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Abstract

This paper proposes two estimators of the joint entropy of the Type-II cen-
sored data. Consistency of both estimators is proved. Simulation results show
that the second one shows less bias and root of mean square error (RMSE)
than leading estimator. Also, two goodness of fit test statistics based on the
Kullback-Leibler information with the Type-II censored data are established
and their performances with the leading test statistics are compared. We pro-

vide a Monte Carlo simulation study which shows that the test statistics T
(1)
m,n,r

and T
(2)
m,n,r show better powers than leading test statistics against the alter-

natives with monotone decreasing and monotone increasing hazard functions,
respectively.

Keywords: Entropy, Monte Carlo simulation, Kullback-Leibler information,
Moving average method, Hazard function.

Mathematics Subject Classification: 62G10, 62G30.

1 Introduction

Suppose that a random variable X has a distribution function F (x), with a contin-
uous density function f(x). The differential entropy H(f) of the random variable is
defined by Shannon [22] to be

H(f) = −

∫

∞

−∞

f(x) ln f(x)dx. (1.1)

The entropy difference H(f) −H(g) has been considered in [8] and [11] for estab-
lishing the goodness of fit tests for the class of the maximum entropy distributions.
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The Kullback-Leibler (KL) information in favor of g(x) against f(x) is defined
to be

I(g; f) =

∫

∞

−∞

g(x) ln
g(x)

f(x)
dx.

Because I(g; f) has the property that I(g; f) ≥ 0, and the equality holds if and
only if f = g, different estimators of the KL information has been also considered
as a goodness of fit test statistic in some papers including [2], [9], [20] and [25]. For
complete samples, some of these test statistics perform very well for exponentiality
[9], and some others of them perform very well for normality, see [23], [26] and [1].

For the censored data, some authors studied the problem of goodness of fit test
and discussed some test statistics. Brain and Shapiro [6] proposed two test statistics
and show that these test statistics perform better than other test statistics for the
censored data. Samanta and Schwarz [21] proposed a test statistic and showed
that the proposed test statistic has competing performance with the test statistics
which introduced by Brain and Shapiro [6] for the censored data. Recently Park
[19] obtained an estimator for entropy of Type-II censored data and proposed a
test statistic based on KL information. He showed that the power of the proposed
test statistic is greater than the power of the test statistics which proposed by
Brain and Shapiro [6], and Samanta and Schwarz [21] against the alternatives with
monotone increasing hazard functions. In the case of progressively censored data,
Balakrishnan et al. [4] studied the testing exponentiality based on KL information
with progressively Type-II censored data. Habibi Rad et al. [12] studied goodness
of fit test based on KL information for progressively Type-II censored data. Pakyari
and Balakrishnan [17] proposed several goodness of fit methods for location-scale
families of distributions under progressively Type-II censored data. They [18] also
investigated a general purpose approximate goodness of fit test for progressively
Type-II censored data.

In this paper, we enhance the estimator which was introduced by Park [19] and
obtain two new entropy estimators of Type-II censored data. Simulation results
show that the second one shows less bias and RMSE than leading estimator. Also,
we provide two new test statistics. The first one achieves higher power than the
previous test statistics against the alternatives with monotone decreasing hazard
functions and the other one achieves higher power than the previous test statistics
against the alternatives with monotone increasing hazard functions.

The rest of the article is arranged as follows: In Section 2, we introduce two
estimators of the joint entropy of the Type-II censored data. Also, we show that
both are consistent. Scale invariance property of variances and mean squared errors
of the proposed estimators is studied in the same section. In Section 3, we use the KL
information with the Type-II censored data and obtain two new test statistics. In
Section 4, we introduce goodness-of-fit tests for exponentiality based on the proposed
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test statistics and then compare their powers with the powers of other test statistics.
Also, by using the new test statistics, we compare biases and RMSEs of the new
entropy estimators with the leading entropy estimator.

2 New entropy estimators

In this section, we introduce two entropy estimators and prove some of their prop-
erties.

2.1 Entropy estimator for monotone decreasing hazard function

alternatives

In this subsection, we obtain one entropy estimator which provides a new test statis-
tic that achieves higher power than the previous test statistics against the alterna-
tives with monotone decreasing hazard functions.

