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Abstract

We compute the expected value of the Kullback-Leibler divergence to
various fundamental statistical models with respect to canonical priors
on the probability simplex. This yields information about the scaling of
model approximation errors depending on the cardinality of the sample
spaces, and it is a useful reference for more complicated statistical models
such as restricted Boltzmann machines.

1 Introduction

Let p, q be probability distributions on a finite set X . The information diver-
gence or relative entropy or Kullback Leibler divergence

D(p‖q) =
∑
i∈X

pi log
pi
qi

is a natural measure of dissimilarity between probability distributions that de-
scribes how easy it is to distinguish two distributions p and q by means of statis-
tical experiments. In this paper we use the natural logarithm. The divergence is
related to the log-likelihood: If p is an empirical distribution, summarizing the
outcome of n statistical experiments, then the log-likelihood of a distribution q
equals −n(D(p‖q) + H(p)). Hence, finding a maximum likelihood estimator q
within some set of probability distributions M is the same as finding a mini-
mizer of the divergence D(p‖q) with q restricted to M. The value of D(p‖q)
quantifies how well, or bad, the data can be described by q (and by M).

Assume that Mtrue is a set of probability distributions for which we do not
have a simple mathematical description. We are interested in finding a model
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2 G. MONTÚFAR, J. RAUH

M which does not necessarily include all distributions from Mtrue, but which
approximates them relatively well. What error magnitude should we accept
from a good model?

To assess the expressive power of a model M, we study properties of the
function p 7→ D(p‖M) = infq∈MD(p‖q). For example, the problem of finding
the maximizers of this function corresponds to a worst case analysis. The prob-
lem of maximizing the divergence from a statistical model was first posed, with
different motivation, in [1]. Since then, a lot of progress has been made, notably
in the case where M is an exponential family [5, 4, 8], but also for discrete
mixture models and restricted Boltzmann machines [6].

This worst case bound is not the only aspect that decides whether a given
model is suited, but also the expected performance and expected error are of
interest. This leads to the mathematical problem of computing the expectation
value

〈D(p‖M)〉 =

∫
∆

D(p‖M)ψ(p) dp,

where p is drawn from a probability density ψ on the probability simplex, called
the prior distribution, or prior for short. The correct prior depends on the
concrete problem at hand and is often difficult to determine. Given certain
conditions on the prior, we also ask, how different is the worst case from the
average case, and how much can this behavior be influenced by the choice of
the model? We focus on the case that the prior ψ is the uniform distribution
or a Dirichlet distribution. It turns out that in most cases the worst-case error
is unbounded (as the number of elementary events grows), while the expected
error is bounded. Our analysis leads to integrals that have been considered in a
Bayesian framework for function estimation in [10], and we can take adventage
of the tools developed there.

Our first observation is that, if ψ is the uniform prior, then the expected
divergence from the uniform distribution is a monotone function of the sys-
tem size N (the number of elementary events) and converges to the constant
1−γ ≈ 0.4228 ≈ 0.6099 log(2) as N →∞, where γ is the Euler-Mascheroni con-
stant. Many natural statistical models contain the uniform distribution, and the
expected divergence from such models is then bounded by the same constant.
In comparison, for randomly chosen distributions p and q, the expected diver-
gence 〈D(p‖q)〉p,q equals 1− 1/N . We show, for a class of models including the
independence models, partition models, mixtures of product distributions with
disjoint supports [6], and decomposable hierarchical models, that the expected
divergence actually has the same limit 1− γ, provided that the models remain
small with respect to N (this is the case in most applications). In contrast, the
maximum of the divergence from these models is at least log(N/(dimM+ 1)),
see [9]. For reasonable choices of the parameters, the results for Dirichlet priors
are similar.

