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Abstract

A lot of attention has been devoted to multimedia indexing over the past few years. In the literature, we
often consider two kinds of fusion schemes: Theearly fusionand thelate fusion. In this paper we focus on late
classifier fusion, where one combines the scores of each modality at the decision level. To tackle this problem, we
investigate a recent and elegant well-founded quadratic program named MinCq coming from the Machine Learning
PAC-Bayes theory. MinCq looks for the weighted combination, over a set of real-valued functions seen as voters,
leading to the lowest misclassification rate, while making use of the voters’ diversity. We provide evidence that
this method is naturally adapted to late fusion procedure. We propose an extension of MinCq by adding an order-
preserving pairwise loss for ranking, helping to improve Mean Averaged Precision measure. We confirm the good
behavior of the MinCq-based fusion approaches with experiments on a real image benchmark.

Keywords: Machine Learning, Multimedia fusion, Multi-modality search, Ranking and re-ranking

1 Introduction

Combining multimodal information is an important issue in Multimedia and a lot of research effort has been ded-
icated to this problem (see Atrey et al. (2010) for a survey).Indeed, the fusion of multimodal inputs can bring
complementary information, from various sources, useful for improving the quality of any multimedia analysis
method such as for semantic concept detection, audio-visual event detection, object tracking, etc.

The different modalities correspond generally to a relevant set of features that can be grouped into different
views. For example, classical visual or textual features commonly used in multimedia are based on TF-IDF, bag of
words, texture, color, SIFT, spatio-temporal descriptors, etc. Once these features have been extracted, another step
consists in using machine learning methods in order to buildclassifiers able to discriminate a given concept.

Two main schemes are generally considered Snoek et al. (2005). In theearly fusionapproach, all the available
data/features are merged into one feature vector before thelearning and classification steps. This can be seen as
a unimodal classification. However, this kind of approach has to deal with heterogeneous data or features which
are sometimes difficult to combine. Thelate fusionmodel works at the decision level by combining the prediction
scores available for each modality. This is usually called multimodal classification or classifier fusion.Late fusion
may not always outperform unimodal classification. Especially when one modality provides significantly better
results than others or when one has to deal with imbalanced input features. However,late fusionscheme tends to
give better results for learning semantic concepts in case of multimodal video Snoek et al. (2005). Several methods
based on a fixed decision rule have been proposed for combining classifiers such as max, min, product, sum, etc
Kittler et al. (1998). Other approaches, often referred to asstackingWolpert (1992), need of an extra learning step.

In this paper, we address the problem oflate multimodal fusion at the decision level with stacking. Lethi be
the classifier that gives the score associated with theith modality for any instancex. A classical method consists in
looking for a weighted linear combination of the different scores,

H(x) =

n
∑

i=1

qihi(x),
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whereqi represents the weight associated withhi. It is usually required that0 ≤ qi ≤ 1 and
∑n

i=1 qi = 1. This
linear weighting scheme can be seen as a majority vote. This approach is widely used because of its robustness,
simplicity and scalability due to small computational costs Atrey et al. (2010). It is also more appropriate when
there exist dependencies between the views Wu et al. (2004).An important issue is then to find an optimal way to
combine the scores. One solution is to use machine learning methods to assess the weights Atrey et al. (2010). From
a machine learning standpoint considering a set of classifiers with a high diversity is generally a desirable property
Dietterich (2000). One illustration is given by the algorithm AdaBoost Freund and Schapire (1996), frequently used
as a multimodal fusion method. AdaBoost weights the classifiers according to different distributions of the training
data, introducing some diversity, but requires at leastweak classifiersto perform well. Another recent approach
based on the portfolio theory Wang and Kankanhalli (2010) proposes a fusion procedure trying to minimize some
risks over the different modalities and a correlation measure. While it is well-founded, it needs to define some
appropriate functions and is not completely fully adapted to the classifier fusion problem since it does not directly
take into account the diversity between the outputs of the classifiers.

We propose to study a new machine learning method, namely MinCq, introduced in Laviolette et al. (2011). It
proposes a quadratic program for learning a weighted majority vote over real-valued functions called voters (such as
score functions of classifiers). The algorithm is based on the minimization of a generalization bound that takes into
account both the risk of committing an error and the diversity of the voters, offering strong theoretical guarantees
on the learned majority vote. In this article, our aim is to show the interest of this algorithm for classifier fusion. We
provide evidence that MinCq is able to find good linear weightings but also very performing non-linear combination
with an extra kernel layer over the scores. Since in multimedia retrieval, the performance measure is related to the
rank of positive examples, we propose to extend MinCq to improve the Mean Average Precision. We base this
extension on an additional order-preserving loss for verifying ranking pairwise constraints.