Vasicek [23] expressed (1.1) in the form,

H =

∫ 1

0
ln

(

dF−1p

dp
dp

)

and provided its estimator as:

H(m,n) =
1

n

n
∑

i=1

ln
x(i+m:n) − x(i−m:n)

2m
n

,

where the window size m is a positive integer, which is less than n/2; and x(i:n) =
x(1:n) for i < 1, and x(i:n) = x(n:n) for i > n. Recently Park [19] expressed the joint

entropy of X(1:n), · · · ,X(r:n), H1···r:n, in the form H1···r:n = − ln
n!

(n− r)!
+nH̄1···r:n,

where

H̄1···r:n = −E

(
∫ U(r:n−1)

0
ln(

dF−1(p)

dp
)dp

)

− E
((

1− U(r:n−1)

)

ln(1− U(r:n−1))
)

,

and provided its estimator as:

H̄m,n,r =
1

n

r
∑

i=1

ln

(

x(i+m:n) − x(i−m:n)

2m
n

)

−
(

1−
r

n

)

ln
(

1−
r

n

)

. (2.2)

By approximating H̄1···r:n with

−

∫ r

n

0
ln(

dF−1(p)

dp
)dp− (1−

r

n
) ln(1−

r

n
), (2.3)
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we obtain an estimator for (2.3) as:

H̄(1)
m,n,r =

1

n

r
∑

i=1

ln

(

x̄hi−1+m − x̄hi−1−m
m
n

)

− (1−
r

n
) ln(1−

r

n
), (2.4)

where x̄hi−1+m is the harmonic mean of x(i:n), · · · , x(i−1+m:n) and x̄hi−1−m is the
harmonic mean of x(i−1−m:n), · · · , x(i:n) and the window size m is a positive integer,
which is less than r/2; and x(i:n) = x(1:n) for i < 1, and x(i:n) = x(r:n) for i < r. We
expect that the performance of this estimator is better than (2.2), because we use
more information for its calculation.

We can easily prove that the scale of the random variable X has no effect on the

accuracy of H̄
(1)
m,n,r in estimating H1···r:n.

Property 2.1 Let HY
1···r:n and HW

1···r:n denote entropies of the distribution of con-
tinuous random variables Y and W , respectively, and W = kY , where k > 0. It is

easy to see that x̄h,Wj = kx̄h,Yj for i = 1, · · · , r. So we have H̄(1) W
m,n,r =

r

n
ln k+H̄(1) Y

m,n,r.

Then the following properties hold

• E(H̄
(1) W
m,n,r ) = E(H̄

(1) Y
m,n,r) +

r
n
ln k,

• V ar(H̄
(1) W
m,n,r ) = V ar(H̄

(1) Y
m,n,r),

• MSE(H̄
(1) W
m,n,r ) = MSE(H̄

(1) Y
m,n,r),

where the superscript Y and W refer to the corresponding distribution.

Lemma 2.1 If m,n → ∞ and m
n
→ 0, then H̄

(1)
m,n,r − H̄m,n,r → 0, which H̄m,n,r is

defined in (2.2).

Proof: If we prove that
∣

∣

∣
H̄

(1)
m,n,r − H̄m,n,r

∣

∣

∣
→ 0 then by Squeeze theorem, H̄

(1)
m,n,r −

H̄m,n,r → 0. So we establish
∣

∣

∣
H̄

(1)
m,n,r − H̄m,n,r

∣

∣

∣
→ 0 as follows:

0 ≤
∣

∣

∣
H̄(1)

m,n,r − H̄m,n,r

∣

∣

∣
=

∣

∣

∣

∣

∣

1

n

r
∑

i=1

ln
x̄hi−1+m − x̄hi−1−m

2(x(i+m:n) − x(i−m:n))

∣

∣

∣

∣

∣

≤
1

n

r
∑

i=1

∣

∣

∣

∣

∣

ln
x̄hi−1+m − x̄hi−1−m

2(x(i+m:n) − x(i−m:n))

∣

∣

∣

∣

∣

≤
1

n

r
∑

i=1

∣

∣

∣

∣

ln
x(i−1+m:n) − x(i−1−m:n)

2(x(i+m:n) − x(i−m:n))

∣

∣

∣

∣

→ 0, as m,n → 0 and
m

n
→ 0.
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The first inequality arises by using the Triangle inequality, and the second inequality
is true because

x̄hi−1+m ≤ x(i−1+m:n) and x̄hi−1+m ≥ x(i:n),

therefore,
∣

∣

∣
H̄

(1)
m,n,r − H̄m,n,r

∣

∣

∣
→ 0. This completes the proof. �

Theorem 2.1 If m,n → ∞ and m
n

→ 0, then H̄
(1)
m,n,r is a consistent estimator of

H̄1···r:n.