In Section 2 we define the models that we are interested in and collect basic
properties of the Dirichlet priors. Section 3 contains analytical results for expec-
tation values of entropies and divergences from these models. The results are
interpreted in Section 4. Proofs and calculations are deferred to Appendix A.
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2 Preliminaries

2.1 Models from statistics and machine learning

We consider random variables on a finite set of elementary events X , |X | = N .
The set of probability distributions on X is the (N − 1)-simplex ∆N−1 ⊂ RN .
We call any subsetM⊆ ∆N−1 that can be densely parametrized a model. The
support sets of a model M are the support sets supp(p) = {i ∈ X | pi > 0} of
points p = (pi)i∈X in M.

The k-mixture of a modelM is the union of all convex combinations of any k
of its points, Mk := {

∑m
i=1 λip

(i) |λi ≥ 0,
∑
i λi = 1, p(i) ∈M}. The k-mixture

with disjoint supports is the subset of Mk defined by

Mk
0 =

{
k∑
i=1

λip
(i) ∈Mk

∣∣∣∣∣ supp(p(i)) ∩ supp(p(j)) = ∅ for all i 6= j

}
.

Let % = {A1, . . . , AK} be a partition of X . The partition modelM% consists
of all p ∈ ∆N−1 that satisfy pi = pj whenever i, j belong to the same block
of %. Partition models are closures of convex exponential families with uniform
reference measure. The closure of an arbitrary convex exponential family is of
the form (see [4])

M%,ν =

{
K∑
k

λk
1Ak

ν

ν(Ak)

∣∣∣∣∣λk ≥ 0,

K∑
k

λk = 1

}
,

where ν : X → (0,∞) is a positive function on X , called reference measure,
and 1A is the indicator function of A. Note that all measures ν with equal
conditional distributions ν(·|Ak) yield the same model. In fact, M%,ν equals
the K-mixture of the set {ν(·|Ak) : k = 1, . . . ,K}.

For a composite system of n variables, X = X1×· · ·×Xn, |Xi| = Ni for all i.
A product distribution is a distribution of the form

p(x1, . . . , xn) = p1(x1) · · · pn(xn),

where pi ∈ ∆Ni−1. The independence model is the set of all product distribu-
tions on a composite system. The support sets of the independence model are
the sets of the form A = Y1 × · · · × Yn with Yi ⊆ Xi for each i.

Let S be a simplicial complex on {0, . . . , n}. The hierarchical model MS
consists of all probability distributions that have a factorization of the form
p(x) =

∏
S∈S ΦS(x), where ΦS is a positive function that depends only on the

S-components of x. The model MS is called reducible if there exist simplicial
subcomplexes S1,S2 ⊂ S such that S1∪S2 = S and S1∩S2 is a simplex. In this
case, the set (

⋃
Y∈S1 Y) ∩ (

⋃
Y∈S2 Y) is called a separator. MS is decomposable

if it can be iteratively reduced into simplices. The reduction can be described
by a junction tree (see [2]), which is a tree (V,E) with vertex set the set of
facets of S and such that the following holds: If (X ,Y) is an edge, then X ∩ Y
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is a separator, and if this edge is removed from the tree, then the two resulting
trees are junction trees of two subcomplexes S1 and S2 separated by X ∩Y. In
general the junction tree is not unique, but the multi-set of separators is unique.
The independence model is an example of a decomposable model.

For most models it is not possible to find a closed formula for D(·‖M), since
there is no closed formula for arginfq∈MD(p‖q). However, for some of the above
mentioned models a closed formula does exist:

The divergence from the independence model is called multi-information and
satisfies

MI(X1, . . . , Xn) = D(p‖M1) = −H(X1, . . . , Xn) +

n∑
k=1

H(Xk). (1)

If n = 2 it is also called the mutual information of X1 and X2. The divergence
from M%,ν equals (see [4, eq. (1)])

D(p‖M%,ν) = D(p‖
K∑
k=1

p(Ak)ν(x|Ak)) . (2)

For a decomposable model MS with junction tree (V,E),

D(p‖MS) =
∑
S∈V

Hp(XS)−
∑
S∈E

Hp(XS)−H(p). (3)

Here, Hp(XS) denotes the joint entropy of the random variables {Xi}i∈S un-
der p.

