, β- andφ-mixing

coefficients of a stationary stochastic process can be found, among other places, in [12, pp. 34-

35]. Theα-mixing coefficient was introduced by Rosenblatt [10]. According to Doukhan [4, p.

5], Kolmogorov introduced theβ-mixing coefficient, but it appeared in print for the first time in

a paper published by some other authors. Theφ-mixing coefficient was introduced by Ibragimov

[6].

Essentially, all notions of mixing try to quantify the idea that, in a stationary stochastic process

of the form{Xt}
∞
t=−∞, the random variablesXt andXτ become more and more independent as

|t− τ | approaches infinity, in other words, there is an asymptotic long-term near-independence.

However, these very general notions can be simplified and readily adapted to define mixing

coefficients between a pair of random variablesX and Y .1 Though they can be defined for

arbitrary random variables, in the interests of avoiding a lot of technicalities we restrict our

attention in this paper to just two practically important cases: real-valued and discrete random

variables. We first define mixing coefficients between real-valued random variables, and then

between discrete random variables.

Definition 1: SupposeX and Y are real-valued random variables. LetB denote the Borel

σ-algebra of subsets ofR. Then we define

α(X, Y ) := sup
S,T∈B

|Pr{X ∈ S&Y ∈ T} − Pr{X ∈ S} · Pr{Y ∈ T}|. (2)

φ(X|Y ) := sup
S,T∈B

|Pr{X ∈ S|Y ∈ T} − Pr{X ∈ S}|

= sup
S,T∈B

∣

∣

∣

∣

Pr{X ∈ S&Y ∈ T}

Pr{Y ∈ T}
− Pr{X ∈ S}

∣

∣

∣

∣

. (3)

In applying the above definition, in casePr{Y ∈ T} = 0, we use the standard convention

that

Pr{X ∈ S|Y ∈ T} = Pr{X ∈ S}.

1Strictly speaking, mixing is a property not of the random variablesX andY , but rather of theσ-algebras generated byX

andY . This is how they are defined in [4].
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Note that theα-mixing coefficient is symmetric:α(X, Y ) = α(Y,X). However, in general

φ(X|Y ) 6= φ(Y |X).

The third coefficient, called theβ-mixing coefficient, has a somewhat more elaborate definition,

at least in the general case. Letθ denote the probability measure of the joint random variable

(X, Y ), and letµ, ν denote the marginal measures ofX and Y respectively. Note thatθ is a

measure onR2 while µ, ν are measures onR. If X andY were independent, thenθ would equal

µ× ν, the product measure. With this in mind, we define

β(X, Y ) = ρ(θ, µ× ν), (4)

whereρ denotes the total variation distance between two measures.The β-mixing coefficient is

also symmetric.

Next we deal with discrete random variables, and for this purpose we introduce some notation

that is used throughout the remainder of the paper. The most important notational change is that,

since probability distributions on finite sets are vectors,we use bold-face Greek letters to denote

them, whereas we use normal Greek letters to denote measureson R or R2. For each integern,

let Sn denote then-dimensional simplex. Thus

Sn := {v ∈ R
n : vi ≥ 0 ∀i,

n
∑

i=1

vi = 1}.

If A = {a1, . . . , an} andµ ∈ Sn, thenµ defines a measurePµ on the setA according to

Pµ(S) =
n
∑

i=1

µiIS(ai),

whereIS(·) denotes the indicator function ofS. To avoid more notation, we will writeµ(S)

instead of the more precisePµ(S).

Supposeµ,ν ∈ Sn are probability distributions on a setA of cardinalityn. Then thetotal

variation distance betweenµ andν is defined as

ρ(µ,ν) := max
S⊆A

|µ(S)− ν(S)|.

It is easy to give several equivalent closed-form formulas for the total variation distance.

ρ(µ,ν) = 0.5‖µ− ν‖1 =
n
∑

i=1

(µi − νi)+ = −
n
∑

i=1

(µi − νi)−,

where as usual(·)+ and (·)− denote the nonnegative and the nonpositive parts of a number:

(x)+ = max{x, 0}, (x)− = min{x, 0}.

August 22, 2012 DRAFT
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Now supposeA,B denotes sets of cardinalityn,m respectively, and thatµ ∈ Sn,ν ∈ Sm.

Then the distributionψ ∈ Snm defined byψij = µiνj is called theproduct distribution on

A × B. In the other direction, ifθ ∈ Snm is a distribution onA × B, thenθA ∈ Sn, θB ∈ Sm

defined respectively by

(θA)i :=
m
∑

j=1

θij , (θB)j :=
n
∑

i=1

θij

are called themarginal distributions of θ on A andB respectively.

The earlier definitions of mixing coefficients become quite explicit in the case whereX, Y are

discrete random variables assuming values in the finite setsA,B of cardinalitiesn,m respectively.

In this case it does not matter whether the ranges ofX, Y are finite subsets ofR or some abstract

finite sets. Definition 1 can now be restated in this context. Note that, sinceA,B are finite sets,

the associatedσ-algebras are just the power sets, that is, the collection ofall subsets.

Definition 2: With the above notation, we define

α(X, Y ) := max
S⊆A,T⊆B

|θ(S × T )− µ(S)ν(T )|, (5)

β(X, Y ) := ρ(θ,µ× ν), (6)

φ(X|Y ) := max
S⊆A,T⊆B

∣

∣

∣

∣

θ(S × T )

ν(T )
− µ(S)

∣

∣

∣

∣

. (7)

WhetherX, Y are real-valued or discrete random variables, the mixing coefficients satisfy the

following inequalities:

0 ≤ α(X, Y ) ≤ β(X, Y ) ≤ min{φ(X|Y ), φ(Y |X)} ≤ max{φ(X|Y ), φ(Y |X)} ≤ 1.

Also, the following statements are equivalent:

1) X andY are independent random variables.

2) α(X, Y ) = 0.

3) β(X, Y ) = 0.

4) φ(X|Y ) = 0.

