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Abstract

The canonical form of scale mixtures of multivariate skewmal distribution is defined,
emphasizing its role in summarizing some key propertietisfdlass of distributions. It is
also shown that the canonical form corresponds to an affiregiamt co-ordinate system as
defined in Tyleretal. (2009), and a method for obtaining the linear transfdrat tonverts
a scale mixture of multivariate skew-normal distributiotoi a canonical form is presented.
Related results, where the particular case of the multitaskew distribution is considered
in greater detail, are the general expression of the Mamdiés of multivariate skewness
and kurtosis and the reduction of dimensionality in caltotathe mode.
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1 Introduction

The Gaussian model plays a central role in statistical nindehevertheless the need of flexible
multivariate parametric models which are able to repredeparture from normality is testified
by the increasing weight of the literature devoted to thésiés during the last decade. Departure
from normality can take place in different ways, such as imaitiality, lack in central symmetry,
excess or negative excess of kurtosis. The present papse®on the last two features, con-
sidering the class of distribution generated by scale mestwf thed-dimensional skew-normal
random variables defined by Azzalini and DallaValle (1996).

The class of scale mixtures of skew-normal distributiortdlides parameters to regulated
either skewness or kurtosis, and reduces to the class @& suature of normal distributions
when the skewness parameter vanishes. Finally, the skawahdistribution is recovered when
the mixing distribution corresponds to a random variabé th equal to one with probability 1.
Among the members of this family, whose general form has Hiestly introduced by Branco
and Dey (2001), the skewdistribution is the one that has received the greatesttaiterit cor-
responds to the case where the mixing distributioi/is!/2, whereW is aGamma(v/2,v/2)
random variable. Azzalini and Capitanio (2003) developsgsaematic study of its main prob-
abilistic properties as well as statistical issues, howsuee aspects have been left unexplored,
like the expression of suitable indices of multivariatevekess and kurtosis and a formal proof
of unimodality. The usefulness of the skewlistribution has been explored in different applied
problems. Azzalini and Genton (2008) proposed and disdueeuse of the multivariate skew
t distribution as an attractive alternative to the classliustness approach, and Walls (2005),
Meucci (2006) and Adcock (2009), among others, adoptedntbidel to represent relevant fea-
tures of financial data. Another member which has been studigBome details is the multivariate
skew-slash distribution, defined by Wang and Genton (2086ich is obtained when the mix-
ing distribution isU/—1/¢, whereU is a uniform distribution on the interva0, 1) andq is a real
parameter greater than zero.

This paper introduces the definition of a canonical form eissed to scale mixtures of
skew normal distribution, which generalizes the analogmesintroduced in Azzalini and Cap-
itanio (1999) for the multivariate skew-normal distritarti The motivation is its suitability in
allowing a simplified representation of some relevant festwvhich are shared by all the mem-
bers of the class of scale mixtures of skew-normal distidimgt In fact the components of the
canonical form are such that all but one is symmetric: theveklecomponent summarizes the
skewness of the distribution as a whole, leading to congistienplifications in obtaining sum-
mary measures of the data shape. For instance, compactberpressions for the indices of
multivariate skewness and kurtosis defined by Mardia (129@4) for the entire class of scale
mixtures of skew-normal distributions are obtained. Itiwé also shown that a data transform-
ation leading to a canonical form generates an affine imtda-ordinate system of the kind
defined and discussed in Tyletal. (2009) in connection with a general method for exploring
multivariate data.

2 The skew-normal distribution and its canonical form

The multivariate skew-normal distribution has been definefizzalini and Dalla Valle (1996).
The parameterization adopted in the present paper is thewnduced by Azzalini and Capit-
anio (1999), that have further explored the properties isffdmily.