Proof: Park [19] showed that H̄m,n,r is a consistent estimator of H̄1···r:n. So

E
[

H̄m,n,r

]

→ H̄1···r:n, (2.5)

V ar
[

H̄m,n,r

]

→ 0, (2.6)

as m,n → ∞, and m
n
→ 0. According to the previous Lemma, H̄

(1)
m,n,r− H̄m,n,r → 0,

so (Billingsley [5])

E
[

H̄(1)
m,n,r − H̄m,n,r

]

→ 0, (2.7)

E
[

H̄(1)
m,n,r − H̄m,n,r

]2
→ 0. (2.8)

Now, by using (2.5) and (2.7), we conclude E[H̄
(1)
m,n,r] → H̄1···r:n (Billingsley [5]).

On the other hand, using (2.7) and (2.8), we have

V ar[H̄(1)
m,n,r − H̄m,n,r] = E[H̄(1)

m,n,r − H̄m,n,r]
2 − E2[H̄(1)

m,n,r − H̄m,n,r] → 0, (2.9)

Also,

V ar[H̄(1)
m,n,r − H̄m,n,r] = V ar[H̄(1)

m,n,r] + V ar[H̄m,n,r]− 2Cov(H̄(1)
m,n,r, H̄m,n,r), (2.10)

and by using (2.6)

V ar[H̄m,n,r]− 2Cov(H̄(1)
m,n,r, H̄m,n,r) → 0. (2.11)

So, by applying (2.9), (2.10) and (2.11), we deduce V ar[H̄
(1)
m,n,r] → 0. Therefore,

E
[

H̄(1)
m,n,r

]

→ H̄1···r:n,

V ar
[

H̄(1)
m,n,r

]

→ 0, as m,n → ∞,
m

n
→ 0,

so H̄
(1)
m,n,r is a consistent estimator of H̄1···r:n �.
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2.2 Entropy estimator for monotone increasing hazard function al-

ternatives

2.2.1 Moving average method

In statistics, smoothing a data set is to create an approximating function that at-
tempts to capture important patterns in the data, while leaving out noise phenom-
ena. One of the most common smoothing methods is moving average. This method
is a technique that can be applied for the time series analysis, either to produce
smoothed periodogram of data, or to make better estimation and forecasts [7].

A moving average (MA) method is the unweighted mean of the previous n datum
points. Suppose individual observations, X1, · · · ,Xn are collected. The moving
average of width w at time i is defined by Montgomery [16]

Yi =
Xi +Xi−1 + · · ·+Xi−w+1

w
=

∑i
j=i−w+1Xj

w
i ≥ w.

For periods i < w, we do not have w observations to calculate a moving average of
width w.

Now, we develop the construction of the moving average method. For this aim,
we defined the moving average of width w at time i as:

Yi =
Xi +Xi+1 + · · ·+Xi+w−1

w

=

∑i+w−1
j=i Xj

w
i ≤ n− w + 1. (2.12)

From Equation (2.2.1), the moving average statistic is the average of the w most
recent observations. However, for i > n − w + 1, the moving average at time i is
defined as the average of all observations that are equal or greater than Xi, i.e.

Yi =

∑n
j=iXj

n− i+ 1
i > n− w + 1. (2.13)

One characteristic of the MA is that if the data have an uneven path, applying
the MA will eliminate abrupt variation and cause the smooth path. In the next
subsection, this characteristic of the MAmethod is used and a new entropy estimator
is presented.