5) φ(Y |X) = 0.
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III. COMPUTATION OF M IXING COEFFICIENTS FORDISCRETE RANDOM VARIABLES

In this section, we present explicit upper and lower bounds for theα- andφ-mixing coefficients,

as well as an exact formula for theφ-mixing coefficient in the case where one of the random

variables has a uniform marginal distribution. This situation arises when a real-valued random

variable is quantized using percentile binning.

From the definitions, it is obvious thatβ(X, Y ) can be readily computed in closed form. As

before, let us defineψ = µ×µ to be the product distribution of the two marginals, and define

γij := θij − ψij ,Γ := [γij ] ∈ [−1, 1]n×m.

Then it is obvious that

β(X, Y ) := ρ(θ,ψ) = 0.5

n
∑

i=1

m
∑

j=1

|γij| =

n
∑

i=1

m
∑

j=1

(γij)+ = −

n
∑

i=1

m
∑

j=1

(γij)−.

On the other hand, computingα(X, Y ) or φ(X|Y ) directly from Definition 2 would require

2n+m computations, sinceS, T must be allowed to vary over all subsets ofA,B respectively. It

is shown later that the number of computations can be broughtdown toO(2m) but this is still

exponential. Thus the objectives of the present section areto derive explicit upper and lower

bounds for these mixing coefficients, and also to derive an exact formula forφ(X|Y ) in caseν

is the uniform distribution.

For this purpose we recall the definition of the matrix induced norm. For indicesi andj, let

γi,γj denote respectively thei-th row andj-th column of the matrixΓ. The quantity

‖Γ‖i1 := max
1≤j≤m

n
∑

i=1

|γij| = max
1≤j≤m

‖γj‖1

is called theℓ1-induced matrix norm of Γ. It is well-known that

‖Γ‖i1 = max
‖v‖1≤1

‖Γv‖1 = max
v 6=0

‖Γv‖1
‖v‖1

.

With this notation we are ready to state the main results of this section.

Theorem 1:We have that

0.5‖Γ‖i1 ≤ α(X, Y ) ≤ 0.25m‖Γ‖i1. (8)

Theorem 2:We have that

0.5‖Γ‖i1
maxj νj

≤ φ(X|Y ) ≤
0.5‖Γ‖i1
minj νj

. (9)

August 22, 2012 DRAFT
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In particular, ifν is the uniform distribution onB, then

φ(X|Y ) = 0.5m‖Γ‖i1. (10)

In proving Theorems 1 and 2, the first step is to get rid of the absolute value signs in the

definitions of theα- andφ-mixing coefficients.

Theorem 3:It is the case that

α(X, Y ) = max
S⊆A,T⊆B

[θ(S × T )− µ(S)ν(T )] , (11)

φ(X|Y ) = max
S⊆A,T⊆B

[

θ(S × T )

ν(T )
− µ(S)

]

. (12)

Proof: Define

Rα := {θ(S × T )− µ(S)ν(T ), S ⊆ A, T ⊆ B}.

ThenRα is a subset of the real line consisting of at most2n+m elements. Now it is claimed that

the setRα is symmetric; that is,x ∈ Rα implies that−x ∈ Rα. If this claim can be established,

then (11) follows readily. So supposex ∈ Rα, and chooseS ⊆ A, T ⊆ B such that

θ(S × T )− µ(S)ν(T ) = x.

Let Sc denote the complement ofS in A. Then, using the facts that

µ(Sc) = 1− µ(S),

θ(Sc × T ) = θ(A× T )− θ(S × T ) = ν(T )− θ(S × T ),

it is easy to verify that

θ(Sc × T )− µ(Sc)ν(T ) = −x.

SoRα is symmetric and (11) follows. By analogous reasoning, the set

Rφ :=

{

θ(S × T )

ν(T )
− µ(S) : S ⊆ A, T ⊆ B

}

is also symmetric, which establishes (12). �

To facilitate the proofs of Theorems 1 and 2, we introduce a map from the power set ofA

into {0, 1}n. For a subsetS ⊆ A, we defineh(S) ∈ {0, 1}n by

hi(S) =







1, if ai ∈ S,

0, if ai 6∈ S.

August 22, 2012 DRAFT
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The maph : 2B → {0, 1}m is defined analogously. With these definitions, it is obviousthat, for

S ⊆ A, T ⊆ B, we have

µ(S) = [h(S)]tµ = µt
h(S),ν(T ) = [h(T )]tν = νt

h(T ),

θ(S × T ) = [h(S)]tΘh(T ),

whereΘ = [θij ]. By replacingh(S) and h(T ) by arbitrary binary vectorsa ∈ {0, 1}n,b ∈

{0, 1}m, it readily follows from (11) and (12) that

α(X, Y ) = max
a∈{0,1}n,b∈{0,1}m

a
tΓb, (13)

φ(X|Y ) = max
a∈{0,1}n,b∈{0,1}m

a
tΓb

νtb
. (14)

Now we are in a position to prove Theorems 1 and 2.

Proof of Theorem 1: It is obvious that

max
a∈{0,1}n,b∈{0,1}m

a
tΓb = max

b∈{0,1}m
max

a∈{0,1}n
a
tΓb.

Now, for fixedb ∈ {0, 1}m, it is obvious that

max
a∈{0,1}n

a
tΓb =

n
∑

i=1

(γi
b)+,

corresponding to the choice

ai =







1, if γi
b ≥ 0,

0, if γi
b < 0.

Therefore

α(X, Y ) = max
b∈{0,1}m

n
∑

i=1

(γi
b)+. (15)

Next, let e denote a column vector consisting of all ones, with the subscript denoting its

dimension, and observe that

µt = e
t
nΘ = e

t
nΨ ⇒ e

t
nΓ = 0n, similarly Γem = 0m.