A d-dimensional variate’ is said to have a skew-normal distribution if its densitydiion

F(2) =204(z = Q)0 w (2 =€) (z€RY), )

whereg,(z; §2) denotes thel-dimensional normal density with zero mean and full rankacv
ance matrix?2, ® is the N (0, 1) distribution function{ € R? is the location parametey; is a
diagonal matrix of scale parameters such fhat w—'Qw~! is a correlation matrix, and € R?

is a shape parameter which regulates departure from symniite that whery = 0 the nor-
mal density is recovered. A random variable with densitywil) be denoted bySN,(¢, 2, «).
The skew-normal distribution shares many properties withriormal family, such as closure
under marginalization and affine transforms, afidlistribution of certain quadratic forms. See
Azzalini and Capitanio (1999) for details on these issues. |&ter use we recall that the mean
vector and the covariance matrix Bfare

2\ /2 2
pn=E&+ <—> wd and T =0-Zwilw, 2)
T T
where )
= 0 3
e (3)
is a vector whose elements lie in the interyall, 1). From [3) we have also
1 _
o= Q1. 4)

(1— 5TQ—15)1/2

It is important to note that the shape parameter of a margioalponent ofZ is in general

not equal to the corresponding componentof More specifically, wher¥ is partitioned as

Z = (Z1,7,)" of dimensionh andd — h, respectively, the expression of the shape parameter of
the marginal componer#; is given by

& = a1 + (Q11) 71 Qa0
(1 + 013—922.1012)1/2 ’

whereQao.; = Q29 — Q21 (1) 1049, andQ;; anday, for i, j = 1,2, denotes the elements of
the corresponding partitions 6f andc, respectively. On the contrary, the entries of the vector
¢ after marginalization are obtained by extracting the gpoading components of the original
parameter.

Azzalini and Capitanio (1999, Proposition 4) introducedaaanical form associated to a
skew-normal variate, via the following result.

Proposition 1 Let Z ~ SNy(&, €, a) and consider the affine non singular transfodif =
(C7'P)Tw=1(Z — &) whereC " C = Q and P is an orthogonal matrix having the first column
proportional to Ca. ThenZ* ~ SN(0,I;,az+), whereaz« = (as,0,...,0)" anda, =
(" Qa)/2,

The above authors called the variaté a canonical form ofZ. With respect to the original
definition, and without loss of generality, here it is assdrtteat the non-zero element of the
shape vectot is the first one. The above result can be easily verified byyappProposition 3
of Azzalini and Capitanio (1999). Furthermore, using th&opositions 5 and 6 it is immediate
to see thaZy ~ SN;(0, 1, o) while the remaining components &f are N, (0, 1) variates, and



that in addition the components gf* are mutually independent. Finally, it is remarked that the
linear transform leading to a canonical form is not unique.

Azzalini and Capitanio (1999) underlined how this transfation plays a role analogous
to the one which converts a multivariate normal variable iatspherical form. Motivated by
the expressions they obtained for the indices of multitarskewness and kurtosis defined by
Mardia (1970), they also highlighted the role®f as a quantity summarizing the shape of the
distribution. In fact the two indices are
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Yoa = Poa—d(d+2)=2(r—3) (m) ) (6)

and they depends anand(2 only via a.

As an additional comment, note that by comparing expresginand[(B) with the corres-
ponding ones for a univariate skew-normal distributiore (&ezalini 1985, sect. 2.3), and taking
into account[(#), it turns out that the values of the muliatr skewness and kurtosis indices
are equal to those of the corresponding univariate indigea Ekew-normal distribution having
shape parameter equaldq. In this sense, the canonical form is characterized by omgooent
absorbing the departure from normality of the whole distitmn.

Notice also that on using expressian (3), the marginal spapgmetep associated to the
skewed component of a canonical form turns out ta.pe- (57 Q~16)!/2. Because of the one-
to-one correspondence between these two quantities, #smakdifference which one is used as
summary quantity.