2.2 Dirichlet prior

The Dirichlet distribution (or Dirichlet prior) with concentration parameter α =
(α1, . . . , αN ), αi > 0 for all i, is the probability distribution on ∆N−1 defined

by Dirα(p) := 1√
N

Γ(
∑N

i=1 αi)∏N
i=1 Γ(αi)

∏N
i=1 p

αi−1
i for p = (p1, . . . , pN ) ∈ ∆N−1, where Γ

is the gamma function. We write α =
∑N
i=1 αi.

We will highlight especially the symmetric case (α1, . . . , αN ) = (a, . . . , a),
which assigns no preferences to the elementary events. Observe that Dir(1,...,1)

is the uniform probability density on ∆N−1. Furthermore, it is known that
lima→0 Dir(a,...,a) is uniformly concentrated in the point measures (it assigns
mass 1/N to p = δx, x ∈ X ), while lima→∞Dir(a,...,a) is concentrated in the
uniform distribution u := (1/N, . . . , 1/N). In general, if α ∈ ∆N−1, then
limκ→∞Dirκα is the Dirac delta concentrated on α.

The Dirichlet distributions satisfy the following aggregation property: Con-
sider a partition % = {A1, . . . , AK} of X = {1, . . . , N}. If p = (p1, . . . , pN ) ∼
Dir(α1,...,αN ), then (

∑
i∈A1

pi, . . . ,
∑
i∈AK

pi) ∼ Dir(
∑

i∈A1
αi,...,

∑
i∈AK

αi), see,

e.g., [3]. We write α% = (α%1, . . . , α
%
K), α%k =

∑
i∈Ak

αi for the concentra-
tion parameter induced by the partition %. The aggregation property is useful
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when treating marginals of composite systems. Given a composite system with
X = X1 × · · · × Xn, |X | = N , Xk = {1, . . . , Nk} we write αk = (αk1 , . . . , α

k
Nk

),

αkj =
∑
x∈X : xk=j αx for the concentration parameter of the Dirichlet distri-

bution induced on the Xk-marginal (
∑
x∈X : xk=1 p(x), . . . ,

∑
x∈X : xk=Nk

p(x)).

Note that
∑Nk

j=1 α
k
j = α, and moreover, if αx = 1 for all x ∈ X , then αkj = N/Nk

for j = 1, . . . , Nk. For example, if p is drawn uniformly from the simplex of
joint distributions ∆N−1, then the sampled marginal probability distribution
p(yk) =

∑
x∈X : xk=yk

p(x), yk ∈ Xk is Dirichlet distributed in ∆Nk−1 with con-

centration parameter αk = (N/Nk, . . . , N/Nk).

3 Expected entropies and divergences

For any k ∈ N let h(k) = 1 + 1
2 + · · · + 1

k be the kth harmonic number. It is
known that for large k,

h(k) = log(k) + γ +O(
1

k
),

where γ ≈ 0.57721 is the Euler-Mascheroni constant. Moreover, h(k)− log(k) is
strictly positive and decreases monotonically. We also need the natural analytic
extension of h to the non-negative reals given by h(z) = ∂z log(Γ(z + 1)) + γ,
where Γ is the gamma function.

The following theorems present formulas for expectation values of diver-
gences from models as well as asymptotic results. The results are based on
explicit solutions of the integrals, as done by [10]. The proofs are contained in
Appendix A.

Theorem 1. If p ∼ Dirα, then:

• 〈H(p)〉 = h(α)−
∑N
i=1

αi

α h(αi)

• 〈D(p‖u)〉 = log(N)− h(α) +
∑N
i=1

αi

α h(αi)

In the symmetric case (α1, . . . , αN ) = (a, . . . , a),

• 〈H(p)〉 = h(Na)− h(a)

=


log(Na) + γ − h(a) +O(1/Na) for large N and const. a

log(N) +O(1/a) for large a and arb. N

O(aN) as a→ 0 with bounded N

h(c) +O(a) as a→ 0 with aN = c

• 〈D(p‖u)〉 = log(N)− h(aN) + h(a)