The paper is organized as follows. Section 2 deals with the theoretical framework of MinCq. We extend MinCq
as a late fusion method in Section 3. Before concluding in Section 5, we evaluate empirically the MinCq late fusion
in Section 4.

2 PAC-Bayesian MinCQ

In this section we present the algorithm MinCq of Lavioletteet al. Laviolette et al. (2011) for learning aQ-weighted
majority vote of real-valued functions (e.g. classifier scores). This method is based on the PAC-Bayes theory
McAllester (1999). We first recall the setting of MinCq.

We consider binary classification tasks over afeature spaceX ⊆ R
d of dimensiond. The label spaceis

Y = {−1, 1}. The training sample isS = {(xi, yi)}
m
i=1 where each example(xi, yi) is drawni.i.d. from a fixed

— but unknown — probability distributionD defined overX × Y . We consider a space of real-valued votersH,
such that∀hi ∈ H, hi : X 7→ R. Given a voterhi, the predicted label ofx ∈ X is given bysign[hi(x)], where
sign[a] = 1 if a ≥ 0 and−1 otherwise. Then, the learner aims at choosing a distributionQ overH — the weights
qi — leading to theQ-weighted majority voteBQ with the lowest risk.BQ is defined by,

BQ(x) = sign [HQ(x)] ,

with HQ(x) =

|H|
∑

i=1

qihi(x).

The associated true riskRD(BQ) is defined as the probability that the majority vote misclassifies an example drawn
according toD,

RD(BQ) = P(x,y)∼D (BQ(x) 6= y) .

In the case of MinCq,H has to be a finiteauto-complementedfamily of 2n real-valued votersH = {h1, . . . , h2n}
such that,

∀x ∈ X, ∀i ∈ {1, . . . , n}, hi+n(x) = −hi(x). (1)

Moreover, the algorithm considersquasi-uniformdistributionsQ overH, i.e. the sum of the weight of a voter and
its opposite is1

n
,

∀i ∈ {1, . . . , n}, Q(hi) +Q(hi+n) = qi + qi+1 =
1

n
. (2)
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This constraint is not too restrictive since every distribution overH can be represented by a quasi-uniform dis-
tribution Laviolette et al. (2011). The assumptions (1) and(2) are actually an elegant trick to avoid the use of a
prior distribution overH which is often required by usual PAC-Bayesian method McAllester (1999), making the
algorithm more easily applicable.

We now present the principle of the algorithm MinCq. The coreof MinCq is the minimization of the empirical
version of a bound — theC-Bound — over the risk of theQ-weighted majority vote.

Theorem 1 (C-Bound Laviolette et al. (2011))GivenH = {h1, . . . , h2n} a class of2n functions, for any weights
{qi}

2n
i=1, i.e. distributionQ, onH and any distributionD overX×Y , if E(x,y)∼D HQ(x) > 0 thenRD(BQ) ≤ CD

Q

where,

CD
Q =

Var(x,y)∼D(yHQ(x))

E(x,y)∼D(yHQ(x))2
= 1−

(MD
Q)

2

MD
Q2

,

with MD
Q = E(x,y)∼D

∑2n
i=1 yqihi(x), andMD

Q2 = E(x,y)∼D

∑2n
i=1

∑2n
i′=1 qiqi′hi(x)hi′ (x) are respectively the

first and the second moments of theQ-margin: yHQ(x).

Following some generalization bounds, MinCq proposes to minimize the empirical version of theC-bound,CS
Q =

1−
(MS

Q)

MS

Q2

, over a sampleS. The idea is to fix the empirical first momentMS
Q to a marginµ > 0 and to minimize

the empirical second momentMS
Q2 measuring the correlation of the voters. This leads to minimize the bound and

thus the risk of the majority vote by taking into account the diversity between the voters.

Definition 1 (MinCq algorithm Laviolette et al. (2011)) Given a setH = {h1, . . . , h2n} of voters, a training set
S = {(xj , yj)}

m
j=1, and a marginµ > 0, among all quasi-uniform distributionsQ of empirical marginMS

Q exactly
equal toµ, the MinCq algorithm consists in finding one that minimizes the empiricalMS

Q2 .