Some results contained in Tyletal. (2009) allows to provide new insight into the role
of a canonical transformatio#i*. These authors introduced a general method for explorirlg mu
tivariate data, based on a particular invariant co-ordirsgstem, which relies on the eigenvalue-
eigenvector decomposition of one scatter matrix relativartother. The canonical transforma-
tion Z* turns out to be an invariant co-ordinate system transfdamatith respect to the scatter
matrices? andX, and taking into account the results of Section 3 of Tegkel. (2009), a method
to obtain a matrixt{ such thatZ* = H' (Z — ¢) can be explicitly stated.

Proposition 2 LetZ ~ SN4(&,Q, «), and defineV = Q~1/22.0~1/2, whereQ'/? is the unique
positive definite symmetric square root®fand X is the covariance matrix of. LetQAQ "
denote the spectral decompositionidf Then the transform

Z*=H'(Z~¢),

where H = Q~1/2Q), convertsZ into a canonical form. MoreoveZ* = H'(Z — €) is an
invariant co-ordinate system transformation based on ihaukaneous diagonalization of the
scatter matrice$2 and ..

Proof. Consider the simultaneous diagonalization of the scatigrices) = E[(Z —¢)?] andX,
and letQ—1/2 denote the unique positive definite symmetric square roft dfollowing Tyleret
al. (2009, Section 3), a matriif such thatd ' QH = Iy andH 'S H = diag(\y, ..., A\g) turns
out to beQ~1/2(Q), where); < Xy < ... < )\, are the eigenvalues 6f—'%, or equivalently of
M = Q~1/250-1/2 and where théth column of thelx d orthogonal matrixQ is the normalized
eigenvector of\f corresponding to thigh smallest eigenvalue. Furthermore, ttiecolumn ofH
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is the eigenvector dR 'Y corresponding to théth smallest eigenvalue 613, The transform
H' Z corresponds to an invariant co-ordinate system, as defin@glér etal. (2009, p. 558).
After some straightforward algebra, the eigenvalueQofY turn out to bel, with multiplicity
d—1,and1 — (2/7)d2, and the associated eigenspaces are the orthogonal coemplefrthe
subspace spanned hy, and the subspace spannedusy'«, respectively. This fact implies
that the first row ofH —! is proportional tawd, while the lastd — 1 rows lie in the orthogonal
complement of the subspace spannedubya. On using the expressions for the parameters of
a linear transformation of a skew-normal variate given ir&ini and Capitanio (1999, p. 585),
the distribution oiZ* = H"(Z—¢) is SN (0, I;, H'w™'a); taking into account the structure of
the matrixf/ —! and the equality7 Q' (H~)T = I, we obtaind 'w™'a = (as,0,...,0) ",
and hence the variaté* corresponds to the canonical forms6f QED

The proof of Propositiofil2 contains a description of thecitme of the matrixH, which
it is shown to have one column proportional«o ' and the remaining ones belonging to the
orthogonal complement of the subspace spanneddyThis result implies that the projection
a'w™1Z captures all the skewness and the kurtosis of the jointiloligion, whereas by pro-
jecting Z onto the orthogonal complement of the subspace spanned bydependentV (0, 1)
variates are obtained.

Since a matrixH converting a skew-normal variate to its canonical form carobtained
through the simultaneous diagonalization of a pair of scattatrices different frorf andy, it is
expected that when two scatter matricésandV; say, are such that they become diagonal when
the variateZ is in canonical form, then Propositidh 2 will continue to ladid if the matrices
andX are replaced by; andV;. An example of such matrices will be given in Proposifion 6 at
the end of Sectionl4.

3 Scale mixtures of skew-normal variates and their canoniddorm

In this section a canonical form analogous to the one inteddor the skew-normal distribution
is defined for scale mixtures of skew-normal distributicarsd some properties are given.

3.1 Scale mixtures of skew-normal variates

Scale mixtures of skew-normal distributions have beenidensd in Branco and Dey (2001).

This class of distributions contains the correspondingsotd scale mixture of normal distribution

and the skew-normal distribution as proper members, atigwo model a wide range of shapes.
A scale mixture of skew-normal distributions is defined dkofes.