=


h(a)− log(a)− γ +O(1/Na) for large N and const. a

O(1/a) for large a and arb. N

log(N) +O(aN) as a→ 0 with bounded N

log(N)− h(c) +O(a) as a→ 0 with aN = c.
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The maximum of the (Shannon) entropy H(p) = −
∑
i pi log pi on the prob-

ability simplex ∆N−1 is attained at the uniform distribution u, which satisfies
H(u) = log(N). For large N or a, the average entropy is close to the maximum
value. It follows that in these cases the expected divergence from the uniform
distribution u remains bounded. The fact that the expected entropy is close to
the maximal entropy makes it difficult to estimate the entropy. See [7] for a
discussion and possible solutions.

Theorem 2.

• For any q ∈ ∆N−1, when p ∼ Dirα, then

〈D(p‖q)〉 =

N∑
i=1

αi
α

(h(αi)− log(qi))− h(α) .

If α = (a, . . . , a), then this becomes

〈D(p‖q)〉 = log(N)− h(aN) + h(a) +D(q‖u) .

When p ∼ Dirα and q ∼ Dirα̃, then

• 〈
∑
i∈X pi log(qi)〉 =

∑N
i=1

αi

α h(α̃i − 1)− h(α̃− 1),

• 〈D(p‖q)〉 = −
∑N
i=1

αi

α (h(α̃i − 1)− h(αi)) + h(α̃− 1)− h(α).

If α = α̃, then 〈D(p‖q)〉 = N−1
α .

• For any q ∈ ∆N−1, when p is drawn uniformly from ∆N−1, then

〈D(p‖q)〉 = −
N∑
i=1

1

N
log(qi)− h(N) + 1 = D(u‖q) + 1− γ +O(1/N) .

The divergence is unbounded in ∆N−1 ×∆N−1, since D(p‖q) = +∞ if p is
not absolutely continuous with respect to q. Nevertheless, if p, q ∼ Dirα, then in
the limit N →∞ the expected divergence 〈D(p‖q)〉 remains bounded, provided
1
N

∑N
i=1 αi = α/N is bounded from below by a positive constant.

Consider a sequence of distributions qN ∈ ∆N−1, N ∈ N. As N → ∞ the
expected divergence 〈D(·‖qN )〉 with respect to the uniform prior is bounded
from above by 1 − γ + ε, ε > 0 if and only if lim supN→∞D(u‖qN ) ≤ ε. If
qx ≥ 1

N e
−ε for all x ∈ X , then D(u‖q) ≤ ε. Therefore, the expected divergence

〈D(·‖qN )〉 is unbounded only if the sequence qN accumulates at the boundary
of the probability simplex, and limN→∞〈D(p‖qN )〉 ≤ 1− γ + ε whenever qN is
in the subsimplex conv{(1− e−ε)δx + e−εu}x∈X . The relative Lebesgue volume
of this subsimplex in ∆N−1 is (1− e−ε)N−1.

Theorem 3. Consider a composite system of n random variables X1, . . . , Xn

with joint probability distribution p. If p ∼ Dirα, then
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• 〈H(Xk)〉 = h(α)−
∑Nk

j=1

αk
j

α h(αkj ),

• 〈MI(X1, . . . , Xn)〉 = (n− 1)h(α) +
N∑
i=1

αi

α h(αi)−
n∑
k=1

Nk∑
j=1

αk
j

α h(αkj ).

If (α1, . . . , αN ) = (a, . . . , a) (symmetric Dirichlet),

• 〈H(Xk)〉 = h(Na)− h( NNk
a),

• 〈MI(X1, . . . , Xn)〉 = (n− 1)h(Na) + h(a)−
∑n
k=1 h( NNk

a).

If, moreover, Na/Nk is large for all k (this happens, for example, when a re-
mains bounded from below by some ε > 0 and (i) all Nk become large, or (ii) all
Nk are bounded and n becomes large), then:

• 〈H(Xk)〉 = log(Nk) +O(Nk/Na),

• 〈MI(X1, . . . , Xn)〉 = h(a)− log(a)− γ +O(nmaxkNk/Na).