2.2.2 Entropy estimator

In this subsection, we use the MA method and obtain an entropy estimator which
provides a new test statistic that achieves higher power than the previous test statis-
tics against the alternatives with monotone increasing hazard functions. According
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to the subsection 2.1, we know that

H̄1···r:n = −E

(
∫ U(r:n−1)

0
ln(

dF−1(p)

dp
)dp

)

− E
((

1− U(r:n−1)

)

ln(1− U(r:n−1))
)

,

and the approximated of it, is defined in (2.3).
F−1(p) as a function of quantiles in (2.3) is the sample path of order statistics,

but usually it is not smooth. So we propose to imply the MA method of proper
order, say k, to smooth this sample path and define the new variables y1, · · · , yr
from the equation (2.2.1) and (2.13) as follows:

y1 =
x(1:r) + · · ·+ x(k:r)

k
,

y2 =
x(2:r) + · · ·+ x(k+1:r)

k
,

... (2.14)

yr−k+1 =
x(r−k+1:r) + · · ·+ x(r:r)

k
,

yr−k+2 =
x(r−k+2:r) + · · ·+ x(r:r)

k − 1
,

...

yr−1 =
x(r−1:r) + x(r:r)

2
,

yr = x(r:r).

By this method, we obtain an estimator for (2.3) as:

H̄(2)
m,n,r =

1

n

r
∑

i=1

ln
y(i+m:n) − y(i−m:n)

F̂n(y(i+m:n))− F̂n(y(i−m:n))
−
(

1−
r

n

)

ln
(

1−
r

n

)

, (2.15)

where the window size of m is a positive integer, which is less than r/2 + k; and
x(i:n) = x(1:n) for i < 1, and x(i:n) = x(r:n) for i < r. Also F̂n(y(i:n)) was introduced
by Yousefzadeh and Arghami [24] as:

F̂n(y(i:n)) =
r − 1

r(n+ 1)

(

i+
1

r − 1
+

y(i:n) − y(i−1:n)

y(i+1:n) − y(i−1:n)

)

, i = 1, · · · , r,

for y < y(1:n), F̂n(y) is less than
1

n+1 and for y > y(r:n), F̂n(y) is more than r
n+1 .

We can prove that the scale of the random variable X has no effect on the

accuracy of H̄
(2)
m,n,r in estimating H1···r:n.
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Property 2.2 Let HY
1···r:n and HW

1···r:n denote entropies of the distribution of con-
tinuous random variables Y and W , respectively, and W = kY , where k > 0. It is
easy to see that

F̂ Y
n (w(i:n)) =

r − 1

r(n+ 1)

(

i+
1

r − 1
+

w(i:n) − w(i−1:n)

w(i+1:n) − w(i−1:n)

)

= F̂W
n (y(i:n))

for i = 1, · · · , r. So we have

H̄(2) W
m,n,r =

1

n

r
∑

i=1

ln
ky(i+m:n) − ky(i−m:n)

F̂n(ky(i+m:n))− F̂n(ky(i−m:n))

−
(

1−
r

n

)

ln
(

1−
r

n

)

=
r

n
ln k + H̄(2) Y

m,n,r.

Then the following properties hold

• E(H̄
(2) W
m,n,r ) = E(H̄

(2) Y
m,n,r) +

r
n
ln k,

• V ar(H̄
(2) W
m,n,r ) = V ar(H̄

(2) Y
m,n,r),

• MSE(H̄
(2) W
m,n,r ) = MSE(H̄

(2) Y
m,n,r),

where the superscript Y and W refer to the corresponding distribution.

Example 2.1 For the explanation of the proposed method, we simulate 30 samples
from the exponential distribution with mean 1, consider their order statistics and
censor 5 of them from the right, and plot the sample path of 25 points in Figure 1
with I.

The sample path of order statistics is smoothed by MA of order 3. New variables
are defined from (2.14) and the smoothed path of new variables is plotted in Figure
1 with II. This plot shows that the new sample path is smoother than the sample
path of the original order statistics. Also, with considering MA of order 5, we define
new variables from (2.14) and plot them in Figure 1 with III. Even though the
smoothing sample path of order statistics by using MA of order 3 is not as smooth
as using MA of order 5, the resulting powers, which are demonstrated in section 4,
are the same up to two digits of decimals. So without loss of generality, we just
consider MA of order k = 3 in (2.14).

Lemma 2.2 If m,n → ∞ and m
n
→ 0, then H̄

(2)
m,n,r − H̄m,n,r → 0.
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Figure 1: Sample path of order statistics from the exponential distribution (I), smoothed path of
order 3 (II) and order 5 (III) at MA method.