Due to the auto-complemented (1) and quasi-uniformity (2) assumptions, the algorithm can be expressed as a
quadratic program (MinCq) by only considering the firstn votershi ∈ H.

argminQ Qt
SMSQ−At

SQ,

s.t. mt
SQ =

µ

2
+

1

2nm

m
∑

j=1

n
∑

i=1

yjhi(xj),

and ∀i ∈ {1, . . . , n}, 0 ≤ qi ≤
1

n
, (MinCq)

wheret denotes the transposed function,Q = (q1, . . . , qn)
t is the vector of the firstn weightsqi, MS is then× n

matrix formed by 1
m

∑m

j=1 hi(xj)hi′(xj) for i andi′ in {1, . . . , n}, and,

mS =

(

1

m

m
∑

j=1

yjh1(xj), . . . ,
1

m

m
∑

j=1

yjhn(xj)

)t

,

AS =

(

1

nm

n
∑

i=1

m
∑

j=1

h1(xj)hi(xj), . . . ,
1

nm

n
∑

i=1

m
∑

j=1

hn(xj)hi(xj)

)t

.

Finally, theQ-weighted majority vote learned by MinCq is then

BQ(x) = sign[HQ(x)],

with HQ(x) =

n
∑

i=1

(

2qi −
1

n

)

hi(x).

3 MinCq as a Late Fusion Method

PAC-Bayesian MinCq has been proposed in the particular context of binary classification where the objective is
to minimize the misclassification rate of theQ-weighted majority vote by taking into account the diversity of the
voters. From a multimedia indexing standpoint, MinCq thus appears to be a natural way for late classifiers fusion
to combine the predictions of classifiers separately trained from different modalities.

Concretely, given a training sample of size2m we split it randomly into two subsetsS′ andS = {(xj , yj)}
m
j=1

of the same size. Letn be the number of modalities. For each modalityi, we train a classifierhi from S′. Let
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H = {h1, . . . , hn,−hi, . . . ,−hn} be the set of then associated prediction functions and their opposites. At this
step, the fusion is achieved by MinCq: We learn fromS theQ-weighted majority vote overH with the lowest
risk. However, in many applications, such as multimedia document retrieval, people are interested in performance
measures related to precision or recall. Since a low-error vote is not necessarily a good ranker, we propose an
adaptation of MinCq to improve the popular Mean Averaged Precision (MAP).

We first recall the definition of the MAP measured onS for a given real-valued functionh. LetS+ = {(xj , yj) :

(xj , yj) ∈ S ∧ yj = 1} = {(xj+ , 1)}
m+

j+=1 be the set of them+ positive examples fromS andS− = {(xj , yj) :

(xj , yj) ∈ S ∧ yj = −1} = {(xj− ,−1)}m
−

j−=1 the set of them− negative examples fromS (m+ +m− = m). For
evaluating the MAP, one ranks the examples in descending order of the scores. The MAP ofh is,

MAPS(h) =
1

|m+|

∑

j:yj=1

Prec@j,

wherePrec@j is the percentage of positive examples in the topj. The intuition behind this definition is that
we prefer positive examples with a score higher than negative ones. To achieve this goal, we propose to learn
with pairwise preferenceFürnkranz and Hüllermeier (eds) (2010) on pairs of positive-negative instances. Indeed,
pairwise methods are known to be a good compromise between accuracy and more complex performance measure
like MAP. Especially, the notion of order-preserving pairwise loss was introduced in Zhang (2004) in the context of
multiclass classification. Following this idea, Yueet al. Yue et al. (2007) have proposed a SVM-based method with
a hinge-loss relaxation of a MAP-loss. In our specific case ofMinCq for multimedia fusion, we design an order-
preserving pairwise loss for correctly ranking the positive examples. Actually, for each pair(xj+ ,xj− ) ∈ S+×S−,
we want:HQ(xj+) > HQ(xj− ) ⇔ HQ(xj− ) −HQ(xj+) < 0. This can be forced by minimizing (according to
the weightsqi) the following hinge-loss relaxation of the previous equation,

1

m+m−

m+

∑

j+=1

m−

∑

j−=1

[

HQ(xj−)−HQ(xj+)
]

+
, (3)

where[a]+ = max(a, 0) is the hinge-loss. In the setting of MinCq, withH auto-complemented (Eq.(1)) andQ
quasi-uniform (Eq.(2)), we reduce the term (3) to,

1

m+m−

m+

∑

j+=1

m−

∑

j−=1

[

n
∑

i=1

(

2qi −
1

n

)

(

hi(xj− )− hi(xj+ )
)

]

+

. (4)