Definition 1 LetY = & +wSZ, whereZ ~ SN4(0,9Q,«) and S > 0 is an independent scalar
random variable. Then the varial€ is a scale mixture of skew-normal distributions, with loca-
tion and scale parametegsandw, respectively.

Note that, whemx = 0, Y reduces to the corresponding scale mixturéVgfo, Q) distributions.

The mth order moments ot” can be calculated by differentiating the moment generat-
ing function given in Branco and Dey (2001, expression 4An.alternative and simpler way
to obtain moments is to follow the scheme used by Azzalini @agitanio (2003, expression
(28)) for the moments of the sketwdistribution, which arises whef = W~—/2, andW is a



Gamma(%u, %y) random variable. Specifically, assuming that 0 andw = 1,4, by exploiting

the stochastic representation given in Propos[iion 1 wainbt
E(Y™) = B(s™)E(Z™), ()

whereY (™) denotes a moment of order. Note that to use this formula only the knowledge of
mth order moments of and Z is required.

An appealing property of af Ny (0, 2, ) variate is that the distribution of its any even
functions is equal to the one obtained by applying the sarae wnction to aV,(0, 2) variate.
This fact can be easily seen by considering Proposition 2zimafni and Capitanio (2003) and
noting that the skew-normal distribution belongs to theabliey class of distribution generated by
perturbation of symmetry which the proposition is concdrmith. As a corollary it follows from
(@) that even order moments bf — £ are equal to those of the corresponding scale mixture of
normal distributions. On usin@l(7) and taking into acco@)t the mean vector and the covariance
matrix of Y are

EY)=¢+ E(S)\/gé and  war(Y) = E(S*)Q — E(S)2§56T, (8)

in agreement with those obtained by Branco and Dey (2001).

Scale mixtures of skew-normal are models capable to takesitdount for both skewness
and kurtosis, and it is important to have available the esgioms of measures of these two
features. The next proposition introduces the expresditimedPearson indices of skewness and
kurtosis for the univariate case; the multivariate caseheilconsidered later, as the introduction
of the canonical form of” allows to cope with the problem in a simpler manner.

Proposition 3 LetY = ¢ + wSZ, whereZ ~ SN;(0,1,«) and S > 0 is a scalar random
variable. Then, provided that the moments up to order thregpoto order four ofS' exist, the
expressions of the skewness and excess of kurtosis indie@sl v, are

o= B = oy (3)1/2 [E(S)gf—m?’)] 5+

7T s

s

/
o3 <3>1 2 (B(S)B(S?) — B(S*)] 6,  and

§E(S)4} 5 4

™ s

V2o = B2—3 = 0y4{§ [E(S)E(S?’)—

2 [E(S)E(S?) — E(S*)E(S)?] 6* + 3 [E(S*) — E(S?)?] }’

s
wheres? = var(Y).

Proof. Since the two indices are location and scale invariant, #se evere = 0 andw = 1
will be considered. The third and the fourth cumulantsYofequired to compute; and~,
are functions of the first four non central momentsgfwhich in turn, taking into accountl(7),
depends on the corresponding moment& ofThe first moment of/ is given in [2), and taking
into account thatz? ~ x? (see Azzalini 1985, property H) the second and the fourtrs @me
equal to 1 and 3, respectively. Finally, by deriving the matrgenerating function of the scalar



skew-normal distribution given in Azzalini (1985, p. 17#)e third moment ofZ turns out to be
3(2/m)1/26 — (2/7)1/26%. After some algebra the result folowW@ED

Note that wheny = 0 the variateY is a scale mixture ofV(0, 1), so that the indexy;
becomes zero angh = 0y,*3 [E(S*) — E(5?)?] measures the excess of kurtosistaf When
S is degenerate anfl = 1, the expressions of the two indices for the skew-normatidigion
are recovered. Whe# is the inverse of the square root ofzmma(3v, 3v) random variable,
Y follows a scalar skew distribution, and the two indices coincide with those giveizzalini
and Capitanio (2003, p. 382).