August 22, 2012 DRAFT
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Therefore, for any vectorv ∈ R
m, it follows that

e
t
nΓv = 0 ⇒

n
∑

i=1

γ i
v = 0

⇒
n
∑

i=1

(γi
v)+ +

n
∑

i=1

(γi
v)− = 0

⇒

n
∑

i=1

(γi
v)+ = −

n
∑

i=1

(γi
v)−

⇒
n
∑

i=1

(γi
v)+ = 0.5

n
∑

i=1

|γi
v| = 0.5‖Γv‖1. (16)

So in particular it follows that

α(X, Y ) = max
b∈{0,1}m

0.5‖Γb‖1 (17)

To prove the lower bound in (8), choose an indexj0 ∈ {1, . . . , m} such that‖γj0
‖1 = ‖Γ‖i1.

Then chooseb0 ∈ {0, 1}m to be the binary vector withbj0 = 1 and bj = 0 for all j 6= j0. Now

it follows from (16) that
n
∑

i=1

(γi
b0)+ = 0.5

n
∑

i=1

|γi
b0|

= 0.5
n
∑

i=1

|γi,j0| = 0.5‖γj0
‖1 = 0.5‖Γ‖i1.

Hence the maximum over allb ∈ {0, 1}m is at least equal to this much.

To prove the upper bound in (8), observe from the definition that

‖Γ‖i1 = max
1≤j≤m

‖γj‖1.

Now for anyb ∈ {0, 1}m, we have

Γb =
m
∑

j=1

γjbj .

Therefore

0.5‖Γb‖1 = 0.5‖
m
∑

j=1

γjbj‖1 ≤ 0.5

[

m
∑

j=1

bj‖γj‖1

]

. (18)

The proof is completed by showing that an optimalb can be chosen with no more thanm/2

nonzero entries. Choose ab∗ ∈ {0, 1}m that achieves the maximum in (17). Ifb∗ hasm/2 or

fewer nonzero entries, we are done, because we can substitute into (18) and conclude that

0.5‖Γb∗‖1 ≤ 0.25m max
1≤j≤m

‖γj‖1 = 0.25m‖Γ‖i1.

August 22, 2012 DRAFT
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If b
∗ has more thanm/2 nonzero entries, definēb = em − b

∗, and note that̄b has fewer than

m/2 nonzero entries. Also, sinceΓem = 0m, it follows thatΓb̄ = −Γb∗. So by earlier reasoning

‖Γb̄‖1 = ‖Γb∗‖1

and the bound follows. �

Proof of Theorem 2: By reasoning analogous to that in the proof of Theorem 1, we arrive at

φ(X|Y ) = max
a∈{0,1}n,b∈{0,1}m

a
tΓb

νtb

= max
b∈{0,1}m

max
a∈{0,1}n

a
tΓb

νtb

= max
b∈{0,1}m

n
∑

i=1

(

γi
b

νtb

)

+

. (19)

To prove the lower bound, choose an indexj0 such that‖γj0
‖1 = ‖Γ‖i1, and chooseb0 ∈

{0, 1}m such thatbj0 = 1 andbj = 0 for all j 6= j0. Then
n
∑

i=1

(

γi
b0

νb0

)

+

=
1

νj0

n
∑

i=1

(γi,j0)+

=
0.5

νj0

n
∑

i=1

|γi,j0|

=
0.5‖Γ‖i1
νj0

≥
0.5‖Γ‖i1
maxj νj

.

To prove the upper bound, note that for allb ∈ {0, 1}m, we have
n
∑

i=1

(γib)+
νtb

= 0.5

n
∑

i=1

|γib|

νtb
= 0.5

‖Γb‖1
νtb

.

Now we change the variable of optimization fromb to v := Diag(ν)b, and use the fact that

August 22, 2012 DRAFT
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the induced matrix norm‖ · ‖i1 is submultiplicative. This leads to

φ(X|Y ) = 0.5 max
b∈{0,1}m

‖Γb‖1
νb

≤ 0.5 max
b∈Rm

‖Γb‖1
|νb|

= 0.5 max
v∈Rm

‖Γ[Diag(ν)]−1
v‖1

‖v‖1

= 0.5‖Γ[Diag(ν)]−1‖i1

≤ 0.5‖Γ‖i1 · ‖[Diag(ν)]−1‖i1

=
0.5‖Γ‖i1
minj νj

.

Finally, if ν is the uniform distribution, thenminj νj = maxj νj = 1/m. So the two inequalities

in (9) become equalities. �

For later use, we collect (15) and (19) and state them a separate theorem.

Theorem 4:With all notation as above, we have

α(X, Y ) = max
T⊆B

n
∑

i=1

[Pr{X = i&Y ∈ T} − Pr{X = i}Pr{Y ∈ T}]+. (20)

and

φ(X|Y ) = max
T⊆B

n
∑

i=1

[Pr{X = i|Y ∈ T} − Pr{X = i}]+. (21)

IV. DATA PROCESSING-TYPE INEQUALITIES FOR M IXING COEFFICIENTS

In this section we study the case where two random variables are conditionally independent

given a third, and prove inequalities of the data processing-type for the associated mixing

coefficients. The nomenclature ‘data processing-type’ is motivated by the well-known data

processing inequality in information theory.

Definition 3: SupposeX, Y, Z are discrete random variables assuming values in finite sets

A,B,C respectively. ThenX,Z are said to be conditionally independent givenY if

Pr{X = i&Z = k|Y = j} = Pr{X = i|Y = j}Pr{Z = j|Y = k}, ∀i ∈ A, j ∈ B, k ∈ C.

(22)

If X,Z are conditionally independent givenY , we denote this by(X ⊥ Z)|Y . Some authors

also write this as ‘X → Y → Z is a short Markov chain’, ignoring the fact that the three random

variables can belong to quite distinct sets. In this case, itmakes no difference whether we write

August 22, 2012 DRAFT
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X → Y → Z or Z → Y → X, because it is obvious from (22) that conditional independence

is a symmetric relationship. Thus

(X ⊥ Z)|Y ⇔ (Z ⊥ X)|Y.