To deal with the hinge-loss of (4), we considerm+×m− additionalslack variablesξS+×S− = (ξj+j−)1≤j+≤m+,1≤j−≤m−

weighted by a parameterβ > 0. We make a little abuse of notation to highlight the difference with (MinCq): Since
ξS+×S− appear only in the linear term, we simply add (4) after the (MinCq) formulation. We obtain the quadratic
program (MinCqPW ),

argminQ,ξ
S+×S−

Qt
SMSQ−At

SQ+ β IdtξS+×S− ,

s.t. mt
SQ =

µ

2
+

1

2nm

m
∑

j=1

n
∑

i=1

yjhi(xj),

∀j+ ∈ {1, . . . ,m+}, ∀j− ∈ {1, . . . ,m−}, ξj+j− ≥ 0,

ξj+j− ≥
1

m+m−

n
∑

i=1

(

2qi −
1

n

)

(

hi(xj− )− hi(xj+ )
)

,

and ∀i ∈ {1, . . . , n}, 0 ≤ qi ≤
1

n
, (MinCqPW )

whereId is the unit vector of sizem+ × m−. However, one drawback of this method is the incorporation of a
quadratic number of additive variables (m+ × m−) which makes the problem harder to solve. To overcome this
problem, we propose to relax the constraints by consideringthe average score of the negative examples: We force
the positive examples to be higher than the average negativescores. This leads us to the following alternative
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Table 1: MAP obtained on the PascalVOC’07 test sample. On theleft, experiments with rbf kernel layer. On the
right, without.

concept MinCq
rbf
PWav MinCqrbf SVMrbf MinCqPWav MinCqPW MinCq Σ ΣMAP best hbest

aeroplane 0 .513 0 .513 0.497 0.487 0.486 0.526 0.460 0.241 0.287 0.382
bicycle 0.273 0.219 0.232 0.195 0.204 0 .221 0.077 0.086 0.051 0.121

bird 0.2659 0.264 0.196 0.169 0.137 0 .204 0.110 0.093 0.113 0.123
boat 0.267 0.242 0.240 0.1593 0.154 0.159 0.206 0.132 0.079 0 .258

bottle 0 .103 0.099 0.042 0.112 0.126 0.118 0.023 0.025 0.017 0.066
bus 0.261 0.261 0.212 0 .167 0.166 0.168 0.161 0.098 0.089 0.116
car 0.530 0.530 0.399 0 .521 0.465 0.495 0.227 0.161 0.208 0.214
cat 0.253 0.245 0.160 0 .230 0.219 0.220 0.074 0.075 0.065 0.116

chair 0.397 0.397 0.312 0 .257 0.193 0.230 0.242 0.129 0.178 0.227
cow 0.158 0.177 0.117 0.102 0.101 0 .118 0.078 0.068 0.06 0.101

diningtable 0.263 0.227 0.245 0.118 0.131 0.149 0 .153 0.091 0.093 0.124
dog 0.261 0.179 0.152 0 .260 0.259 0.253 0.004 0.064 0.028 0.126

horse 0.495 0.4504 0.437 0.3011 0.259 0.303 0 .364 0.195 0.141 0.221
motorbike 0.295 0.284 0.207 0.1412 0.113 0.162 0 .193 0.115 0.076 0.130

person 0.630 0.614 0.237 0 .624 0.617 0.604 0.001 0.053 0.037 0.246
pottedplant 0.102 0.116 0.065 0 .067 0.061 0.061 0.057 0.04 0.046 0.073

sheep 0.184 0.175 0.144 0.0666 0 .096 0.0695 0.128 0.062 0.064 0.083
sofa 0.246 0.211 0.162 0.204 0 .208 0.201 0.137 0.087 0.108 0.147
train 0.399 0.385 0.397 0.331 0.332 0 .335 0.314 0.164 0.197 0.248

tvmonitor 0 .272 0.257 0.230 0.281 0.281 0.256 0.015 0.102 0.069 0.171

Average 0.301 0.292 0.234 0.240 0.231 0 .243 0.151 0.104 0.100 0.165

problem (MinCqPWav) with onlym+ additional variables.

argminQ,ξ
S+

Qt
SMSQ−At

SQ+ β IdtξS+ ,

s.t. mt
SQ =

µ

2
+

1

2nm

m
∑

j=1

n
∑

i=1

yjhi(xj),

∀j+ ∈ {1, . . . ,m+}, ξj+ ≥ 0,

ξj+ ≥
1

m+m−

m−

∑

j−=1

n
∑

i=1

(

2qi −
1

n

)

(

hi(xj− )− hi(xj+)
)

,

and ∀i ∈ {1, . . . , n}, 0 ≤ qi ≤
1

n
, (MinCqPWav)

whereId is the unit vector of sizem+.
Note that the two approaches still respect the framework of the original MinCq. We simply regularize the search

of the weights for aQ-weighted majority vote leading to an higher MAP.
Finally, for tuning the hyperparameters (µ, β) we use a cross-validation process (CV). Instead of selecting the

parameters leading to the lowest risk, we select the ones leading to the best MAP.

