Scientific Research Open Access

Search Keywords, Title, Author, ISBN, ISSN

Home Journals Books Conferences News	About Us	Job	
Home > Journal > Earth & Environmental Sciences > JWARP	Open Spec	ial Issues	
Indexing View Papers Aims & Scope Editorial Board Guideline Article Processing Charges	Published Special Issues		
JWARP> Vol.1 No.4, October 2009	Special Issues Guideline		
OPEN GACCESS Multi Objective Multireservoir Optimization in Fuzzy Environment for River Sub Basin Development and Management PDF (Size: 420KB) PP. 271-280 DOI: 10.4236/jwarp.2009.14033 Author(s)		JWARP Subscription	
		Most popular papers in JWARP	
		About JWARP News	
D. G. REGULWAR, P. Anand RAJ	Frequently Asked Questions		
ABSTRACT In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT)	Recommend to Peers		
model for the present study is developed in 'C' Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-	Recommend to Library		
ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run	Contact Us		
for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-	Downloads:	402,262	
harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of	Visits:	1,011,064	
satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir.	Sponsors, Associates, a		

KEYWORDS

Optimization, Multi Objective Analysis, Multireservoir, Genetic Algorithms, Fuzzy Logic, Reservoir Operation

Cite this paper

D. REGULWAR and P. RAJ, "Multi Objective Multireservoir Optimization in Fuzzy Environment for River Sub Basin Development and Management," Journal of Water Resource and Protection, Vol. 1 No. 4, 2009, pp. 271-280. doi: 10.4236/jwarp.2009.14033.

References

- R. A. Wurbs, "Modelling and analysis of reservoir system operation," NJ: Prentice Hall PTR, Prentice-[1] Hall Inc., 1996.
- W. W-G. Yeh, " Reservoir management and operations models: A state-of-the-art review," Water [2] Resour. Res., Vol. 21, No. 12, pp. 1797-1818, 1985.
- J. W. Labadie, " Optimal operation of multireservoir sys-tems: State-of-the-art review," J. Water [3] Resour. Plan. and Manage., Vol. 130, No. 2, pp. 93-111, 2004.
- J. H. Holland, " Adaptation in natural and artificial sys-tems," University of Michiyan Press annarbov, [4] Cam-bridge Mass, 1975.
- D. E. Goldberg, " Genetic algorithms in search, optimiza-tion and machine learning," Addison-Wesley [5] Publishing Co., Inc., Reading MA, 1989.
- R. Oliveira and D. P. Loucks, " Operating rules for multi-reservoir systems," Water Resour. Res., Vol. [6] 33, No. 4, pp. 839-852, 1997.
- R. Wardlaw and M. Sharif, " Evaluation of genetic algo-rithm for optimal reservoir system [7] operation," J. Water Resour. Plan. and Manage., Vol. 125, No. 1, pp. 25-33, 1999.

Sponsors, A	ssociates,	а
_inks >>		

- [8] M. Sharif and R. Wardlaw, "Multireservoir systems op-timization using genetic algorithms: Case study," J. Compu. in Civil Engrg., Vol. 14, No. 4, pp. 255–263, 2000.
- [9] L. C. Chang and C. C. Yang, "Optimizing the rule curves for multi-reservoir operations using a genetic algorithm and HEC-5," J. Hydrosci. and Hydra. Engrg., Vol. 20, No. 1, pp. 59– 75, 2002.
- [10] K. Srinivasa Raju and D. Nagesh Kumar, " Irrigation planning using genetic algorithms," Water Resour. Man-age., Vol. 18, pp. 163–176, 2004.
- [11] J. A. Ahmed and A. K. Sarma, "Genetic algorithm for optimal operating policy of a multipurpose reservoir," Water Resour. Manag., Vol. 19, pp. 145–161, 2005.
- [12] L. F. R. Reis, G. A. Walters, D. E. Savic, and F. H. Chaudhry, "Multi-reservoir operation planning using hy-brid genetic algorithm and linear programming (GA-LP): An alternative stochastic approach," Water Resour. Manag., Vol. 19, pp. 831–848, 2005.
- [13] V. Jothiprakash and Ganesan Shanthi, " Single reservoir operating policies using genetic algorithm," Water Re-sour. Manag., Vol. 20, pp. 917–929, 2006.
- J. X. Chang, G. Huang, and Y. M. Wang, "Genetic algo-rithms for optimal reservoir dispatching," Water Resour. Manag., Vol. 19, pp. 321–331, 2005.
- [15] L. F. R. Reis, F. T. Bessler, G. A. Walters, and D. Savic, "Water supply reservoir operation by combined genetic algorithm-linear programming (GA-LP) approach," Wa-ter Resour. Manag., Vol. 20, pp. 227–255, 2006.
- [16] M. Janga Reddy, and D. Nagesh Kumar, "Optimal reservoir operation using multi-objective evolutionary algo-rithm," Water Resour. Manag., Vol. 20, pp. 861–878, 2006.
- [17] P. Anand Raj, "Multicriteria methods in river basin plan-ning-A case study," Water Sci. and Techno., Vol. 31, No. 8, pp. 261–272, 1995.
- [18] P. Anand Raj and D. Nagesh Kumar, " Ranking of river basin alternatives using ELECTRE," J. Hydrol. Sci., Vol. 41, No. 5, pp. 697–713, 1996.
- [19] P. Anand Raj, and D. Nagesh Kumar, " Planning for sus-tainable development of a river basin using fuzzy logic," in Proce. of Int. Conf. on Civil Engrg. for Sustainable Development, Roorkee, India, pp. 173–182, 1997.
- S. P. Simonovic, "Tools for water management: One view of the future," Water International, IWRA, Vol. 25, No. 1, pp. 76– 88, 2000.
- [21] M. J. Bender and S. P. Simonovic, " A fuzzy compromise approach to water resource systems planning under un-certainty," Fuzzy Sets and Systems, Vol. 115, pp. 35–44, 2000.
- [22] D. P. Panigrahi and P. P. Mujumdar, "Reservoir operation modeling with fuzzy logic," Water Resour.
 Manag., Vol. 14, pp. 89– 109, 2000.