If Na/Nk is large for all k, then the expected entropy of a subsystem is also
close to its maximum, and hence the expected multi-information is bounded.
This follows also from the fact that the independence model contains the uniform
distribution, and hence D(p‖M1) ≤ D(p‖u).

Theorem 4. Let % = {A1, . . . , AK} be a partition of X into sets of cardinalities
|Ak| = Lk, and let ν be a reference measure on X . If p ∼ Dirα, then

〈D(p‖M%,ν)〉 =

N∑
i=1

αi
α

(h(αi)− log(νi))−
K∑
k=1

α%k
α

(h(α%k)− log(ν(Ak))),

where α%k =
∑
i∈Ak

αi. If α = (a, . . . , a), and (wlog) ν(Ak) = Lk/N ,

〈D(p‖M%,ν)〉 = h(a)−
K∑
k=1

Lk
N

(h(Lka)− log(Lk)) +D(u‖ν),

If furthermore N � K, then

〈D(p‖M%,ν)〉 = h(a)− log(a)− γ +D(u‖ν) +O(1/N).

Partition models (with ν = u) also contain the uniform distribution, and
therefore the expected divergence is again bounded. In contrast, the maximal
divergence is maxp∈∆N−1

D(p‖M%) = maxk log(Nk). The result for mixtures of
product distributions of disjoint supports is similar:

Theorem 5. Let X = X1 × · · · × Xn be the joint state space of n variables,
|X | = N , |Xk| = Nk. Let % = {A1, . . . , AK} be a partition of X into support
sets of the independence model of cardinalities |Ak| = Lk, and let MK

1,% be

the model containing all mixtures of K product distributions p(1), . . . , p(K) with
supp(p(k)) ⊆ Ak.
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• If p ∼ Dir(α1,...,αN ), then the expected divergence toMK
1,% is

〈D(p‖MK
1,%)〉 =

N∑
i=1

αi
α

(h(αi)− h(α)) +

K∑
k=1

(|Gk| − 1)
α%k
α

(h(α%k)− h(α))

−
K∑
k=1

∑
j∈Gk

∑
xj∈Xj,k

αk,xj

α
(h(αk,xj )− h(α)),

where α%k =
∑
x∈Ak

αx, α
k,xj =

∑
y∈Ak : yj=xj

αy, and Gk ⊂ [n] is the set
of variables that take more than one value in the block Ak.

• Assume that the system is homogeneous |Xi| = N1 for all i and that, for
each k, Ak is a cylinder set of cardinality |Ak| = Nmk

1 , where mk = |Gk|.
If (α1, . . . , αN ) = (a, . . . , a), then

〈D(p‖MK
1,%)〉 = h(a) +

K∑
k=1

Nmk−n
1 ((mk − 1)h(Nmk

1 a)−mkh(Nmk−1
1 a)).

• If
N

mk−1

1 a
mk

is large for all k, then

〈D(p‖MK
1,%)〉 = h(a)− log(a)− γ +O

(
max
k

mk

Nmk−1
1 a

)
.

The k-mixture of binary product distributions with disjoint supports is con-
tained in the restricted Boltzmann machine model with k − 1 hidden nodes,
see [6]. Hence Theorem 5 gives bounds for the expected divergence to these
models.

Theorem 6. For a decomposable model MS with junction tree (V,E), if p ∼
Dir(α1,...,αN ), then

〈D(p‖MS)〉 = −
∑
S∈V

∑
j∈XS

αSj
α
h(αSj ) +

∑
S∈E

∑
j∈XS

αSj
α
h(αSj )

+ (|V | − |E| − 1)h(α) +

N∑
i=1

αi
α
h(αi),

where αSj =
∑
x : xS=j αx for j ∈ XS. If p is drawn uniformly at random, then

〈D(p‖MS)〉 =
∑
S∈V

(h(N)− h(N/NS))−
∑
S∈E

(h(N)− h(N/NS))− h(N) + 1.

