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Abstract
There has been an explosion of interest in statistical models for analyzing network 
data, and considerable interest in the class of exponential random graph (ERG) 
models, especially in connection with difficulties in computing maximum likelihood 
estimates. The issues associated with these difficulties relate to the broader 
structure of discrete exponential families. This paper re-examines the issues in two 
parts. First we consider the closure of $k$-dimensional exponential families of 
distribution with discrete base measure and polyhedral convex support $mathrm
{P}$. We show that the normal fan of $mathrm{P}$ is a geometric object that 
plays a fundamental role in deriving the statistical and geometric properties of the 
corresponding extended exponential families. We discuss its relevance to maximum 
likelihood estimation, both from a theoretical and computational standpoint. 
Second, we apply our results to the analysis of ERG models. By means of a detailed 
example, we provide some characterization of the properties of ERG models, and, in 
particular, of certain behaviors of ERG models known as degeneracy.
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