

Books Conferences News About Us Job: Home Journals Home > Journal > Earth & Environmental Sciences > JWARP Open Special Issues Indexing View Papers Aims & Scope Editorial Board Guideline Article Processing Charges Published Special Issues JWARP> Vol.4 No.6, June 2012 • Special Issues Guideline OPEN ACCESS JWARP Subscription Biological Removal of Nitrogen Compounds at a Coke-Oven Effluent Stream Most popular papers in JWARP PDF (Size: 279KB) PP. 400-406 DOI: 10.4236/jwarp.2012.46046 **About JWARP News** Author(s) Stig Morling, Niclas Åstrand, Ann-Kristin Lidar Frequently Asked Questions **ABSTRACT** The steel company SSAB in Oxelösund, Sweden operates a coke-oven plant and has since a long time Recommend to Peers operated an activated sludge plant for treatment of effluent water. Along with more stringent requirements on discharge quality, especially focusing on nitrogen compounds and a new consent value for total nitrogen Recommend to Library discharge (< 30 ppm of total N) the company decided to operate a pilot plant facility to investigate two major issues: 1) To define the conditions and restrictions for nitrification of ammonia nitrogen in the water; Contact Us 2) To find out how efficiently a denitrification would perform. In order to find answers to these questions SSAB hired a pilot plant for testing. The test facility is based on a single sludge activated sludge reactor system for biological nutrient removal, with a reactor volume of 3.8 m3. After a test period of 5 months it Downloads: 402,246 was possible to draw reliable conclusions regarding the performance. The untreated wastewater has a high content of total nitrogen, around 240 ppm. The major nitrogen part is ammonia nitrogen, but an important Visits: 1,009,888 fraction is found as thiocyanate nitrogen. The following main conclusions were drawn from the test operation: · It was found to be crucial that the solids retention time (SRT) was kept at a sufficiently high Sponsors, Associates, ai level. During the successful operation the SRT was in the range of 40 - 50 days; It is desirable to have an equalization basin upstream the main biological reactor to meet short time peak loads, defined as both flow Links >> and pollution; The major toxic risks for the biological process were high thiocyanate and ammonia

KEYWORDS

biological transformation.

Single Stage Activated Sludge; Pilot Plant; Nitrification; Coke-Oven Plant; Toxicity Risks; Solids Retention Time

concentrations in the raw wastewater; · The system showed however a good microbiological capacity to acclimatize to the prevailing conditions after the needed time; · The tests did not include an optimization of the oxygen supply with respect to nitrification; however it was evident that the oxygen level was sufficient to maintain a complete nitrification at normal operating conditions; · Once the nitrification was established it was also possible to reach a high degree of denitrification—as long as an external carbon source was applied; · It was found that both the cyanide nitrogen and especially the thiocyanate nitrogen were reduced by the process. The cyanide reduction is probably related both to precipitation by ferrous ions and

Cite this paper

S. Morling, N. Åstrand and A. Lidar, "Biological Removal of Nitrogen Compounds at a Coke-Oven Effluent Stream," *Journal of Water Resource and Protection*, Vol. 4 No. 6, 2012, pp. 400-406. doi: 10.4236/jwarp.2012.46046.

References

- [1] P. B. Altringer, R. H. Lien and B. E. Dinsdale, "Advances in Biological Cyanide Detoxification," Randol Gold Forum, Vancouver '92, Vancouver, March 1992, pp. 395-400.
- [2] Y. M. Kim, D. Park, D. S. Lee and J. M. Park, "Instability of Biological Nitrogen Removal in a Cokes Wastewater Treatment Facility during Summer," Journal of Hazardous Materials, Vol. 141, No. 1, 2007, pp. 27-32. doi:10.1016/j.jhazmat.2006.06.074
- [3] C. A. Papadimitriou, X. Dabou, P. Samaras and G. P. Sakellaropoulos, "Coke Oven Wastewater Treatment by Two Activated Sludge Systems," Global NEST Journal, Vol. 8, No. 1, 2006, pp. 16-22.

- [4] M. A. Dytczak, K. L. Londry and J. A. Oleszkiewicz, "Activated Sludge Operational Regime Has Significant Impact on the Type of Nitrifying Community and Its Nitrification Rates," Water Research, Vol. 42, No. 8-9, 2008, pp. 2320-2328. doi:10.1016/j.watres.2007.12.018
- [5] C. A. Du Plessis, P. Barnard, R. M. Muhlbauer and K. Naldrett, "Empirical Model for the Autotrophic Biodegradation of Thiocyanate in an Activated Sludge Reactor," Letters in Applied Microbiology, Vol. 32, No. 2, 2001, pp. 103-107.
- [6] D. J. Richards and W. K. Shieh, "Anoxic-Oxic Activated-Sludge on Cyanides and Phenols," Biotechnology and Bioengineering, Vol. 33, No. 1, 2004, pp. 32-38.
- [7] C. Staib and P. Lant, "Thiocyanate Degradation during Activated Sludge Treatment of Cock-Ovens Wastewater," Biochemical Engineering Journal, Vol. 34, No. 2, 2007, pp. 122-130. doi:10.1016/j.bej.2006.11.029
- [8] S. Suntud, C. Kanidta and S. Pattama, "Some Properties of a sequencing Batch Reactor for