arXiv:1207.1019v1 [stat.ML] 4 Jul 2012

PAC-Bayesian Majority Vote for Late Classifier Fusion

Emilie Morvant Stéphane Ayache
Aix-Marseille Univ., LIF-QARMA, CNRS, UMR 7279, F-13013, Mseille, France
{firsthame.namg@lif.univ-mrs.fr

Amaury Habrard
Univ. of St-Etienne, Lab. Hubert Curien, CNRS, UMR 5516,2840, St-Etienne, France
amaury.habrard@univ-st-etienne.fr

July 5, 2012

Abstract

A lot of attention has been devoted to multimedia indexingrathe past few years. In the literature, we
often consider two kinds of fusion schemes: Haely fusionand thelate fusion In this paper we focus on late
classifier fusion, where one combines the scores of eachlityoatethe decision level. To tackle this problem, we
investigate a recent and elegant well-founded quadratigrem named MinCq coming from the Machine Learning
PAC-Bayes theory. MinCq looks for the weighted combinatiover a set of real-valued functions seen as voters,
leading to the lowest misclassification rate, while makisg of the voters’ diversity. We provide evidence that
this method is naturally adapted to late fusion procedure p¥ipose an extension of MinCq by adding an order-
preserving pairwise loss for ranking, helping to improveadéveraged Precision measure. We confirm the good
behavior of the MinCg-based fusion approaches with expartmon a real image benchmark.

Keywords: Machine Learning, Multimedia fusion, Multi-modality sear Ranking and re-ranking

1 Introduction

Combining multimodal information is an important issue imliimedia and a lot of research effort has been ded-
icated to this problem (see Atrey el al. (2010) for a survdydeed, the fusion of multimodal inputs can bring
complementary information, from various sources, usedulifnproving the quality of any multimedia analysis
method such as for semantic concept detection, audiof@seat detection, object tracking, etc.

The different modalities correspond generally to a relegan of features that can be grouped into different
views. For example, classical visual or textual featuresmonly used in multimedia are based on TF-IDF, bag of
words, texture, color, SIFT, spatio-temporal descriptets. Once these features have been extracted, another step
consists in using machine learning methods in order to luldgigsifiers able to discriminate a given concept.

Two main schemes are generally considered Snoek et al.[{2@0theearly fusionapproach, all the available
data/features are merged into one feature vector beforiedineing and classification steps. This can be seen as
a unimodal classification. However, this kind of approach teadeal with heterogeneous data or features which
are sometimes difficult to combine. Thate fusionmodel works at the decision level by combining the predictio
scores available for each modality. This is usually calledtimodal classification or classifier fusiohate fusion
may not always outperform unimodal classification. Esglcighen one modality provides significantly better
results than others or when one has to deal with imbalangad features. Howevelate fusionscheme tends to
give better results for learning semantic concepts in casautiimodal video Snoek et al. (2005). Several methods
based on a fixed decision rule have been proposed for congbitassifiers such as max, min, product, sum, etc
Kittler et al. (1998). Other approaches, often referredststackingWolpert (1992), need of an extra learning step.

In this paper, we address the problemaie multimodal fusion at the decision level with stacking. lkgthe
the classifier that gives the score associated withitheodality for any instance. A classical method consists in
looking for a weighted linear combination of the differenbees,

H(x) = ZQihi(X)7
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whereg; represents the weight associated with It is usually required thal < ¢; < 1 andzz;l ¢; = 1. This
linear weighting scheme can be seen as a majority vote. Pipisoach is widely used because of its robustness,
simplicity and scalability due to small computational coétrey et al. [(2010). It is also more appropriate when
there exist dependencies between the views Wu et al. (2@80d)mportant issue is then to find an optimal way to
combine the scores. One solution is to use machine learnétigads to assess the weights Atrey et al. (2010). From
a machine learning standpoint considering a set of classifigh a high diversity is generally a desirable property
Dietterich (2000). One illustration is given by the algbnit AdaBoost Freund and Schapire (11996), frequently used
as a multimodal fusion method. AdaBoost weights the classificcording to different distributions of the training
data, introducing some diversity, but requires at legsak classifierso perform well. Another recent approach
based on the portfolio theory Wang and Kankanhalli (2010ppses a fusion procedure trying to minimize some
risks over the different modalities and a correlation measiWhile it is well-founded, it needs to define some
appropriate functions and is not completely fully adaptethe classifier fusion problem since it does not directly
take into account the diversity between the outputs of thesifiers.