4 Experiments

In this section, we show empirically the interest of MinCq, and our extension, as a late fusion method with stacking
(implemented with MOSEK solver). We experiment the MinCq-based approaches on the PascalVOC’07 bench-
mark Everingham et al. (2007), where the goal is a list of20 visual concepts to identify in images. The corpus is
constituted of5000 training and5000 test images. In general, the ratio between positive and negative examples is
less than10%. For each concept, we generate a training sample constituted of all the training positive examples and
negative examples independently drawn such that the positive ratio is1/3. We keep the original test set.

Our objective is not to provide the best results on this benchmark but rather to evaluate if the MinCq-based
methods could be helpful for the late fusion step in multimedia indexing. To do so, we split the training sample into
two subsets,S′ andS, of the same size. We consider9 different visual features:1 SIFT,1 LBP,1 Percepts,2 HOG,
2 Local Color Histograms and2 Color Moments. Then, we train fromS′ a SVM-classifier for each visual feature
(with the LibSVM library Chang and Lin (2001) and a rbf kernelwith parameters tuned by CV). The final classifier
fusion is learned fromS.

In a first series of experiments, the set of votersH is constituted by the9 SVM-classifiers (MinCq also considers
the opposites). We compare the3 linear MinCq methods (MinCq), (MinCqPW ), (MinCqPWav) to the following
4 baseline fusion approaches.
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• The best classifier ofH:
hbest = argmaxhi∈H MAPS(hi).

• The one with the highest margin:

best(x) = argmaxhi∈H |hi(x)|.

• The sum of the classifiers (unweighted vote):

Σ(x) =
∑

hi∈H

hi(x).

• The MAP-weighted vote:

ΣMAP (x) =
∑

hi∈H

MAPS(hi)
∑

hi′∈HMAPS(hi′)
hi(x).

In a second series, we propose to introduce non-linear information with a rbf kernel layer. We represent each
example by the vector of its scores of the9 SVM-classifiers,H being the set of kernels over the sampleS: Each
x ∈ S is seen as a voterk(·,x). We then compare our method to stacking with SVM tuned by CV (SVM rbf ). Note
that we do not report the results of (MinCqPW ) in this context, because the computational cost is much higher and
the performance is lower. The full pairwise version impliestoo many variables which may penalize the resolution
of (MinCqPW ).

In either case, the hyperparameters of MinCq-based methodsare tuned with a grid search by a5-folds CV. The
MAP-performances are reported on Table 1, we can make the following remarks.

• On the right, for the first experiments, we clearly see that the linear MinCq-based algorithms outperform on
average the linear baselines. At least one MinCq-based method produces the highest MAP, except for “boat”
for whichhbest is the best. We note that the order-preserving hinge-loss isnot really helpful: The classical
(MinCq) shows the best MAP. In fact, this can be explained by the limited number of voters.

• On the left, with a kernel layer, at least one MinCq-based method achieves the highest MAP and for17/20

both are better than SVM. Moreover,MinCqrbfPWav with the averaged pairwise preference is the best for17
concepts, showing the order-preserving loss is a good compromise between improving the MAP and keeping
a reasonable computational cost.

• Globally, kernel-based MinCq methods outperform the othermethods. Moreover, at least one MinCq-based
approach is the best for each concept showing PAC-Bayesian MinCq is a good alternative for late classifiers
fusion.

5 Conclusion

We propose in this paper to make use of a well-founded learning quadratic program called MinCq as a novel
multimedia late fusion method. PAC-Bayesian MinCq was originally developed for binary classification and aims
at minimizing the error rate of the weighted majority vote byconsidering the diversity of the voters Laviolette et al.
(2011). In the context of multimedia indexing, we claim thatMinCq thus appears naturally appropriate for late
classifier fusion in order to combine the predictions of classifiers trained from different modalities. Our experiments
show that MinCq is a very competitive alternative for classifier fusion. Moreover, the incorporation of average
order-preserving constraints is sometimes able to improvethe MAP-performance measure. Beyond these results,
such PAC-Bayesian methods open the door to define other theoretically well-founded frameworks to design new
algorithms in many multimedia tasks such as multi-modalityindexing, multi-label classification, ranking, etc.
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