Proof: If we prove that
∣

∣

∣
H̄

(2)
m,n,r − H̄m,n,r

∣

∣

∣
→ 0 then by Squeeze theorem, H̄

(2)
m,n,r −

H̄m,n,r → 0. So we establish
∣

∣

∣
H̄

(2)
m,n,r − H̄m,n,r

∣

∣

∣
→ 0 as follows:

0 ≤
∣

∣

∣
H̄(2)

m,n,r − H̄m,n,r

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

1

n

r
∑

i=1

ln
2m
n
(y(i+m:n) − y(i−m:n))

(

F̂n(y(i+m:n))− F̂n(y(i−m:n))
)

(x(i+m:n) − x(i−m:n))

∣

∣

∣

∣

∣

∣

≤
1

n

r
∑

i=1

∣

∣

∣

∣

∣

∣

ln
2m
n
(y(i+m:n) − y(i−m:n))

(

F̂n(y(i+m:n))− F̂n(y(i−m:n))
)

(x(i+m:n) − x(i−m:n))

∣

∣

∣

∣

∣

∣

≤
1

n

r
∑

i=1

∣

∣

∣

∣

ln

[

n+ 1

2m− 1

2m

n

y(i+m:n) − y(i−m:n)

x(i+m:n) − x(i−m:n)

]
∣

∣

∣

∣

≤
1

n

r
∑

i=1

∣

∣

∣

∣

ln

[

n+ 1

2m− 1

2m

n

x(i+m+k:n) − x(i−m:n)

x(i+m:n) − x(i−m:n)

]
∣

∣

∣

∣

→ 0, as m,n → 0 and
m

n
→ 0.

The first inequality arises by using the Triangle inequality and the second inequality
is true, for more details see Yousefzadeh and Arghami [24]. Also, the third inequality
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is true because

y(i+m:n) =
1

k

(

x(i+m:n) + · · · + x(i+m+k:n)

)

⇒ y(i+m:n) ≤ x(i+m+k:n)

y(i−m:n) =
1

k

(

x(i−m:n) + · · · + x(i−m+k:n)

)

⇒ y(i−m:n) ≥ x(i−m:n),

therefore,
∣

∣

∣
H̄

(2)
m,n,r − H̄m,n,r

∣

∣

∣
→ 0. This completes the proof. �

Theorem 2.2 If m,n → ∞ and m
n

→ 0, then H̄
(2)
m,n,r is a consistent estimator of

H̄1···r:n.

Proof: We should prove that

E
[

H̄(2)
m,n,r

]

→ H̄1···r:n,

V ar
[

H̄(2)
m,n,r

]

→ 0, as m,n → ∞,
m

n
→ 0

These equation obtain from the consistency of H̄m,n,r for H̄1···r:n. Proof of this
theorem is quite similar to the proof of Theorem 2.1. �

3 Test statistics

For a null distribution function f0(z; θ), the KL information for the Type-II censored
data is defined to be:

I1···r:n(f, f
0) =

∫

∞

−∞

f1···r:n(z; θ) ln
f1···r:n(z; θ)

f0
1···r:n(z; θ)

dz.

Then the KL information can be approximated with

I1···r:n(f, f
0) = −nH̄1···r:n −

r
∑

i=1

ln f0(z(i:n); θ)− (n− r) ln(1− F 0(z(r:n); θ)). (3.16)

Thus the test statistic based on I1···r:n(f, f
0)/n can be written as:

T (j)
m,n,r = −H̄(j)

m,n,r−
1

n

(

r
∑

i=1

ln f0(z
(j)
(i:n); θ̂) + (n− r) ln(1− F 0(z

(j)
(r:n); θ̂))

)

, j = 1, 2,

where

z
(j)
(i:n) =

{

x(i:n) j = 1

y(i:n) j = 2
, i = 1 · · · r (3.17)

and θ̂ is an estimator of θ and H̄
(1)
m,n,r and H̄

(2)
m,n,r is defined in (2.4) and (2.15),

respectively.
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4 Testing exponentiality based on the Kullback-Leibler

information

4.1 Test statistics

Suppose that we are interested in a goodness of fit test for
{

H0 : f
0(x) = 1

θ
exp(−x

θ
),

H1 : f
0(x) 6= 1

θ
exp(−x

θ
),

where θ is unknown. Then the KL information for the Type-II censored data can
be approximated in view of (3.16) with