3.2 The canonical form of scale mixtures of skew-normal distbutions

The canonical form for scale mixtures of skew-normal disttions is defined in the following
way.

Definition 2 LetY = & +wSZ, whereZ ~ SN4(0,9Q,«) and S > 0 is an independent scalar
random variable. The variate* = (C~'P)Tw™ (Y — ¢) = SZ*, where the matrice® andC
are as in Propositiofnll, will be called a canonical formf

From the above definition, it is straightforward to see thapBsition 2 can be extended to scale
mixtures of skew-normal variates, that is, the linear thams Y* = H' (Y — ), whereH is
defined as in Propositidd 2, convetfsinto a canonical form.

The next proposition states some propertie¥ tf
Proposition 4 Under the settings of Definitidd 2, the following facts hold.

(i) Only the first univariate component ®f* can be skewed. More specifically;" is a scale
mixture of anSNy(0, 1, v, ) variate, wheren, = (aTQa)l/Q, and its mean and variance
are

e = B(S)(2/m) V%6, o = B(S?) — (2/n)E(S)%6,

respectively, wheré, = (6" Q~16)!/2. The remaining components are identically dis-
tributed scale mixtures aiVy (0, 1) distributions, that is, symmetric about zero random
variables with variancer? = E(S?).

(i) Thed components of * are uncorrelated.
(i) The non zero elements of the set of momé#(ts *(®)) are
E(Y;?) = E(S%)(2/7)'/?6.(3 - 62)

and
E(Y7Y??) = BE(S®)\/2/n6,,  i=2,...,d.

(iv) The non zero elements of the set of mom&i(is*(*)) are
E(Y;Y) =3E(SY, (i=1,...,d),

E(Y;?Y;?) =E(SY),  (j=1,...,d,i# ).



Proof. (i) By definitionY;* = SZ*; the result follows taking into account th&f ~ SN;(0, 1, av)
whilst the lastd — 1 components o * are N (0, 1). The expressions for the means and the vari-
ances can be obtained iy (8) taking into accouht (8)) Using (3) the vectop associated to
Y* becomeg,,0,...,0)", wheres, = (6"Q16)'/2; taking into account the expression of
var(Y') given in (8), we see thal'ov(Y;*,Y") = 0. (iii)—(iv) From expressioni{7) we have
E(Y*m) = E(S™)E(Z*™). The result follows taking into account that the componefts
Z* are mutually independent and the expressions of their mtsm@&D

The above results show that the main features of the canidoita of the skew-normal
distribution are preserved when a scale mixture is consitlein fact only the first component
is skewed, and the influence of the paramefe@nd « is completely summarized by quantity
o, Or equivalently bys,. Independence among the components is replaced by a zeetacor
tion, as expected since scale mixture of normal distrilbutiemselves does not allow to model
independence between components.

4 Mardia indices of multivariate skewness and kurtosis

The canonical form ot” can lead to dramatic simplification in calculating quaastivhich are
invariant or equivariant with respect to invertible affimartsformations. This is the case, for
instance, of the Mardia indices of multivariate skewness lartosis and of the mode. In this
section the Mardia indices will be considered, while theelaissue will be developed in the next
section.

Given ad-dimensional random variablg, the Mardia indices of multivariate skewness
and excess of kurtosis are defined as follows

il il Kk
Yd = Pia = E E " o " i g ki e
ijk ik

Yo.i = Poa—d(d+2) = E{[(Y—M)Tz_l(Y—M)]Q}—d(d+2)7

wherey, and X denote the mean vector and the covariance matriX ofespectively,; ;. =
E((Yi — ui)(Yj — p1)(Yi — p1,)], ando™ denotes théi, ' )th entry of 1.