We propose to study a new machine learning method, namelgZdjimtroduced in Laviolette et al. (2011). It
proposes a quadratic program for learning a weighted ntgjaste over real-valued functions called voters (such as
score functions of classifiers). The algorithm is based emtmimization of a generalization bound that takes into
account both the risk of committing an error and the divgrsitthe voters, offering strong theoretical guarantees
on the learned majority vote. In this article, our aim is towhhe interest of this algorithm for classifier fusion. We
provide evidence that MinCq is able to find good linear weitdg but also very performing non-linear combination
with an extra kernel layer over the scores. Since in multimegtrieval, the performance measure is related to the
rank of positive examples, we propose to extend MinCq to anprthe Mean Average Precision. We base this
extension on an additional order-preserving loss for yarif ranking pairwise constraints.

The paper is organized as follows. Secfibn 2 deals with thertttical framework of MinCq. We extend MinCq
as a late fusion method in Sectign 3. Before concluding ini&eld, we evaluate empirically the MinCq late fusion
in Sectior{ 4.

2 PAC-Bayesian MinCQ

In this section we present the algorithm MinCq of Laviolettal. Laviolette et al.[(2011) for learning@-weighted
majority vote of real-valued function®.g. classifier scores). This method is based on the PAC-Bayesythe
McAllester (1990). We first recall the setting of MinCq.

We consider binary classification tasks ovefeature spaceX C R¢ of dimensiond. The label spaceis
Y = {—1,1}. The training sample i§' = {(x;,y;)}", where each examplex;, y;) is drawni.i.d. from a fixed
— but unknown — probability distributio® defined overX x Y. We consider a space of real-valued votars
such thatvh; € H, h; : X — R. Given a voterh;, the predicted label ot € X is given bysign[h;(x)], where
sign[a] = 1if a > 0 and—1 otherwise. Then, the learner aims at choosing a distribl@ver# — the weights
q; — leading to theQ-weighted majority voté3o with the lowest risk.Bg is defined by,

Bo(x) =sign[Ho(x)],
||
with Ho(x) = Z qihi(x).

The associated true rigdkp (Bg) is defined as the probability that the majority vote misdfaessan example drawn
according tdD,

Rp(Bg) = P(x y)~p (Bo(x) #¥) .

In the case of MinCgH has to be a finitauto-complementefdmily of 2n real-valued voter${ = {hi, ..., hap}
such that,

Vx € X, Vie{1,....n}, hipn(x) = —hi(x). (1)

Moreover, the algorithm considegsiasi-uniformdistributionsQ over#H, i.e. the sum of the weight of a voter and
its opposite ist,

Vie {17 . -an}v Q(hz) + Q(hl-HI) = ¢+ qi+1 = % (2)
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This constraint is not too restrictive since every disttits over 7 can be represented by a quasi-uniform dis-
tribution|Laviolette et al.| (2011). The assumptionk (1) §fdare actually an elegant trick to avoid the use of a
prior distribution overH which is often required by usual PAC-Bayesian method Mcgiéle (1999), making the
algorithm more easily applicable.

We now present the principle of the algorithm MinCqg. The aoir#1inCq is the minimization of the empirical
version of a bound — th€’-Bound — over the risk of th@-weighted majority vote.

Theorem 1 (C-Bound|Laviolette et all (2011)) GivenH = {h, ..., ha, } a class on functions, for any weights
{q:}?",1.e. distributionQ, on# and any distributiorD over X x Y, if E(x,)~p Ho(x) > 0thenRp(Bg) < C§
where,

o Var(x,)~p(yHo(x)) (MB)?
Egxy)~n(yHo(x))? ME,

with MB = Exy)op S0ty ygihi(x), and MB, = Ex y)op Sy 3oy 6igirhi(x)his (x) are respectively the
first and the second moments of @emargin: yH o (x).

Following some generalization bounds, MinCq proposes tamize the empirical version of tk@-bound,Cé =
1 M)

AAZQ
the empirical second momemlg2 measuring the correlation of the voters. This leads to mizeérthe bound and
thus the risk of the majority vote by taking into account theetsity between the voters.

, over a sampl&. The idea is to fix the empirical first momemg to a margine > 0 and to minimize

Definition 1 (MinCq algorithm Laviolette et al.|(2011)) Given a set{ = {h4, ..., hay} Of voters, a training set
S = {(xj,y;)}jL,, and a margiru > 0, among all quasi-uniform distributiong of empirical marginMg exactly
equal tou, the MinCq algorithm consists in finding one that minimizt&sdempirical./\/ng.

