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Abstract: We consider the problem of wave partial/full reflection and transmission by wave-
permeable structure as solving the pseudo wave-absorbing shape-related function with the focus 
on the understanding of wave attenuation. For determination of absorbing-reflection effects of 
wave-permeable breakwaters, one-dimensional case is studied to give the analytical expression 
of the absorbing term, and the analytical predictions are compared to available physical 
laboratory data in flume for wave propagation through bottom-mounted permeable breakwaters. 
Then the expression is also applied in depth averaged Boussinesq type wave equations in 
simulating the non-linear wave transmission through wave-permeable breakwater, we obtain 
accurate predictions of reflected and transmitted results combined with diffraction-refraction 
effects around the wave-permeable breakwater for various incident-wave conditions in the two-
dimensional case. The results show that wave permeable breakwaters with proper absorbing 
effects can be used as an effective alternative to massive gravity breakwaters in reduction of 
wave transmission in shallow water.   
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1. INTRODUCTIONS 
The development of breakwater design methodology often required as a condition of 

permitting for protection of ecosystem. For permeable structures such as bottom-mounted 
breakwaters, the incident waves interact with the porous structure causing transmitted and 
reflected waves to propagate towards the boundaries. The solution of wave permeable 
breakwaters is expressed by introducing the linear or nonlinear damping item to the governing 
equations in accordance with energy dissipation. In numerical study the similar ‘open 
boundary’ or ‘fully absorbing boundary’ condition is required, which requires the transmitted 
and reflected waves small (Larsen and Dancy, 1983). The numerical problem can be 
approximated by the solutions to weak reflected and fully absorbing of real wave permeable 
breakwater. Therefore in principle, the same analytical solutions could be applied in 
numerical simulation of the wave permeable structures. The analytical solutions diversified in 
different expressions of the energy damping term due to turbulent flow in the permeable 
structures. The porosity solution (Madsen, 1983) is based on a trial method, and a number of 
authors solve the problem by different numerical approach (Giles etc., 1998, Kirby, 1999, 
Hall, 2001), which are also not a direct solution. In this paper an expression is given to solve 
the problem in one-dimensional condition, and applied in two-dimensional numerical 
simulation. 
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2. MATHEMATICAL FORMULATION OF ABSORBING COEFFICIENT 

2.1 GOVERNING EQUATIONS FOR ONE-DIMENSIONAL CASE 
The one-dimensional wave equation inside the wave permeable breakwaters read: 
Continuity equation 

0=+ xt DUnζ                                                            (1) 
Momentum equation 

0=++ sUgnU xt ζ                                                      (2) 
where h is the constant water depth, ζ is the free surface elevation, U is the  velocity, n is 

the shape-related coefficient for the absorber, s is the non-linear damping term. We assume 
time harmonic motion of ω, introducing U=nυ(x)eiωt  and ζ=η(x)eiωt , from eq.1 and eq.2 get 
the relation: 
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Fig. 1  Definition sketch of the problem 

 
with boundary conditions by assuming continuity of  pressure (velocity)  and mass 

(amplitude)  for incoming (x<0) and transmitted linear wave (x>B), B is the width of the 
absorber. The linear wave solutions outside the absorber read (Fig. 1):  
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 The boundary expressions for interfaces are: 
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 where R and G are defined as reflection 

coefficient and transmission coefficient separately in terms of maximum incoming wave 
amplitude η0i. To fix the problem, introduce phasor constant r=α+iβ. The α is defined as the 
damping coefficient; the β is defined as β=2π/ Ls, where Ls is the mixing wave length in the 
permeable breakwater and independent of x. The obvious solution is η=Re[Ce±rx] inside the 
absorber, the minus solution is chosen for the permeable structure. Thus the elevation and 
velocity inside the absorber (0 < x < B) read: 
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with the boundary solutions for coupled R and G: 
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In general, in order to find R, G, s, we would have to find α and β. To close the problem, 
we come up with a reasonable approximation: the average energy dissipation rate by α will be 
approximated by energy dissipation by linearized damping term s in one wavelength. Thus we 
have: 
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From eq. 3, we have: 
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Solving eq. 6 and eq. 7 with respects to Lx, we have the following relation:  
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Especially when the width of the absorber reduces to a screen (i.e. B approximates 0), we 
have: 
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The solution of  s is based on the determination of Lx, and is set to a constant for specific 
type of wave permeable breakwater (i.e. shape coefficient n) and specific incoming wave (i.e. 
wave number k0, and wave frequency ω).  

2.2 EXPERIMENT SET-UP AND DETERMINATION OF MIXING WAVE LENGTH 
The coupled reflection coefficient R and transmission coefficient G are related to the 

factors as: 
The shape coefficient for permeable 

breakwaters, n; 
The length of the absorber B; 
The water depth D; 
The incoming wave period, T and the 

incoming wave length, i.e. the wave number k0; 
The mixing wave length, Lx.  
To verify and calibrate data we have carried 

out a physical experimental in flume (Fig. 2), 
the measured data is shown in table 1 for 
different incoming wave and water depth. The 
incoming wave varied in the wave amplitude 
ai,, water depth (D) and period (T). 
determination of Lx of eq. 8 are shown in Fig. 2, 
the reflection and transmission coefficient by theoretical solution of eq. 5 are compared with 
experimental data of wave permeable breakwater (Fig. 3) in flume, the results shows a 
satisfactory matching accuracy.  