Also, from the definition, it follows readily that if(X ⊥ Z)|Y , then

Pr{X ∈ S&Z ∈ U |Y = j} = Pr{X ∈ S|Y = j}Pr{Z ∈ U |Y = j}, ∀S ⊆ A, j ∈ B, U ⊆ C.

(23)

However, in general, it isnot true that

Pr{X ∈ S&Z ∈ U |Y ∈ T} = Pr{X ∈ S|Y ∈ T}Pr{Z ∈ U |Y ∈ T}, ∀S ⊆ A, T ⊆ B, U ⊆ C.

In fact, by settingT = B, it would follow from the above relationship thatX and Z are

independent, which is a stronger requirement than conditional independence.

Given two random variablesX, Y with joint distributionθ and marginal distributionsµ,ν of

X, Y respectively, the quantity

H(µ) := −
n
∑

i=1

µi log µi

is called theentropy of µ, with analogous definitions forH(ν) andH(θ); and the quantity

I(X, Y ) = H(µ) +H(ν)−H(θ)

is called themutual information betweenX andY . It is clear thatI(X, Y ) = I(Y,X). The

following well-known inequality, referred to as thedata-processing inequality, is the motivation

for the contents of this section; see [3, p. 34]. Suppose(X ⊥ Z)|Y . Then

I(X,Z) ≤ min{I(X, Y ), I(Y, Z)}. (24)

Theorem 5:Suppose(X ⊥ Z)|Y . Then

α(X,Z) ≤ min{α(X, Y ), α(Y, Z)}. (25)

Theorem 6:Suppose(X ⊥ Z)|Y . Then

β(X,Z) ≤ min{β(X, Y ), β(Y, Z)}. (26)

Theorem 7:Suppose(X ⊥ Z)|Y . Then

φ(X|Z) ≤ min{φ(X|Y ), φ(Y |Z)}, (27)
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φ(Z|X) ≤ min{φ(Z|Y ), φ(Y |X)}. (28)

Proof of Theorem 5: Let S ⊆ A, U ⊆ C be arbitrary, and define

rα(S, U) := Pr{X ∈ S&Z ∈ U} − Pr{X ∈ S}Pr{Z ∈ U}.

Then

rα(S, U) =
m
∑

j=1

[Pr{X ∈ S&Y = j&Z ∈ U} − Pr{X ∈ S&Y = j}Pr{Z ∈ U}]

=
m
∑

j=1

[Pr{X ∈ S|Y = j}Pr{Z ∈ U |Y = j}Pr{Y = j}

− Pr{X ∈ S|Y = j}Pr{Y = j}Pr{Z ∈ U}]

=

m
∑

j=1

Pr{X ∈ S|Y = j}[Pr{Z ∈ U&Y = j} − Pr{Y = j}Pr{Z ∈ U}]

≤
m
∑

j=1

Pr{X ∈ S|Y = j}[Pr{Z ∈ U&Y = j} − Pr{Y = j}Pr{Z ∈ U}]+

≤

m
∑

j=1

[Pr{Z ∈ U&Y = j} − Pr{Y = j}Pr{Z ∈ U}]+

≤ max
U⊆C

m
∑

j=1

[Pr{Z ∈ U&Y = j} − Pr{Y = j}Pr{Z ∈ U}]+

= α(Y, Z).

SinceS andU are arbitrary, this implies thatα(X,Z) ≤ α(Y, Z) wheneverX → Y → Z is

a short Markov chain. SinceX → Y → Z is the same asZ → Y → X, it also follows that

α(Z,X) ≤ α(Y,X). Finally, sinceα is symmetric, the desired conclusion (25) follows. �

Proof of Theorem 6: Suppose thatA,B,C have cardinalitiesn,m, l respectively. (The symbols

n,m have been introduced earlier and nowl is introduced.) Letδ denote the joint distribution

of (X, Y, Z), ζ the joint distribution of(X,Z), η the joint distribution of(Y, Z), and as before,

θ the joint distribution of(X, Y ). Let ξ the marginal distribution ofZ, and as before, letµ,ν

denote the marginal distributions ofX andY . Finally, define

cjk =
ηjk
νj

= Pr{Z = k|Y = j}.

As can be easily verified, the fact that(X ⊥ Z)|Y (or (22)) is equivalent to

δijk =
θijηjk
νj

= θijcjk, ∀i, j, k.
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Also note the following identities:
n
∑

i=1

θij = νj ,
m
∑

j=1

θij = µi,
m
∑

j=1

δijk = ζik, ∀i, j, k.

Now it follows from the various definitions that

β(X,Z) =
n
∑

i=1

l
∑

k=1

(ζik − µiξk)+

=

n
∑

i=1

l
∑

k=1

(

m
∑

j=1

(δijk − θijξk)

)

+

≤

n
∑

i=1

l
∑

k=1

m
∑

j=1

(δijk − θijξk)+

=

n
∑

i=1

l
∑

k=1

m
∑

j=1

(θijcjk − θijξk)+

=
l
∑

k=1

m
∑

j=1

[

n
∑

i=1

θij

]

(cjk − ξk)+

=
l
∑

k=1

m
∑

j=1

(νjcjk − νjξk)+

=
l
∑

k=1

m
∑

j=1

(ηjk − νjξk)+

= β(Y, Z).

Now the symmetry ofβ(·, ·) serves to show thatβ(X,Z) ≤ β(X, Y ). Putting both inequalities

together leads to the desired conclusion. �

Proof of Theorem 7: Suppose(X ⊥ Z)|Y . Since theφ-mixing coefficient is not symmetric, it

is necessary to prove two distinct inequalities, namely: (i) φ(X|Z) ≤ φ(X|Y ), and (ii)φ(X|Z) ≤

φ(Y |Z).

Proof that φ(X|Z) ≤ φ(X|Y ): For S ⊆ A, define

rφ(S) := max
T⊆B

Pr{X ∈ S|Y ∈ T},

and observe that

φ(X|Y ) = max
S⊆A

[rφ(S)− µ(S)].
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For a givenS ⊆ A, chooseT ∗ = T ∗(S) ⊆ B such that

Pr{X ∈ S|Y ∈ T ∗} = rφ(S).