Due to the auto-complementdd (1) and quasi-uniforniity €uanptions, the algorithm can be expressed as a
quadratic prograni¥{ZinC'q) by only considering the first votersh, € H.

argming QLMsQ — ALQ,

ty _ M 1
s.t. mgQ = 5 + o ;;yjhi(xj),
1
andvie {1,...,n},0<¢q; < —, (MinCq)
n
where! denotes the transposed functi@~= (q1, .. ., ¢,)" is the vector of the first weightsg;, Ms is then x n
matrix formed by-- Z;”Zl hi(x;)hs (x;) foriandi’ in {1,...,n}, and,
1 m m t
mg = <E Y oyihi(xg)sees — Z%hn(xg)) ,
j=1 j=1
1 n m 1 n o m t
As =, 1 Zlm(xj)hi(xj), R B, ;Zlhn(xj)hi(xj) :
=1 7= =1 3=

Finally, the Q-weighted majority vote learned by MinCq is then
Bo(x) = sign[Ho(x)],

with Ho(x) = zn: (qu _ 1) ha(x).

© n
i=1

3 MinCq as a Late Fusion Method

PAC-Bayesian MinCq has been proposed in the particularesbiof binary classification where the objective is
to minimize the misclassification rate of tiigweighted majority vote by taking into account the diversif the
voters. From a multimedia indexing standpoint, MinCq thppears to be a natural way for late classifiers fusion
to combine the predictions of classifiers separately tchfram different modalities.

Concretely, given a training sample of size: we split it randomly into two subsets’ andS = {(x;,y;)}7%,
of the same size. Let be the number of modalities. For each modalityve train a classifieh; from S’. Let
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H = {h1,...,hn,—hs ..., —h,} be the set of thes associated prediction functions and their opposites. &t th
step, the fusion is achieved by MinCq: We learn fréhthe Q-weighted majority vote oveH with the lowest
risk. However, in many applications, such as multimediauoent retrieval, people are interested in performance
measures related to precision or recall. Since a low-emte is not necessarily a good ranker, we propose an
adaptation of MinCq to improve the popular Mean AverageaiBien (MAP).

We first recall the definition of the MAP measured$for a given real-valued functiol. LetS™ = {(x;,y;) :

(x5,95) € SAy; =1} = {(x;+,1) ;’f:l be the set of then™ positive examples frony andS~— = {(x;,y;) :

(x5,95) € SANy; = -1} = {(x-, —1)};.”::1 the set of then™ negative examples froti (m™* + m~ = m). For
evaluating the MAP, one ranks the examples in descendirey ofdhe scores. The MAP défis,

MAPs(h) = Tt Z Prec@j,

where Prec@j is the percentage of positive examples in the fopThe intuition behind this definition is that
we prefer positive examples with a score higher than negates. To achieve this goal, we propose to learn
with pairwise preferencgurnkranz and Hillermeier (eds) (2010) on pairs of pesitiegative instances. Indeed,
pairwise methods are known to be a good compromise betweeinaamy and more complex performance measure
like MAP. Especially, the notion of order-preserving pasaloss was introduced|in Zhang (2004) in the context of
multiclass classification. Following this idea, Yetal.Yue et al. |(2007) have proposed a SVM-based method with
a hinge-loss relaxation of a MAP-loss. In our specific casklimiCq for multimedia fusion, we design an order-
preserving pairwise loss for correctly ranking the positaamples. Actually, for each pdit;+, x;-) € ST x5,

we want: Hg(x;+) > Ho(x;-) < Hg(x;-) — Ho(x;+) < 0. This can be forced by minimizing (according to
the weightsy;) the following hinge-loss relaxation of the previous eduat

Y [Holxy ) - Holxe )], €
jt=1j-=1

where[a]. = max(a,0) is the hinge-loss. In the setting of MinCq, witht auto-complemented (EGQJ(1)) ar@l
quasi-uniform (EqL{2)), we reduce the teith (3) to,

e Y [Z (26 3 ) (o) = i) | @

jt=1j-=1 Li=1 +

To deal with the hinge-loss dfl(4), we considet xm~ additionaklack variable€ g+, g- = (&+ ;- )1<j+ <m+.1<j— <m—
weighted by a parametgr> 0. We make a little abuse of notation to highlight the diffesemith [17:nC7q): Since