Proposition 5 Consider the scale mixture of skew-normal distribution= ¢ + wSZ, where
Z ~ SN4(0,9, ). Then the Mardia indices of multivariate skewness and exoekurtosis of
Y are, provided that the involved momentsSoéxist

wa = D+ S [B(S°) - BB 262
Yoa = B5+(d—1)(d+1)E(S?)2E(SY) +
%{E(S“) +[B(SPB(S?) - 2B(5)B(sY) 28 } S,

where, using a self explanatory notation, the quantitigss;, 6. ando? refer to the component
Y;* of the canonical form associated Yo

Proof. In the proof some symbols introduced in Proposilibn 4 willibed. Since; ; andy, 4 are
invariant with respect to invertible affine transforms, damonical formY™ will be considered
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in place ofY. From (i) of Propositionl’# we know that the lagt— 1 components ol are
symmetric about zero; a firstimplication is that; , = 0 for any2 < k£ < d. In addition, taking
into account(éiz), it follows thaty; ; , = 0 for any choice of, j andk in {2,...,d}. From(ii)

we haves’7" = 0 for anyj # 5/, and consequently; 4 reduces to

2 d
(p1,11) N 3 ZMQ
of o204 —~ L

Finally, by expressing ; ; in terms of non central moments and by applyidg (7), the faabdity
is proved.

Let us denote by, ; . ; the generic entry of the fourth order central moment 6f taking
into account(?) and(i:) of Propositiori ¥4 we have
2

( )2 d_ ys2
Poa = E +Z :
’ o2
=2
d—1 d d
Ml,l,l,l +Zﬂz,z,z,z +2ZZ M@,z,],] 4+ 92 ,Ullz,l,iéi’
g0
i=2 j=3 =2 *

where the expressions pf ; ; ; andy; ; ; ; for < and;j greater than 1 are given {iiv) of Propos-
ition [4, and that ofu; 1 ;; can be obtained with the aid dfl(7). After some algebra therstc
equality follows. QED

This result shows that, ¥ is a scale mixture of skew-normal distributions, thgr, and
72,4 depend on the shape 6f and on the underlying skew-normal variate only via theacal
quantity a,, or equivalentlyd,, reinforcing its role of a summary quantity of the distrilont
shape.

By comparing these expressions with the corresponding @irtée skew-normal distribu-
tion, given by [(b) and[{6), respectively, we can observe they have a different structure. In
particular, when a scale mixture of skew-normal distrimsi is considered, the two indices do
not coincide with their univariate version evaluated witspect to the marginal distribution of
the only skewed component of the variate in canonical form.

It could be of interest to highlight the structure @f ; = 2 4 + d(d + 2). It turns out
that it is the sum of three terms: the univariate kurtosigindf Y;*, whose expression is given
in Propositior B, the kurtosis inde% 4, of the (d — 1)-dimensional scale mixture of normal
distribution(Ys', ..., Y;)T, which is given by(d — 1)(d + 1) E(S?) "2 E(S%), and a term which
is related with the fourth moment &f« throughy; ; ;;, for any: € {2,...,d}.

WhenY ~ ST,(&,9Q, a,v) explicit expressions of the two indices can be easily obthin
taking into account the well known result

v/2)"20((v — m
E(Sm/2):( /2) FEE(/Q) )/2),

leading to

Ya = () +3(d-

Yoq = B3+ (d®-1) V_



where

B v\1/2T((v —1)/2) s U

e = O (_> Tw/2) = T v 2

and the explicit expressions of and~; = 35 — 3 are given in Azzalini and Capitanio (2003,
p.382).

Note that an equivalent expression, obtained through ardift method, fof; ;4 = 72 4 +
d(d + 2), is given in Kim and Mallik (2009). Finally, note also thaktlexpression of;; 4 and
Y24 given in Propositio 5 reduces to the corresponding onethoskew-normal distribution
when S is such thapr(S = 1) = 1, while ~, 4 is the index of multivariate kurtosis of a scale
mixture of normal distributions with mixing variable whené, = 0.

