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Abstract

The false discovery rate (FDR) and false nondiscovery rate (FNDR) have received
considerable attention in the literature on multiple testing. These performance
measures are also appropriate for classification, and in this work we develop
generalization error analyses for FDR and FNDR when learning a classifier from
labeled training data. Unlike more conventional classification performance
measures, the empirical FDR and FNDR are not binomial random variables but rather
a ratio of binomials, which introduces challenges not present in conventional
formulations of the classification problem. We develop distribution-free uniform
deviation bounds and apply these to obtain finite sample bounds and strong
universal consistency. We also present a simulation study demonstrating the merits
of variance-based bounds, which we also develop. In the context of multiple testing
with FDR/FNDR, our framework may be viewed as a way to leverage training data
to achieve distribution free, asymptotically optimal inference under the random
effects model.
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