SupposeU ⊆ C is arbitrary. Then

Pr{X ∈ S&Z ∈ U} =

m
∑

j=1

Pr{X ∈ S&Y = j&Z ∈ U}

=
m
∑

j=1

Pr{X ∈ S|Y = j}Pr{Z ∈ U |Y = j}Pr{Y = j}

=

m
∑

j=1

Pr{X ∈ S|Y = j}Pr{Z ∈ U&Y = j}

≤ rφ(S)

m
∑

j=1

Pr{Z ∈ U&Y = j}

= rφ(S) Pr{Z ∈ U}.

Dividing both sides byPr{Z ∈ U} leads to

Pr{X ∈ S|Z ∈ U} ≤ rφ(S),

Pr{X ∈ S|Z ∈ U} − µ(S) ≤ rφ(S)− µ(S) ≤ φ(X|Y ).

Proof that φ(X|Z) ≤ φ(Y |Z): Let us define

c(S, U) := Pr{X ∈ S|Z ∈ U} − µ(S),
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and reason as follows:

c(S, U) = Pr{X ∈ S|Z ∈ U} − Pr{X ∈ S}

=

m
∑

j=1

[Pr{X ∈ S&Y = j|Z ∈ U} − Pr{X ∈ S&Y = j}]

=
m
∑

j=1

[Pr{X ∈ S|Y = j&Z ∈ U}Pr{Y = j|Z ∈ U} − Pr{X ∈ S|Y = j}Pr{Y = j}]

=

m
∑

j=1

Pr{X ∈ S|Y = j}[Pr{Y = j|Z ∈ U} − Pr{Y = j}]

≤

m
∑

j=1

Pr{X ∈ S|Y = j}[Pr{Y = j|Z ∈ U} − Pr{Y = j}]+

≤
m
∑

j=1

[Pr{Y = j|Z ∈ U} − Pr{Y = j}]+

≤ max
U⊆C

m
∑

j=1

[Pr{Y = j&Z ∈ U} − Pr{Y = j}]+

= φ(Y |Z).

Since the right side is independent of bothS andU , the desired conclusion follows. �.

V. INCONSISTENCY OF ANESTIMATOR FOR M IXING COEFFICIENTS

SupposeX, Y are real-valued random variables with some unknown joint distribution, and

suppose we are given an infinite sequence of independent samples {(xi, yi), i = 1, 2, . . .}. The

question studied in this section and the next is whether it ispossible to construct empirical

estimates of the various mixing coefficients that converge to the true values as the number of

samples approaches infinity.

Let

ΦX,Y (a, b) = Pr{X ≤ a&Y ≤ b}

denote the true but unknown joint distribution function ofX and Y , and let ΦX(·),ΦY (·)

denote the true but unknown marginal distribution functions of X, Y respectively. Using the

samples{(xi, yi), i = 1, 2, . . .}, we can construct three ‘stair-case functions’ that are empirical

estimates ofΦX ,ΦY andΦX,Y based on the firstl samples, as follows:

Φ̂X(a; l) :=
1

l

l
∑

i=1

I{xi≤a}, (29)
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Φ̂Y (b; l) :=
1

l

l
∑

i=1

I{yi≤b}, (30)

Φ̂X,Y (a, b; l) :=
1

l

l
∑

i=1

I{xi≤a&yi≤b}, (31)

where as usualI denotes the indicator function. ThuŝΦX(a; l) counts the fraction of the firstl

samples that are less than or equal toa, and so on. With this construction, a well-known result

called the Glivenko-Cantelli lemma (see [5], [2] or [8, p. 20]) states that the empirical estimates

converge uniformly and almost surely to their true functions as the number of samplesl → ∞.

ThusΦ̂X,Y is a consistent estimator of the true joint distribution. Thus one might be tempted to

think that an empirical estimate of any (or all) of the three mixing coefficients based on̂ΦX,Y

will also converge to the true value asl → ∞. The objective of this brief section is to show that

this is not so. Hence estimates of mixing coefficients derived from a consistent estimator of the

joint distribution need themselves be consistent.

Theorem 8:SupposêΦX,Y is defined by (31), and thatxi 6= xj andyi 6= yj wheneveri 6= j.

Let β̂l denote theβ-mixing coefficient associated with the joint distribution̂ΦX,Y (·, ·; l). Then

β̂l = (l − 1)/l.

Proof: Fix the integerl in what follows. Note that the empirical distribution̂ΦX,Y (·, ·; l)

depends only the totality of thel samples, and not the order in which they are generated.

Without loss of generality, we can replace the samples(x1, . . . , xn) by their ‘order statistics’,

that is, the same samples arranged in increasing order, and do the same for theyi. Thus the

assumption is thatx1 < x2 < . . . < xl and similarlyy1 < y2 < . . . < yl. With this convention,

the empirical samples will be of the form{(x1, yπ(1)), . . . , (xl, yπ(l))} for some permutationπ

of {1, . . . , l}. Therefore the probability measure associated with the empirical distribution Φ̂ is

purely atomic, with jumps of magnitude1/l at the points{(x1, yπ(1)), . . . , (xl, yπ(l))}. So we can

simplify matters by replacing the real line on theX-axis by the finite set{x1, . . . , xl}, and the

real line on theY -axis by the finite set{y1, . . . , yl}. With this redefinition, the joint distribution

θ assigns a weight of1/l to each of the points(xi, yπ(i)) and a weight of zero to all other points

(xi, yj) wheneverj 6= π(i), while the marginal measuresµ,ν of X andY will be uniform on

the respective finite sets. Thus the product measureµ × ν assigns a weight of1/l2 to each of

the l2 grid points(xi, yj). From this, it is easy to see that

β̂l = ρ(θ,µ× ν) = (l − 1)/l.
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This is the desired conclusion. �

Corollary 1: Suppose the true but unknown distributionΦX,Y has density with respect to the

Lebesgue measure. Then̂βl → 1, φ̂l → 1 almost surely asl → ∞.

