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Abstract

The discovering of low-dimensional manifolds in high-dimensional data is one of the
main goals in manifold learning. We propose a new approach to identify the
effective dimension (intrinsic dimension) of low-dimensional manifolds. The scale
space viewpoint is the key to our approach enabling us to meet the challenge of
noisy data. Our approach finds the effective dimensionality of the data over all scale
without any prior knowledge. It has better performance compared with other
methods especially in the presence of relatively large noise and is computationally
efficient.
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