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Abstract: In this paper, the GDRBEM (general dual reciprocity boundary element method) wave 
model (Zhu et al. 2000 and Liu 2001) for solving the mild-slope equation is extended to solve the 
modified mild-slope equation (Chamberlain and Porter 1995), in which both the bottom 
curvature term related to h2∇  and the slope-squared term related to 2)( h∇  neglected in the 
conventional mild-slope equation are included to account for relatively steep and rapidly 
undulating bathymetry.  Using the modified GDRBEM model, wave scattering by a submerged 
parabolic shoal is calculated and compared with experimental solutions (Suh et al. 2001) and the 
GDRBEM solutions (Liu 2001). It is shown that the modified GDRBEM model is much more 
accurate than the GDRBEM model for wave propagation in a region where the bottom slope is 
not moderate and the mild-slope assumption is violated. 
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1. INTRODUCTION 
Since the mild-slope equation (MSE) was derived by Berkhoff (1972), it has proved to be a 

very useful governing equation for a wide range of water wave problems as both refractive 
and diffractive effects have been included in this single equation for a wide wave spectrum 
from short water waves to long water waves. However, as its name indicates, the MSE is only 
valid for the geometry with “mild” bottom slope. This limitation restricts the application of 
the MSE to seabed geometry of first order in bottom slope h∇ .  

Some attention has been then paid to break this limitation. On one hand, some early work 
has been done to test the assumption of “mild” bottom slope numerically. For example, using 
numerical solution based on the hybrid finite element method, Tsay and Liu (1983) declared 
that the MSE can produce accurate results even for bottom slope as large as one in one. 
However, Booij's (1983) further analysis revealed that Tsay and Liu's discovery is correct 
only for waves propagating parallel to the contours of the sloping bed, for waves propagating 
normal to the contours, the MSE produces accurate results provided that the slope is less than 
one in three. On the other hand, a great deal of effort has been made to improve the 
conventional mild-slope equation. Responding to the failure of the MSE to approximate 
adequately wave scattering by singly and doubly periodic ripple beds, Kirby (1986) derived 
an extended MSE (EMSE) which still includes the first order term related to h∇  only but 
differs from the conventional MSE. Then, by keeping all the terms to second order, including 
both the bottom curvature term related to h2∇  and the slope-squared term related to 2)( h∇ , 
Chamberlain and Porter (1995) derived a modified MSE (MMSE). In addition, Chandrasekera 
and Cheung (1997) rederived Chamberlain and Porter’s (1995) MMSE by using Berkhoff’s 
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(1972, 1976) approach and Suh et al. (1997) derived a time-dependent equation which 
reduced to Chamberlain and Porter's (1995) MMSE for a monochromatic wave. 

There has been some further theoretical work to support these MMSEs, see Porter and 
Staziker (1995), Miles and Chamberlain (1998), Agnon (1999) and Agnon and Pelinovsky 
(2001). Based on these MMSEs, some new numerical models have been also subsequently 
proposed. Using a standard error-checking Runge-Kutta method, Chamberlain and Porter 
(1999) proposed a numerical model to solve the MMSE for wave scattering by both surface-
piercing islands and submerged shoals. However, Chamberlain and Porter's (1999) model is 
restricted to axi-symmetrical topography. In addition, Chandrasekera and Cheung (1997) gave 
a numerical solution of Chamberlain and Porter's (1995) MMSE by using the hybrid finite 
element and Suh et al. (2001) applied the finite difference method to solve their time-
dependant MMSE. It can be seen from these numerical solutions that the effect of the 
curvature and slope-squared terms are significant.   

Since the GDRBEM only requires a discretization on the boundary of a computational 
domain plus some extra inner interpolation points, it is much more computing efficient than 
other numerical models to solve the MSE, as pointed out by Zhu et al. (2000) and Liu (2001). 
In this paper, we plan to extend the GDRBEM model to a modified GDRBEM model to solve 
the MMSE. 

2. THE MODIFIED MILD-SLOPE EQUATION 
Under a Cartesian coordinate system in which x  and y  denote a pair of orthogonal 

horizontal coordinates and z denotes the vertical coordinate measured positively upwards 
from the undisturbed free surface, the incident wave potential of a train of monochromatic 
waves propagating along the positive x -axis over a seabed of variable water depth ),( yxh  
can be express 

                xikI oAeigyx
ω

φ −=),(                                   (1) 

with g  being the gravitational acceleration, A  the incident wave amplitude, ω  the angular 
frequency and ok  the wave number with respect to the constant water depth. 