I1···r:n(f ; f
0) = −nH̄1···r:n + r ln θ +

1

θ

(

r
∑

i=1

Z
(j)
(i:n) + (n− r)Z(j)

r:n

)

,

If we estimate the unknown θ with the maximum likelihood estimator,

θ̂ =

(

r
∑

i=1

Z
(j)
(i:n) + (n− r)Z

(j)
(r:n)

)

/r,

then we have two estimators of I1···r:n(f ; f
0)/n as:

T (j)
m,n,r = −H̄(j)

m,n,r +
r

n

{

ln

[

1

r

(

r
∑

i=1

Z
(j)
(i:n) + (n− r)Z

(j)
(r:n)

)]

+ 1

}

, j = 1, 2,

where the random variable Z
(j)
(i:n) takes the value z

(j)
(i:n) which is defined in (3.17).

Since I is non-negative and is zero if and only if f = f0, a.e., we reject the null

hypothesis for large values of T
(1)
m,n,r and T

(2)
m,n,r.

4.2 Implementation of the test

Because the sampling distributions of the test statistics are intractable, we deter-
mine the percentage points using 10000 Monte Carlo samples from an exponential
distribution. In determining the window size m which depends on n, r and the α,
we define the optimal window size m to be one which gives minimum critical points
in the sense of Ebrahimi et al. [9]. However, we find from the simulated percentage
points, the optimal window size m. In view of these results, our recommended val-

ues of m for different r and test statistic T
(1)
m,n,r are listed in Table 1 and the critical

values of T
(1)
m,n,r corresponding to the optimum values of m, are given in Table 2.

Also, our recommended values of m for different r and test statistic T
(2)
m,n,r are listed

in Table 3, where m∗ = r/2 + 3 and the critical values of T
(2)
m,n,r corresponding to

the optimum values of m, are given in Table 4.

11



Table 1: Values of the window size m which gives minimum critical values of α less than 0.1 for

T
(1)
m,n,r

r 5-19 20-40 41-50

m 3 4 5

Table 2: Monte carlo estimate of the critical values of T
(1)
m,n,r where m is determined from Table 1

n r α = 0.1 α = 0.05 α = 0.025

10 5 0.5962 0.6855 0.7692
6 0.6155 0.7185 0.8039
7 0.6398 0.7333 0.8185
8 0.6676 0.7607 0.8648
9 0.7152 0.8075 0.9025

20 10 0.3148 0.3640 0.4061
11 0.3188 0.3689 0.4148
12 0.3285 0.3727 0.4183
13 0.3374 0.3825 0.4329
14 0.3442 0.3911 0.4371
15 0.3613 0.4113 0.4587
16 0.3677 0.4157 0.4634
17 0.3830 0.4333 0.4795
18 0.4022 0.4521 0.5024
19 0.4223 0.4717 0.5172

30 15 0.2239 0.2599 0.2904
16 0.2293 0.2625 0.2922
17 0.2320 0.2659 0.2945
18 0.2376 0.2707 0.3009
19 0.2425 0.2757 0.3077
20 0.2470 0.2800 0.3108
21 0.2537 0.2834 0.3121
22 0.2568 0.2918 0.3259
23 0.2634 0.2949 0.3272
24 0.2691 0.3017 0.3318
25 0.2736 0.3090 0.3398
26 0.2822 0.3136 0.3488
27 0.2910 0.3239 0.3538
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Table 3: Values of the window size m which gives minimum critical values of α less than 0.1 for

T
(2)
m,n,r

r 4-5 6-7 8-9 10-11 12-13 r-(r+1)

m 5 6 7 8 9 m∗ (for even r)

Table 4: Monte carlo estimate of the critical values of T
(2)
m,n,r where m is determined from Table 3

n r α = 0.1 α = 0.05 α = 0.025

10 5 0.3445 0.4253 0.5087
6 0.3251 0.4128 0.5026
7 0.3136 0.4099 0.4929
8 0.3104 0.4046 0.4915
9 0.3101 0.4038 0.4902