Proof: If the true distribution has a density, then it is nonatomic,which means that with

probability one, samples will be pairwise distinct. It now follows from Theorem 8 that

φ̂l ≥ β̂l =
l − 1

l
→ 1 as l → ∞.

This is the desired conclusion. �

VI. CONSISTENT ESTIMATORS FORM IXING COEFFICIENTS

The objective of the present section is to show that a simple modification of the ‘naive’

algorithm proposed in Section V does indeed lead to consistent estimates, provided appropriate

technical conditions are satisfied.

The basic idea behind the estimators is quite simple. Suppose that one is given samples

{(xi, yi), i ≥ 1} generated independently and at random from an unknown jointprobability

measureθ ∈ M(R2). Given l samples, choose an integerkl of bins. Divide the real line intokl

intervals such that each bin contains⌊l/kl⌋ or ⌊l/kl⌋ + 1 samples for bothX andY . In other

words, carry out percentile binning of both random variables. One way to do this (but the proof

is not dependent on how precisely this is done) is as follows:Defineml = ⌊l/kl⌋, r = l− klml,

and placeml +1 samples in the firstr bins andml samples in the nextml − r bins. This gives

a way of discretizing the real line for bothX andY such that the discretized random variables

have nearly uniform marginals. With this binning, compute the corresponding joint distribution,

and the associated empirical estimates of the mixing coefficients. The various theorems below

show that, subject to some regularity conditions, the empirical estimates produced by this scheme

do indeed converge to their right values with probability one asl → ∞, provided thatml → ∞,

or equivalently,kl/l → 0, as l → ∞. In other words, in order for this theorem to apply, the

number of bins must increase more slowly than the number of samples, so that the number of

samples per bin must approach infinity. In contrast, in Theorem 8, we have effectively chosen

kl = l so that each bin contains precisely one sample, which explains why that approximation

scheme does not work.

To state the various theorems, we introduce a little bit of notation, and refer the reader to [1]

for all concepts from measure theory that are not explicitlydefined here. LetM(R),M(R2)

August 22, 2012 DRAFT



20

denote the set of all measures onR or R
2 equipped with the Borelσ-algebra. Recall that if

θ, η ∈ M(R) or M(R2), thenθ is said to beabsolutely continuous with respect toη, denoted

by θ ≪ η, if for every measurable setE, η(E) = 0 ⇒ µ(E) = 0.

Next, let θ denote the joint probability measure of(X, Y ), and letµ, ν denote the marginal

measures. Thus, for every measurable2 subsetS ⊆ R, the measureµ(S) is defined asθ(S ×R)

and similarly for allT ⊆ R, the measureν(T ) is defined asθ(R×T ). Now the key assumption

made here is thatthe joint measureθ is absolutely continuous with respect to the product measure

µ×ν. In the case of discrete random variables, this assumption is automatically satisfied. Suppose

that for some pair of indicesi, j, it is the case thatµi · νj = 0. Then eitherµi = 0 or νj = 0. If

µi = 0, then it follows from the identity
∑

j′ θij′ = µi that θij′ = 0 for all j′, and in particular

θij = 0. Similarly if νj = 0, then it follows from the identity
∑

i′ θi′j = νj thatθi′j = 0 for all i′,

and in particularθij = 0. In either case it follows thatθij = 0, so thatθ ≪ µ× ν. However, in

the case of real random variables, this need not be so. For example, replaceR× R by the unit

square, and letθ be the diagonal measure. Then both marginalsµ, ν are the uniform measures

on the unit interval, and the productµ × ν is the uniform measure on the unit square – andθ

is singular with respect to the uniform measure.

Next we introduce symbols for the various densities. Sinceθ ≪ µ × ν, it follows that θ has

a Radon-Nikodym derivative with respect toµ× ν, which is denoted byf(·, ·). So for any sets

S, T ⊆ R, it follows that

θ(S × T ) =

∫

S

∫

T

f(x, y)dν(y)dµ(x) =

∫

T

∫

S

f(x, y)dµ(x)dν(y).

For anyT ⊆ R with ν(T ) > 0, the conditional probabilityPr{X ∈ S|Y ∈ T} is given by

Pr{X ∈ S|Y ∈ T} =
Pr{X ∈ S&Y ∈ T}

Pr{Y ∈ T}
=
θ(S × T )

ν(T )

=

∫

S

[
∫

T

f(x, y)

ν(T )
dν(y)

]

dµ(x).

Theorem 9:With the above notation and conditions, the empirically estimatedβ-mixing co-

efficient β̂l converges almost surely to the true valueβ as l → ∞, provided thatkl → ∞ and

kl/l → 0 as l → ∞.

2Hereafter we drop this adjective; it is assumed that all setsthat are encountered are measurable.
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Theorem 10:Suppose that the densityf(·, ·) belongs toL∞(R2), and thatkl/l → 0 asl → ∞.

Then the empirically estimatedα-mixing coefficientα̂l converges almost surely to the true value

α as l → ∞, and the empirically estimatedφ-mixing coefficientφl converges almost surely to

the true valueφ as l → ∞.

Note that the densityf(·, ·) ∈ L1(R
2, µ × ν). So the sequence of empirical estimatesβ̂l

converges to its true value without any additional technical conditions. The sequences of empirical

estimatesα̂l and φ̂l converge to their true values provided the densityf is bounded almost

everywhere. This condition is intended to ensure that conditional densities do not ‘blow up’.

In the case of discrete variables, we have already seen that the conditionθ ≪ µ × ν holds

automatically, which means that the ‘density’fijθij/(µiνj) is always well-defined. Since there

are only finitely many values ofi and j, this ratio is also bounded. However, in the case of

real-valued random variables, this condition needs to be imposed explicitly.

The proofs of these two theorems are based on arguments in [9], [14]. In the proof of Theorem

9, we can use those arguments as they are, whereas in the proofof Theorem 10, we need to

adapt them. To facilitate the discussion, we first reprise the relevant results from [9], [14].