2
— My

The following proposition provides a further example of & p&scatter matrices that can
be used for obtaining the linear transform to convert a statéure of skew-normal variates into
a canonical form. The proof of the proposition contains tteopof the fact that if two scatter
matrices are diagonal when the considered variate is inmealdform, then it is expected that
by applying to them the procedure described in Propodifiare ®btain a matrix{ that induces
a canonical form.

Proposition 6 Consider the scale mixture of skew-normal distribution= ¢ + wSZ, where
Z ~ SNy(0,9, «), and define the scatter matrix

e=p{[or-wTsw -] 0 - -0

Let M/ = X~12Kx~1/2, whereX!/? is the unique positive definite symmetric square root of
31, and Y is the covariance matrix df . LetQ’A’Q’" denote the spectral decompositiondt.
Then the transform

Y*=H'(Y -¢),

whereH = ~~Y/2@Q’, convertsY into a canonical form.

Proof. By means of the results contained in Proposifibn 4 it is fdesdo show that when a
scale mixture of skew-normal distribution is in canonicair, then both the scatter matrices
K andX are diagonal. LeK* = H'KH andX* = H'SH' denote such matrices, where
H is a matrix such thafl " (Y — ¢) is in canonical form. The equality!’q; = Nq;, where

q; is the j-th column of the matrixQ’ and X; = A’ is the corresponding eigenvalue, implies

that the equality=*~1/C*H~1(S71/2¢}) = X, H~'(S7/2¢}) must also hold true; since both
K* andX* are diagonal, the equality is fulfilled when all the eigenesl of M’ are equal, or
whenH—1(X~1/2Q")  1,. The first circumstance is out of interest, because it wauldly that
we are considering two scatter matrices which are propwtjdhe second one implies that the
columns of£~1/2Q’ are proportional to the corresponding columnsdgfand the proposition is

proved. QED

On the basis of Proposition$ 2 and 6 we see that the méAtrikat defines the canonical
form can be obtained working with the p&f®, ) or with (X, ), no matter which one between
them. However it is important to highlight the auxiliary @amination given by this technique,
which essentially relies on a spectral decomposition. htiqdar, it is straightforward to note
that the trace of the matriR —'%, or equivalently, ofM, is equal to the sum of the variances of
the marginal univariate components of the canonical formileathe trace of the matri 11,
or equivalently, ofd/’, is equal to3s 4.
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5 The mode of the multivariate skew-normal and skew t distritu-
tions

The mode of the skew-normal and skeéwistributions cannot be calculated in closed form, so
one needs to resort to numerical methods. In this sectigrpitaved the uniqueness of the mode
in the d-dimensional case, and it is shown that its computation earetluced to an equivalent
one-dimensional problem, drastically reducing the direradity of the original problem. From
the expression of the mode which is obtained, it also turnghai the mode, the mean and the
location parameter are aligned. More specifically, theyrlia one dimensional linear manifold
of directionwé. Thus, the departure from symmetry of these distributienshiaracterized by a
displacement of the probability mass along this directiime above issues are briefly discussed
also for the general case of scale mixture of skew-norméilligions.

For later use, we recall that the density function dfdimensional skew variate as given
by Azzalini and Capitanio (2003, expression 26) is

T 1 v+d 1/2 d
) =2taly— 0T 0T -9 (S50) vy wer) @
Y

where@, = (y — &)TQ Yy — &), ta(z;v) is the density function of d-dimensionak-variate

with v degrees of freedon?; (z; v + d) is the scalat distribution function withv + d degrees
of freedom. A random variable having dens[ty (9) will be deabby ST, (¢, 2, a, v).

Proposition 7 LetZ ~ SNy (&, Q, «). Then the unique mode &fis

wa :£+%w5

* *

m*
My=¢+ —2

wherem; is the mode of a scala$ V; (0, 1, ) random variable.