20 10 0.1474 0.1913 0.2310
11 0.1426 0.1830 0.2229
12 0.1408 0.1828 0.2197
13 0.1369 0.1805 0.2181
14 0.1322 0.1773 0.2168
15 0.1294 0.1740 0.2160
16 0.1281 0.1742 0.2161
17 0.1280 0.1739 0.2073
18 0.1268 0.1649 0.2072
19 0.1200 0.1620 0.1988

30 15 0.0865 0.1168 0.1500
16 0.0859 0.1152 0.1430
17 0.0843 0.1124 0.1383
18 0.0829 0.1090 0.1380
19 0.0824 0.1083 0.1355
20 0.0815 0.1079 0.1311
21 0.0806 0.1043 0.1294
22 0.0777 0.1038 0.1281
23 0.0759 0.1027 0.1280
24 0.0741 0.0988 0.1275
25 0.0699 0.0976 0.1265
26 0.0662 0.0977 0.1219
27 0.0635 0.0910 0.1200
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4.3 Power results

There are lots of test statistics for exponentiality concerning uncensored data in-
cluding [3], [10], [13]-[15], but only some of them can be extended to the censored
data. We consider here the test statistics of [6], and [19] among them. Brain and
Shapiro [6] proposed two test statistics as:

z =

(

12

r − 2

)
1
2
∑r−1

i=1 (i−
r
2)Yi+1

∑r−1
i=1 Yi+1

Z = z2 +

(

5

4(r + 1)(r − 2)(r − 3)

)
1
2

×
12
∑r−1

i=1 (i−
r
2)

2Yi+1 − r(r − 2)
∑r−1

i=1 Yi+1
∑r−1

i=1 Yi+1

where Y1 = nX(1:n), and Yi = (n − i + 1)(X(i:n) − X(i−1:n)), i = 2, · · · , r; and
show that z and Z perform better than other test statistics for the censored data.
Recently Park [19] proposed a test statistic as:

Tm,n,r = −H̄m,n,r +
r

n

{

ln

[

1

r

(

r
∑

i=1

X(i:n) + (n− r)X(r:n)

)]

+ 1

}

,

where H̄m,n,r is presented in (2.2). He showed that the power of the proposed
test statistic is greater than the power of the test statistics which was introduced
by Brain and Shapiro [6] against the alternatives with monotone increasing hazard
functions.

Because the proposed test statistics are essentially related to the hazard function,
the alternatives are considered according to the type of hazard functions as follows:

• Monotone decreasing hazard: Chi-square with degree of freedom 1 (A1),
Gamma with shape parameter 0.5 (A2), Weibull with shape parameter 0.5
(A3) and Generalized Exponential with shape 0.5 (A4).

• Monotone increasing hazard: Uniform (B1), Weibull with shape parameter 2
(B2), Gamma with shape parameter 1.5, 2 (B3, B4 respectively), Chi-square
with degree of freedom 3, 4 (B5, B6 respectively), Beta with shape parameters
1 and 2, 2 and 1 (B7, B8 respectively).

• Non-monotone hazard: Log normal with shape parameter 0.6, 1.0, 1.2 (C1,
C2, C3 respectively), Beta with shape parameters 0.5 and 1.0 (C4).
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Figure 2: Power comparison: monotone decreasing hazard alternative at 10% when the sample
size is 30. r is the remaining data after the implementation of Type-II censoring scheme. z and Z

were introduced by Brain and Shapiro [6] and T was introduced by Park [19]. (A1) Chi-square: df
1, (A2) Gamma: shape 0.5, (A3) Weibull: shape 0.5, (A4) Generalized Exponential: shape 0.5.

We consider here the sample size to be 30, and draw conclusions. We made 10000
Monte Carlo simulations for n = 30 to estimate the powers of our proposed test
statistics and the competing test statistics, for α = 0.1. The simulation results
are summarized in Figures 2 − 4. We can see from these figures that any test
statistics does not beat others against all alternatives, but it is notable that the

first proposed test statistic, T
(1)
m,n,r, shows better powers than the competing test

statistics against the alternatives with monotone decreasing hazard functions, see
Figure 2. Also, against the alternatives with monotone increasing hazard functions,

the second proposed test statistic, T
(2)
m,n,r, shows better powers than the competing

test statistics, see Figure 3.