Definition 4: Let (Ω,F) be a measurable space, and letQ be a probability measure on(Ω,F).

Suppose{I1, . . . , IL} is a finite partition ofΩ, and that{I(m)
1 , . . . , I

(m)
L } is a sequence of partitions

of Ω. Then {I
(m)
1 , . . . , I

(m)
L } is said toconverge to {I1, IL} with respect toQ if, for every

probability measureP on (Ω,F) such thatP ≪ Q, it is the case that

P (I
(m)
l ) → P (Ii) asm→ ∞.

See [14, Definition 1].

Theorem 11:SupposeQ is a probability measure on(R,B) that is absolutely continuous with

respect to the Lebesgue measure,L is a fixed integer, and that{I1, . . . , IL} is an equiprobable

partitioning ofR. In other words, choose numbers

−∞ = a0 < a1 < . . . < aL−1 < aL = +∞

such that the semi-open intervalsIi = (ai−1, ai] satisfy

Q(Ii) = 1/L, i = 1, . . . , L.

Suppose{y1, . . . , ym} are i.i.d. samples generated in accordance withQ, and thatm = lmT

with lm ∈ N, an integer. Let{I(m)
1 , . . . , I

(m)
L } denote the empirical equiprobable partitioning
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associated with the samples{y1, . . . , ym}. Then{I(m)
1 , . . . , I

(m)
L } converges to{I1, . . . , IL} with

respect toQ asm→ ∞.

Proof: See [14, Lemma 1].

Theorem 12:Let (Ω,F) be a measurable space, and letQ be a probability measure on(Ω,F).

Suppose{I(m)
1 , . . . , I

(m)
L } is a sequence of partitions ofΩ that converges with respect toQ to

another partition{I1, IL} as m → ∞. Suppose{x1, . . . , xn} are i.i.d. samples generated in

accordance with a probability measureP ≪ Q, and letPn the empirical measure generated by

these samples. Then

lim
m→∞

lim
n→∞

Pn(I
(m)
i ) = P (Ii), a.s. ∀i.

Proof: See [14, Lemma 2].

Before proceeding to the proofs of the two theorems, we express the three mixing coefficients

in terms of the densities. As stated in (4), we have that

β(X, Y ) = 0.5

∫

R

∫

R

|f(x, y)− 1|dµ(x)dν(y). (32)

Here we take advantage of the fact that the ‘density’ ofµ with respect to itself is one, and

similarly for ν. Next, as in Theorem 3, we can drop the absolute value signs inthe definitions of

α(X, Y ) and ofφ(X|Y ). Therefore the various mixing coefficients can be expressedas follows:

α(X, Y ) = sup
T

sup
S

∫

S

∫

T

[f(x, y)− 1]dν(y)dµ(x), (33)

φ(X, Y ) = sup
T

sup
S

∫

S

[
∫

T

f(x, y)

ν(T )
dν(y)− 1

]

dµ(x). (34)

Now, for each fixed setT , let us define signed measuresκT andδT as follows:

κT (x) =

∫

T

[f(x, y)− 1]dν(y),

δT (x) =

∫

T

f(x, y)

ν(T )
dν(y)− 1,

and associated support sets

A+(T ) = {x ∈ R : κT (x) ≥ 0}, B+(T ) = {x ∈ R : δT (x) ≥ 0}.

Then it is easy to see that, for each fixed setT , the supremum in (33) is achieved by the choice

S = A+(T ) while the supremum in (34) is achieved by the choiceS = B+(T ). Therefore

α(X, Y ) = sup
T

∫

A+(T )

κT (x)dµ(x) = sup
T

∫

R

[κT (x)]+dµ(x), (35)
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φ(X|Y ) = sup
T

∫

B+(T )

δT (x)dµ(x) = sup
T

∫

R

[δT (x)]+dµ(x). (36)

These formulas are the continuous analogs of (20) and (21) respectively.

Proof of Theorem 9: For a fixed integerL ≥ 2, choose real numbers

−∞ = a0 < a1 < . . . < aL−1 < aL = +∞,

−∞ = b0 < b1 < . . . < bL−1 < bL = +∞

such that the semi-open intervalsIi = (ai−1, ai], Ji = (bi−1, bi] satisfy

µ(Ii) = 1/L, ν(Ji) = 1/L, i = 1, . . . , L.

Now define the equiprobable partition ofR2 consisting of theL×L grid {Ii×Jj , i, j = 1, . . . , L}.

Next, based on thel-length empirical sample{(x1, y1), . . . , (xl, yl)}, construct empirical marginal

distributionsµ̂ for X and ν̂ for Y . Based on these empirical marginals, divide both theX-axis

R andY -axisR into L bins each having nearly equal fractions of thel samples in each bin. This

gives an empiricalL×L partitioning ofR2, which is denoted by{I(L)i × J
(L)
j , i, j = 1, . . . , L}.

Using this grid, compute the associated empirical joint distribution θ̂l on R2. Then the proof of

[14, Lemma 1] can be adapted to show that the empirical partition {I
(L)
i ×J

(L)
j , i, j = 1, . . . , L}

converges to the true partition{Ii × Jj , i, j = 1, . . . , L} as l → ∞, with respect to the product

measureµ×ν. The only detail that differs from [14] is the computation ofthe so-called ‘growth

function’. Given a setA ⊆ R2 of cardinalitym, the number of different ways in which this

set can be partitioned by a rectangular grid of dimensionL × L is called the growth function,

denoted by∆m. It is shown in [14, Eq. (15)] that when the partition consists of L intervals and

the set being partitioned isR, then∆m is given by the combinatorial parameter

∆m =





m+ L

L



 =
(m+ L)!

m!L!
.

It is also shown in [14, Eq. (21)] that

1

m
log









m+ L

L







 ≤ 2mh(1/L),

whereh(·) is defined by

h(x) = −x log x− (1− x) log(1− x), ∀x ∈ (0, 1).
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WhenR is replaced byR2 and a set ofL intervals is replaced by a grid ofL2 rectangles, it is

easy to see that the growth function isno larger than

∆m ≤









m+ L

L









2

.