If N/NS is large for all S ∈ V ∪ E, then

〈D(p‖MS)〉 = 1− γ +O
(

max
k

mk

Nmk−1
1 a

)
.
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4 Discussion

In the previous section we have shown that the values of 〈D(p‖M)〉 are very
similar for different models M in the limit of large N , provided the Dirichlet
parameters αi remain bounded and the model remains “small.” In particular,
if αi = 1 for all i, then 〈D(p‖M)〉 ≈ 1− γ holds for large N and M = {u}, for
the independence model, for decomposable models, for partition models and for
mixtures of product distributions on disjoint supports (for reasonable values of
the model parameters Nk and Lk). Some of these models are contained in each
other, but nevertheless, the expected divergences do not differ too much. The
general phenomenon seems to be the following:

• For a low-dimensional model M ⊂ ∆N−1 and large N , the expected di-
vergence is 〈D(p‖M)〉 ≈ 1− γ, when p is uniformly distributed on ∆N−1.

Of course, this is not a mathematical statement, because it is very easy to con-
struct counter-examples: Using space-filling curves, it is possible to construct
one-dimensional models M with an arbitrary low value of 〈D(p‖M)〉 (for arbi-
trary N). However, we expect that the statement is true for most models that
appear in practice. In particular, we conjecture that the statement is true for
restricted Boltzmann machines.

In Theorem 4, if α = (a, . . . , a), then the expected divergence from M%,ν

is minimal, if and only if ν = u. In this case M%,ν is a partition model. We
conjecture that partition models are optimal among all (closures of) exponential
families in the following sense:

• For any exponential family E there is a partition model M of the same
dimension such that 〈D(p‖E)〉 ≥ 〈D(p‖M)〉.

The statement is, of course, true for zero-dimensional exponential families,
i.e., models that consist of a single distribution. The conjecture is related to the
following conjecture from [9]:

• For any exponential family E there is a partition model M of the same
dimension such that maxp∈∆N−1

D(p‖E) ≥ maxp∈∆N−1
D(p‖M).

Our findings may be biased by the fact that all the models treated in Sec-
tion 3 are examples of exponential families. As a slight generalization we did
computer experiments with a family of models which are not exponential fami-
lies, but unions of exponential families.

Let Υ be a family of partitions, and let MΥ =
⋃
%∈ΥM% be the union of

the corresponding partition models. Our interest in these models comes from
the fact that such models are contained in more difficult models with hidden
variables, like restricted Boltzmann machines and deep belief networks. Figure 1
compares a single partition model on three states with the union of all partition
models for bipartitions.
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D(p‖M%) D(p‖M%)
∏
pa−1
i

D(p‖
⋃

%M%) D(p‖
⋃

%M%)
∏
pa−1
i

Figure 1: From left to right: Divergence to a partition model with two blocks on
X = {1, 2, 3}. Same, multiplied by a symmetric Dirichlet density with parameter
a = 5. Divergence to the union of the three partition models with two blocks on
X = {1, 2, 3}. Same, multiplied by the symmetric Dirichlet density with a = 5.
The shading is scaled on each image individually.

For a given N and 0 ≤ k ≤ N/2 let Υk be the set of all partitions of
{1, . . . , N} into two blocks of cardinalities k and N−k. For different values of a
andN we computedD(p‖MΥ1

) for 10 000 distributions sampled from Dir(a,...,a),
D(p‖MΥ2

) for 20 000 distributions sampled from Dir(a,...,a), and D(p‖MΥN/2
)

for 20 000 distributions sampled from the uniform prior. The results are shown
in Figure 2.

In the first two cases the expected divergence seems to tend to the asymptotic
value of 〈D(p‖u)〉. Observe that 〈D(p‖MΥ1

)〉 ≥ 〈D(p‖MΥ2
)〉, unless N = 4.