4.4 RMSE comparisons

In this subsection, we report the results of a simulation study which compares the
performances of the introduced entropy estimators with the estimator proposed by
Park [19] in terms of their biases and RMSEs. We consider here the sample size to
be 30, and draw conclusions. We made 10000 Monte Carlo simulations for n = 30

and different r to obtain the H̄m,n,r, H̄
(1)
m,n,r, H̄

(2)
m,n,r, their biases and RMSEs. The

simulation results are summarized in Table 5. The results show that H̄
(2)
m,n,r has

the smallest bias and RMSE among them. Also, the bias and RMSE of H̄m,n,r is

smaller than H̄
(1)
m,n,r. We plot the empirical density of the test statistics based on

these estimators for other n and r in Figure 5. This figure confirms the simulation
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Figure 3: Power comparison: monotone increasing hazard alternative at 10% when the sample
size is 30. r is the remaining data after the implementation of Type-II censoring scheme. z and Z

were introduced by Brain and Shapiro [6] and T was introduced by Park [19]. (B1) Uniform, (B2)
Weibull: shape 2, (B3) Gamma: shape 1.5, (B4) Gamma: shape 2, (B5) Chi-square: df 3, (B6)
Chi-square: df 4, (B7) Beta: shape 1 and 2, (B8) Beta: shape 2 and 1.
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Figure 4: Power comparison: non-monotone hazard alternative at 10% when the sample size is
30. r is the remaining data after the implementation of Type-II censoring scheme. z and Z were
introduced by Brain and Shapiro [6] and T was introduced by Park [19]. (C1) Log normal: shape
0.6, (C2) Log normal: shape 1, (C3) Log normal: shape 1.2, (C4) Beta: shape 0.5 and 1.

results.

5 Conclusion

In this paper, the entropy estimator of the Type-II censored data which was in-
troduced by Park [19] is modified and two new entropy estimators are obtained.
Simulation results showed that the second proposed entropy estimator compared
favourably with their competitors in terms of bias and RMSE, as it is expected of

the structure of H̄
(2)
m,n,t. Also, we provided two new test statistics for testing expo-

nentiality with the Type-II censored data. The first one was quite powerful when
compared to the existing goodness of fit tests proposed against the alternatives
with monotone decreasing hazard functions. Moreover, the second one showed bet-
ter powers than the available test statistics against the alternatives with monotone
increasing hazard functions.

This work has the potential to be applied in the context of censored data and
goodness of fit tests. This paper can elaborate further researches by extending such
modifications for other censoring schemes such as progressive censoring schemes.
Finally, this area of research can be expanded by considering other distributions
besides the exponential distribution such as Pareto, Log normal and Weibull distri-
butions.
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Table 5: Monte Carlo biases and root of mean square errors (RMSE) for exponential distribution

Bias RMSE

n r H̄
(1)
m,n,r H̄

(2)
m,n,r H̄m,n,r H̄

(1)
m,n,r H̄

(2)
m,n,r H̄m,n,r

30 15 -0.1626 -0.0100 -0.1370 0.2159 0.1426 0.1953
16 -0.1691 -0.0102 -0.1508 0.2245 0.1478 0.2078
17 -0.1717 -0.0035 -0.1521 0.2284 0.1511 0.2108
18 -0.1760 0.0019 -0.1540 0.2348 0.1557 0.2156
19 -0.1788 0.0095 -0.1543 0.2386 0.1594 0.2176
20 -0.1902 0.0150 -0.1579 0.2494 0.1638 0.2233
21 -0.1957 0.0189 -0.1616 0.2565 0.1702 0.2294
22 -0.1954 0.0316 -0.1588 0.2575 0.1752 0.2291
23 -0.2019 0.0384 -0.1630 0.2660 0.1821 0.2359
24 -0.2042 0.0529 -0.1626 0.2683 0.1882 0.2363
25 -0.2145 0.0613 -0.1687 0.2792 0.1960 0.2442
26 -0.2169 0.0843 -0.1665 0.2823 0.2106 0.2440
27 -0.2300 0.0980 -0.1745 0.2941 0.2204 0.2514
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Figure 5: Empirical density functions of T
(1)
m,n,r, T

(2)
m,n,r and Tm,n,r based on 10000 simulations

(a) n = 40 and r = 25 (b) n = 50 and r = 35 under the exponential hypothesis.
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