Therefore
log∆m

m
≤ 4mh(1/L).

In any case, sinceL, the number of grid elements, approaches∞ as l → ∞, it follows that the

growth condition proposed in [9] is satisfied. Therefore theempirical partition converges to the

true partition asl → ∞.

Next, let{Ii × Jj, i, j = 1, . . . , L} denote, as before, the true equiprobableL×L gridding of

R2. Suppose that, afterl samples(xr, yr), r = 1, . . . , l have been drawn, the data is put intokl

bins. Then the expression (32) defining the trueβ-mixing coefficient can be rewritten as

β(X, Y ) = 0.5

kl
∑

i=1

kl
∑

j=1

∫

Ii

∫

Jj

|f(x, y)− 1|dµ(x)dν(y).

Now supposel is an exact multiple ofkl. Then the empirical estimate based on thekl × kl

empirical grid can be written as

β̂l = 0.5

kl
∑

i=1

kl
∑

j=1

|Cij − 1|k−2
l ,

whereCij denotes the number of samples(xr, yr) in the ij-th cell of theempirical (not true)

equiprobable grid. Ifl is not an exact multiple ofkl, then some bins will have⌊l/kl⌋ elements

while other bins will have⌊l/kl⌋ + 1 elements. As a result, the termk−2
l gets replaced by

(sitj)/l
2 where si is the number of samples inI(l)i and tj is the number of samples inJ (l)

j .

Now, just as in [14, Eq. (36)et seq.], the error|β̂l − β(X, Y )| can be bounded by the sum of

two errors, the first of which is caused by the fact that the empirical equiprobable grid is not

the same as the true equiprobable grid (the terme1 of [14]), and the second is the error caused

by approximating an integral by a finite sum over the true equiprobable grid (the terme2 of

[14]). Out of these, the first error term goes to zero asl → ∞ because, ifkl/l → 0 so that each

bin contains increasingly many samples, the empirical equiprobable grid converges to the true

equiprobable grid. The second error terms goes to zero because the integrand in (32) belongs to

L1(R
2, µ× ν), as shown in [14, Eq. (37)]. �
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Proof of Theorem 10: The main source of difficulty here is that, whereas the expression for

β(X, Y ) involves just a single integral, the expressions forα(X, Y ) and forφ(X, Y ) involve the

supremum over all setsT ⊆ R. Thus, in order to show that the empirical estimates converge

to the true values, we must show not only that empirical estimates of integrals of the form
∫

R
[κT ]+dµ(x) and

∫

R
[δT ]+dµ(x) converge to their correct values for each fixed setT , but also

that the convergence is in some sense uniform with respect toT . This is where we use the

boundedness of the densityf(·, ·). The details are fairly routine modifications of arguments in

[14]. Specifically, (switching notation to that of [14]), suppose that in their Equation (27), we

have not just one measureµ, but rather a family of measuresµT , indexed byT , and suppose

there exists a finite constantc such that for every setS we haveµT (S) ≤ cQ(S). Then it follows

from Equation (27)et seq.of [14] that

µT ((ai ∧ a
m
l , ai ∨ a

m
i ]) ≤ cQ((ai ∧ a

m
l , ai ∨ a

m
i ]), ∀T.

Therefore

lim
m→∞

sup
T

µT ((ai ∧ a
m
l , ai ∨ a

m
i ]) = 0.

With this modification, the rest of the proof in [14] can be mimicked to show the following: In

the interests of brevity, define

rT =

∫

R

[κT ]+dµ(x)

and let r̂T,l denote its empirical approximation. Then, using the above modification of the

argument in [14], it follows that

lim
l→∞

sup
T

|rT − r̂T | = 0.

As a consequence,

lim
l→∞

sup
T

r̂T = sup
T

rT = α(X, Y ).

The proof for theφ-mixing coefficient is entirely similar. �

VII. CONCLUDING REMARKS

In this paper we have studied the problem of estimating the mixing coefficients between two

random variables. Three different mixing coefficients werestudied, namelyα-mixing, β-mixing

and φ-mixing coefficients. The random variables can either assume values in a finite set or
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the set of real numbers. We derived upper and lower bounds forboth theα-mixing and the

φ-mixing coefficients. Moreover, in case the marginal distributions of the two random variables

are uniform, an exact expression was given for theφ-mixing coefficient. This situation arises

when empirically generated samples are binned using percentile binning. We also proved analogs

of the data-processing inequality from information theoryfor each of the three kinds of mixing

coefficients. Then we moved on to real-valued random variables, and showed that, even though

the empirically estimated joint distribution converges tothe true joint distribution, estimates of

theβ- or φ-mixing coefficients based on the empirical joint distribution converges to 1 under mild

conditions. However, by using percentile binning and allowing the number of bins to increase

more slowly than the number of samples, we can generate empirical estimates that converge to

the true values.

In general both theα- and theφ-mixing coefficient are solutions of integer programming

problems, as shown in (17) and (19) respectively. So it wouldbe interesting to explore whether

the computation of these mixing coefficients is NP-hard. Also, it is clear from these same

two equations that it is possible to construct a convex programming relaxation of (17) and a

nonlinear programming relaxation of (19). It would be interesting to analyze how close, if at

all, the solutions of these relaxed problems are to those of the original integer programming

problems.

The later parts of the paper [14] contain some proposals on how to speed up the convergence

of the empirical estimates of the Kullback-Leibler divergence between two unknown measures.

It might be worthwhile to explore whether similar speed-upscan be found for the algorithms

proposed here for estimating mixing coefficients from empirical data.

REFERENCES

[1] Sterling K. Berberian,Measure and Integration, Chelsea, New York, 1970.

[2] F. P. Cantelli, “Sulla determinazione empirica delle legge di probabilità”,Giornali dell’Istituto Italia degli Attuari, 4,
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