Intuitively this makes sense for two reasons: First, for %1 ∈ Υ1 and %2 ∈ Υ2,
using Theorem 4 one can show that 〈D(p‖M%1)〉 ≥ 〈D(p‖M%2)〉; and second,
the cardinality of Υ2 is much larger than the cardinality of Υ1 if N ≥ 4. For
small values of N this intuition may not always be correct. For example, for
N = 8, the expected divergence from MΥN/2

is larger than the one from MΥ2
,

although in this case |ΥN/2| = 35 and |Υ2| = 28, see Figure 2 right.

For N = 22 we computed D(p‖MΥN/2
) for 500 uniformly sampled distri-

butions (in this case |ΥN/2| = 352 716), and found 〈D(p‖MΥN/2
)〉 ≈ 0.1442

(with variance 0.0032), which is well below the corresponding expectation val-
ues for MΥ1

and MΥ2
. We expect that, for large N , it is possible to make

〈D(p‖MΥk
)〉 much smaller than 〈D(p‖u)〉 by choosing k ≈ N/2. In this case,

the model MΥk
has (Hausdorff) dimension only one, but it is a union of expo-

nentially many one-dimensional exponential families.

A Computations and proofs

The analytic formulas in Theorem 1 are [10, Theorem 7]. The asymptotic
expansions are direct.

The proof of Theorem 2 makes use of the following Lemma, see [10, Theo-
rem 3]:
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Figure 2: Expected divergence (numerically) from various unions of bipartition
models with respect to Dir(a,...,a), for different system sizes N and values of the
concentration parameter a. Left: Union of all bipartition models with blocks of
cardinalities 1 and (N − 1). The y-ticks are located at h(a)− log(a)− γ, which
are the limits of the expected divergence from single bipartition models, see
Theorem 4. Middle: Union of all bipartition models with blocks of cardinalities
2 and (N − 2). The peak at N = 4 is caused by the fact that there are only
3 different partitions when N = 4, instead of

(
N
2

)
. The dashed plot indicates

corresponding results from the left figure. Right: Comparison of the expected
divergence from the two previous models and the union of all

(
N
N/2

)
/2 bipartition

models with two blocks of cardinalities N/2, for a = 1 and even N .

Lemma 7. Let {A1, . . . , AK} be a partition of X = {1, . . . , N}, let α1, . . . , αN
be positive reals, and let αk =

∑
i∈Ak

αi for k = 1, . . . ,K. Then∫
∆N−1

( ∑
i∈Ak

pi
)

log
( ∑
i∈Ak

pi
) N∏
i=1

pαi−1
i dp =

∫
∆K−1

p∗k log(p∗k)

K∏
k′=1

(p∗k′)
αk′−1 dp∗

=
αk
∏K
k′=1 Γ(αk

′
)

Γ(α+ 1)
(h(αk)− h(α)) .

Proof of Theorem 2. The first statement follows from∫
∆N−1

log(qi)pi
∏
i

pni
i dp

/∫
∆N−1

∏
i

pni
i dp = log(qi)

(ni + 1)

(N + n)

and D(p‖q) = −H(p)−
∑
i pi log(qi). By Lemma 7,∫

∆N−1

log(qi)
∏
i

qni
i dq

/∫
∆N−1

∏
i

qni
i dq = h(ni)− h(N + n− 1) ,

and the remaining statements follow.

Theorem 3 is a corollary to Theorem 1, the aggregation property of the
Dirichlet priors and the formula (1) for the multi-information. Theorem 4 follows
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from (2), and Theorem 6 follows from (3). Similarly, Theorem 5 follows from
the equality

D(p‖M0) =

K∑
i=1

∑
x∈Ai

p(x) log
p(x)p(Ai)

n−1∏n
j=1(

∑
y∈Ai:yj=xj

p(y))
,

which can be derived as follows: The unique solution q ∈ arginfq′∈MK
1,%
D(p‖q′)

satisfies p(Ai) = q(Ai), and q(·|Ai) ∈ arginfq′∈M1
D(p(·‖Ai)‖q′).
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