 
Table 1  The experimental data in flume 
2.68m, 5.69s(measured) 2.68m, 5.69s (Calculated)        Tide, Period 

Wave R G R G 
H (m) =1.27 0.72 0.42 0.70 0.49 

H13%(m)= 1.98 0.79 0.36        0.78 0.42 
H5%(m) =2.35 0.72 0.35 0.75 0.36 
H1%(m) =2.78 0.83 0.36 0.81 0.28 
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Fig. 2  The cross section configuration of 

experimental set-up in flume  
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Fig. 4  The R, G as a function of s                       Fig. 5  The R, G as a function of Lx 

3. MODIFIED BOUSSINESQ TYPE WAVE EQUATIONS FOR PERMEABLE 
BREAKWATERS 

We introduce the absorbing terms to the modified Boussinesq type equations as following  
(Madsen P. A,1992; Li Xi, 2002): 
Continuity equation 

0=++ yxt QPη                                                        (9) 
X-direction momentum equation 
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Y-direction momentum equation 
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In which, x, y and z form a rectangular coordinate system, with the plane coordinates of x ,y 
on the still water level, z measured vertical upwards, η+≡ Dh , uhP = , vhQ = , D is the 
varying water depth or still water depth, ηis the free surface elevation, u and v is the depth 
average velocity.  

Where dispersion terms ψ1 ψ2 in equations 6-(a,b) equals to 
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Fbx, Fby are the bottom friction term, they can be written as 
22

22
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where friction coefficient fb is introduced for the wave-current coexistent system  by 
assuming a constant depending on water depth (Yan Yixin, 2002). 

Sx, Sy are the non-linear absorbing term 
PsS xx =                                                        (13a) 
QsS yy =                                                        (13b) 
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where sx and sy are absorbing items, defined in one dimensional case as above, here sx = 
sy ,we  apply eq.8 directly in the two dimensional case ( the same cross-section of permeable 
breakwaters as in Fig. 2, only with a changeable water depth). According to eq. 8 the value of 
s depends on the determination of Lx and varies with water depth D.  For this type of 
breakwater, the value of s is depending on the calibration of shape coefficient n in different of 
water depth D, hence one-dimensional physical data in flume is necessary for the calibration. 
The scale of the damping term s of two-dimensional numerical model, is varied in 3~5 in the 
following application. 

4.  WAVE TRANSFORMATION AROUND WAVE PERMEABLE BREAKWATER 
In order to show the usefulness of the model, we applied the model in the feasibility study 

of permeable breakwater constructed in Zhejiang, East Coast of China. The breakwater 
consists of two parts, 110 meters of impermeable rubble mounds breakwater with a slope of 
1:20 and  310×10.5 meters of  bottom mounted wave permeable breakwater. Another 
impermeable breakwater has been constructed between the two islands; calculation domain of 
the numerical model is illustrated in Fig. 2a. To verify the model, we also carried out a 
physical model (Fig. 2b) with scale 1:80 in a 20m×25m wave basin and wave heights of 32 
sample points were collected for verification. The input significant wave height and peak 
spectral period near the site has been extrapolated from the field wind data collections (Table 
1). 

 

  
        Fig. 2a  The calculation domain                     Fig. 2b The sample points in physical model (Li Xi, 

                                                                     Yang Yue, etc., 2003) 
 

Table 1  Incoming wave climate (-20m still water depth, 50 years return period) 
       Tide 

Wave 2.68m 1.49m -1.62m -2.43m 

H (m) 1.27 1.26 0.93 0.91 
H1%(m) 2.78 2.73 2.00 1.91 
H13%(m) 1.98 1.96 1.43 1.40 

TS(s) 5.69 5.59 5.26 5.16 
 



 407

As shown in physical scale model (Fig. 2b), 32 data points in 8 cross-sections were 
collected for different wave conditions. The calculation results are shown in Figure 3 for 
significant wave under tide level 2.68m with a regular prototype wave input as 1.98m wave 
height and 5.69s wave period.  In accordance with the physical model situations, A~H 
sections of wave heights in numerical model are compared with physical model data, as 
shown in Fig. 4(a-h). It is concluded that that the calculated results agrees well with the 
measurements. 

 
 

  
Fig. 3a  The calculated wave elevation distribution      Fig. 3b  The calculated wave height distribution 

   (Tide=2.68m, H0=1.98m)                                                 (Tide=2.68m, H0=1.98m) 
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5. CONCLUSION AND DISCUSSION 
Based on the analysis, it is concluded that Boussinesq type equations are detailed and 

accurate computation of waves, the solution proved valuable to engineering practice, and 
more verification and calibration is expected in the future. 
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