Proof. Consider first the mode of the canonical foft ~ SNy(0, 14, az+). If we calculate the
mode by imposing the gradient of the density function to beaétp the null vector, the system
of equations to be solved turns out to be

21P(az1) — b1z

290P(az1) =

2g®(auz1) = 0,
wherez;, i = 1,2, ..., d denotes théth entry of the vector € R?. The lastd — 1 equations are
satisfied whery; = 0 for i = 2,. .., d, whilst the unique root (for the uniqueness see Azzalini,

1985, Property D) of the first one corresponds to the modeypgayf a SN; (0, 1, ), so that
the mode ofZ* is the vectorMy = (mj,0,...,0)" = (m}/a.)a).. Recalling thatZ =
¢ +wCTPZ* andaj, = P"Ca, and taking into account that the mode is equivariant with
respect to affine transformations, the modeZdfirns out to be

my a

My=¢+0u0TPP T Ca=¢+ 0000 =¢+ 7;0
(079 Ol *

where the last equality follows taking into accodnt (3) dfid QED

w9,
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Proposition 8 LetY ~ ST,(&, 2, o, v). Then the uniqgue mode bfis

Mo:§+z—°w(2a:§+%w5

wherey;; € R is the unique solution of the equation
y(v + d)Y2T(w(y); v+ d) — t1(w(y); v + d)ves (v + y2) V2 =0,

V—|—d 1/2
V+y2> '

wherew(y) = a.y <

Proof. As for the skew-normal case, the canonical farth~ STy(0, I, ay+,v), whereay- =
(as,0,...,0)" is considered, and the mode is calculated by imposing thaiegrtof the density
function to be equal to the null vector. The system of equatio solve turns out to be

ti(azie(x);v + d)

. T 2 —
1Ty (szic(z);v + d) — 0t P T ) v+z z—z))ax, = 0
[ t1(axzrc(z); v + d)
zo |Ti(awzic(z);v + d) + o to2) 2t ) zio| = 0

ti(aszic(x);v + d) _ 0
(y+xTx)1/2(y+d)1/2xla*_ - 3

g |T1(zic(x); v +d) +

wherez = (z1,29,...,24)" ande(z) = {(v + d)/(v + = "z)}/2. First note that the function

on the left hand side of the first equation can be equal to zelsoibx; > 0. This fact implies

that the remaining equations are equal to zero if and onty # 0 fori = 2,...,d. Hence the

mode ofY* is M = (y§,0,...,0)", where the scalar valug > 0 is the solution of
ti(w(y);v +d)

yTi(w(y);v +d) — (V+y2)1/2(y+d)1/2ya* =0, (10)

v+d 1/2
Vi
that wheny; > 0 the function on the right hand side is the difference betvaestnictly increasing
function and a strictly decreasing one. Furthermore, wjjes 0 the latter is greater than zero
while the former is equal to zero, andgs— oo the latter goes to zero while the former goes to
oo. Hence, there exists a unique point in which their diffeeerscequal to zero. The expression
of the mode ofY” is obtained on the basis of arguments analogous to thosefarsibet mode of

a multivariate skew-normal distribution. QED

wherew(y) = a.y . To see that equation_({L0) admits a unique solution, firsteot

Note that a different proof for the uniqueness of the modettier multivariate skewt
distribution has been independently developed by Azzalidi Regoli (2012).

The issue of finding the mode of other members of the familycafesmixture of skew-
normal distributions can be tackled in a similar way. An opesblem, which is not investigated
here, is to assess the uniqueness of the solution.

It is straightforward to see that if a point B is the mode of the canonical form ofda
dimensional skew scale mixture of skew-normal variate= thshould be of typéy;, 0, . . ., 0)7,
where the real numbey; is such that

/OO s g (y—8> {ﬁcﬁ (a*@> — o (a*y—8> } fs(s)s=0,
0 s S S S
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where f5(s) denotes the density function &f This implies that, as for the skew-normal and
skewt distributions, the mode of a scale mixture of skew-normatritiutions will be of the
form

f%—%gwé
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