&4+ s— appear only in the linear term, we simply adtl (4) after formulation. We obtain the quadratic
program[{ZinCqpw),

argminge . QsMsQ — AQ + BId ¢y 5,

o 1
j=11i=1

Vit e{l,....mT}, Vi~ e{l,...,m™}, &+;- >0,

n

> (2‘1i - l) (hi(x-) = hi(x;+)) ,

: n
=1

L >
Ej i mtm-—

1
andVie {1,...,n}, 0<¢q; < —, (MinCqpw)

3

whereld is the unit vector of sizen™ x m~. However, one drawback of this method is the incorporatiba o
quadratic number of additive variables{ x m™) which makes the problem harder to solve. To overcome this
problem, we propose to relax the constraints by considéhnegverage score of the negative examples: We force
the positive examples to be higher than the average negatores. This leads us to the following alternative
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Table 1: MAP obtained on the PascalVOC'07 test sample. Oteftheexperiments with rbf kernel layer. On the
right, without.

[ concept [[ MinCqPL .. | MinCqg™™ | sWM™ || MinCqpwav | MinCqpw | MinCq | S | Syap | best | hpess |
aeroplane 0.513 0.513 0.497 0.487 0.486 0.526 | 0.460 | 0.241 [ 0.287 | 0.382
bicycle 0.273 0.219 0.232 0.195 0.204 0.221 0.077 | 0.086 | 0.051 | 0.121
bird 0.2659 0.264 0.196 0.169 0.137 0.204 0.110 | 0.093 | 0.113 | 0.123
boat 0.267 0.242 0.240 0.1593 0.154 0.159 0.206 | 0.132 | 0.079 | 0.258
bottle 0.103 0.099 0.042 0.112 0.126 0.118 0.023 | 0.025 | 0.017 | 0.066
bus 0.261 0.261 0.212 0.167 0.166 0.168 0.161 | 0.098 | 0.089 | 0.116
car 0.530 0.530 0.399 0.521 0.465 0.495 0.227 | 0.161 | 0.208 | 0.214
cat 0.253 0.245 0.160 0.230 0.219 0.220 0.074 | 0.075 | 0.065 | 0.116
chair 0.397 0.397 0.312 0.257 0.193 0.230 0.242 | 0.129 | 0.178 | 0.227
cow 0.158 0.177 0.117 0.102 0.101 0.118 | 0.078 | 0.068 0.06 | 0.101
diningtable 0.263 0.227 0.245 0.118 0.131 0.149 0.153 | 0.091 | 0.093 | 0.124
dog 0.261 0.179 0.152 0.260 0.259 0.253 0.004 | 0.064 | 0.028 | 0.126
horse 0.495 0.4504 0.437 0.3011 0.259 0.303 0.364 | 0.195 | 0.141 | 0.221
motorbike 0.295 0.284 0.207 0.1412 0.113 0.162 0.193 | 0.115 | 0.076 | 0.130
person 0.630 0.614 0.237 0.624 0.617 0.604 0.001 | 0.053 | 0.037 | 0.246
pottedplant 0.102 0.116 0.065 0.067 0.061 0.061 0.057 0.04 0.046 | 0.073
sheep 0.184 0.175 0.144 0.0666 0.096 0.0695 | 0.128 | 0.062 | 0.064 | 0.083
sofa 0.246 0.211 0.162 0.204 0.208 0.201 0.137 | 0.087 | 0.108 | 0.147
train 0.399 0.385 0.397 0.331 0.332 0.335 | 0.314 | 0.164 | 0.197 | 0.248
tvmonitor 0.272 0.257 0.230 0.281 0.281 0.256 0.015 | 0.102 | 0.069 | 0.I7L

[ Average ] 0.301 [ 0292 ] 0234 T 0.240 [ 0231 [ 0.248 | 0.151 | 0.104 | 0.100 | 0.165 |

problem [(7inCqpw 4.) With only m™ additional variables.

argminQ{S+ QSMSQ Al sQ+p Idt§S+,

n

1 m
%Zzyjhl ;

1:=1

st. mQ =

l\DI‘:

1=
vj S {1 7m+}a j* Z Oa

i: i( ) (hi(x;-) = hi(x;+))

&+ >

andVie{l,...,n}, 0< ¢; <

(MinCQPWav)

Sl

whereld is the unit vector of sizen™.

Note that the two approaches still respect the frameworkebtiginal MinCqg. We simply regularize the search
of the weights for a@-weighted majority vote leading to an higher MAP.

Finally, for tuning the hyperparameteys, (5) we use a cross-validation process (CV). Instead of salgttie
parameters leading to the lowest risk, we select the ond&igto the best MAP.

4 Experiments

In this section, we show empirically the interest of MinCngaur extension, as a late fusion method with stacking
(implemented with MOSEK solver). We experiment the MinCapéd approaches on the PascalVOC'07 bench-
mark Everingham et al. (2007), where the goal is a lis2@¥isual concepts to identify in images. The corpus is
constituted 06000 training ands000 test images. In general, the ratio between positive andtivegaxamples is
less than 0%. For each concept, we generate a training sample consititfitd! the training positive examples and
negative examples independently drawn such that the posétio is1/3. We keep the original test set.

Our objective is not to provide the best results on this berark but rather to evaluate if the MinCqg-based
methods could be helpful for the late fusion step in multiraéadexing. To do so, we split the training sample into
two subsetsS’ and.S, of the same size. We considedifferent visual featurest SIFT,1 LBP, 1 Percepts2 HOG,

2 Local Color Histograms angl Color Moments. Then, we train frof’ a SVM-classifier for each visual feature
(with the LibSVM library.Chang and Lin (2001) and a rbf kerméth parameters tuned by CV). The final classifier
fusion is learned frong.

In a first series of experiments, the set of votkris constituted by theé SVM-classifiers (MinCq also considers
the opposites). We compare thénear MinCq methodsNinCq), (M inCqpw)), (MinCqpw4) to the following
4 baseline fusion approaches.
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The best classifier of{:

hpest = argmax;, ¢4y M APs(h;).

The one with the highest margin:

best(x) = argmax;, ¢4, |hi(x)].

The sum of the classifiers (unweighted vote):

B(x) = Y hi(x).

h,€H

e The MAP-weighted vote:

Smap(x) = i
=, S en MAPs (i)

In a second series, we propose to introduce non-linearritdtion with a rbf kernel layer. We represent each
example by the vector of its scores of h&VM-classifiersH being the set of kernels over the sampgteEach
x € S is seen as a votdr(-, x). We then compare our method to stacking with SVM tuned by CW\S*/). Note
that we do not report the results in this context, because the computational cost is mudhenignd
the performance is lower. The full pairwise version implies many variables which may penalize the resolution
of (TTnCqpw)-

In either case, the hyperparameters of MinCqg-based metdredsined with a grid search bys&golds CV. The
MAP-performances are reported on TdDle 1, we can make tlwviah remarks.

e On the right, for the first experiments, we clearly see thafitnear MinCqg-based algorithms outperform on
average the linear baselines. At least one MinCqg-basedadgttoduces the highest MAP, except for “boat”
for which h;.s; is the best. We note that the order-preserving hinge-losstiseally helpful: The classical
shows the best MAP. In fact, this can be explained by thedichhumber of voters.

e On the left, with a kernel layer, at least one MinCg-basedhm@tchieves the highest MAP and ot/ 20
both are better than SVM. Moreovel] z‘an;bJVav with the averaged pairwise preference is the best for
concepts, showing the order-preserving loss is a good camipe between improving the MAP and keeping
a reasonable computational cost.

e Globally, kernel-based MinCq methods outperform the othethods. Moreover, at least one MinCg-based
approach is the best for each concept showing PAC-Bayesia@dvis a good alternative for late classifiers
fusion.

5 Conclusion

We propose in this paper to make use of a well-founded legrgiradratic program called MinCqg as a novel
multimedia late fusion method. PAC-Bayesian MinCq wasinglly developed for binary classification and aims
at minimizing the error rate of the weighted majority votedmnsidering the diversity of the voters Laviolette et al.
(2011). In the context of multimedia indexing, we claim théihCq thus appears naturally appropriate for late
classifier fusion in order to combine the predictions of siféers trained from different modalities. Our experiments
show that MinCq is a very competitive alternative for cléissifusion. Moreover, the incorporation of average
order-preserving constraints is sometimes able to imptleeeVAP-performance measure. Beyond these results,
such PAC-Bayesian methods open the door to define otheretieadly well-founded frameworks to design new
algorithms in many multimedia tasks such as multi-modatitexing, multi-label classification, ranking, etc.
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