According to Chamberlain and Porter (1995), the total wave potential, ),( yxφ , by which 
the refraction of these waves due to the topographic change of seabed and the existence of the 
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where khK 2= and the wave number k  is determined by the dispersion relation 

           khgk tanh2 =ω .                                                         (6) 
It can be seen that the difference between the conventional MSE and the MMSE is that 

there are two extra terms in the MMSE (2) which are related to the bottom curvature h2∇  and 
the slope-square 2)( h∇ , respectively.  
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3. INTEGRAL EQUATIONS 
In the GDRBEM (Zhu et al. 2000 and Liu 2001), to reduce the interpolation error to a 

minimum, it is preferable that the right-hand side of the governing equation be kept as simple 
as possible. At the same time, the simplicity of the main differential operator should be taken 
into account in order to obtain the corresponding particular solution analytically. In addition, 
for the problem of wave refraction and diffraction, in order to convert the original MSE 
defined in the whole infinite region into an equivalent integral equation in the inner region iΩ  
with variable water depth, we generally need utilize Sommerfeld’s (1964) far-field radiation 
condition to eliminate the integral along the infinite circle ∞Γ (Liu 2001, p.33), therefore it is 
better to choose the Helmholtz operator as the main differential operator. For the same reason 
here, we deliberately rewrite the governing equation (2) as 
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be the Hankel function of the first kind of zero order with ξρ −= X  being the distance 

between a source point ξ  and a field point ),( yxX = . It is well-known that ),(* ξφ X  is the 
fundamental solution of the Helmholtz equation: 

       )(22 ξδφφ −−=+∇ Xko .                                                          (9) 
In the inner region iΩ , for any fixed source point ξ , multiplying both sides of Eq.(7) by 

),(* ξφ X  and using the Green's second identity, we can rewrite Eq.(7) as 
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where n  is the outward normal unit vector for the inner domain iΩ , and )(icξ  is a geometric 
parameter: )2/()()( πξαξ =ic for Γ∈ξ , 1)( =icξ for iΩ∈ξ  and 0)( =icξ for oΩ∈ξ , respectively, with 

)(ξα being the internal angle of the boundary at point ξ . 
In the outer region oΩ  with constant water depth, note that constuyxu =≡ 00 ),( , Eq.(7) is 

equivalent to the Helmholtz equation 
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Multiplying both sides of Eq.(11) by ),(* ξφ X , one can rewrite Eq.(11) as 
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where 'n  is the outward normal unit vector of the outer domain oΩ  and )(ocξ  is also a 
geometric parameter: )2/()()( πξαξ =oc for Γ∈ξ , 0)( =ocξ for iΩ∈ξ  and 1)( =ocξ for oΩ∈ξ , 
respectively. 

The continuity of the wave potential and flux across the common boundary Γ  shared by 
iΩ  and oΩ  demands 
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Substituting Eq.(13) into Eq.(12), we obtain 
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Finally, the two integral equations (10) and (14) can be merged into 
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with )2/()( πξαξ =c  for Γ∈ξ , 1=ξc  for iΩ∈ξ  and oΩ∈ξ , respectively. 
It is clear that, in the right hand side of the Eq.(15), there is still one domain integral which 

involves the unknown function )(Xφ  and its gradient φ∇ . To eliminate it, the DRBEM will be 
employed in the following section. 

4. THE MODIFIED GDRBEM 
Considering that the main differential operators in governing equation is the Helmholtz 

operator, we shall follow Zhu et al. (2000) to chose the interpolation functions jf  to be the 
following RBFs: 

32
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Thus, the right-hand side term R  in Eq.(7) is expanded as 
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where jα are the coefficients to be determined with the collocation method by demanding 
the satisfaction of lm +  equations 
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at m points on Γ and l  interior collocation points within the domain iΩ . 
System (18) can also be expressed in matrix form:  

R=Fα ,                                                                (19) 
thus we have 

α =F 1− R.                                                              (20) 
It is noted that the existence and the recursion formulae of the particular solution )(ˆ Xjφ  to 

the following equation 
)(22 Xfk jo =+∇ φφ                                                         (21) 

for a given jf  have been given by Zhu (1993). The domain integral in the right-hand side 
of equation (15) therefore becomes 
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which involves boundary integrals only. Substituting (22) into (15) yields 
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It is worth indicating that ),(0 yxu  is a transcendental function due to the implicit wave 
dispersion relationship. The calculation of nu ∂∂ 0  is not trivial and the details can be found in 
the Appendix B in Liu (2001). Eq.(23) involves boundary integrals only and after appropriate 
discretization, a linear system of algebraic equations involving the unknown function φ  on 

lm + points can be established. 

5. NUMERICAL EXAMPLES AND DISCUSSION 
Suh et al. (2001) carried out a laboratory experiment for waves propagating in a wave tank 

with 23m long in the x-axis direction and 11m wide in the y-axis direction. A circular shoal is 
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located in the middle of the wave tank. The water depth on the shoal at a distance r from the 
centre is given by 

2
2 r

R
hh

hh mo
m

−
+= ,                                                      (24) 

where 3.0=oh m, 12.0=mh m is the local water depth at the centre of the shoal and 
45.0=R m is the radius of the shoal. In their experiment, the incident wave height was 3cm, 

and three different wave periods, 1.259s, 0.791s and 0.636s were used which correspond to 
=oohk 1.0, 2.0 and 3.0, respectively. It is easy to see that the bottom slope of this particular 

shoal is no longer moderate since 5556.32 =∇ h  and 2)( h∇  ranges from 0 at 0=r  to 0.64 at 
Rr = . Therefore it is ideal to be used to test our modified GDRBEM model based on the 

MMSE.  
Considering that the wave tank is very big in comparison with the circular shoal and the 

wave reflection from all the side walls can be neglected, we assume that the wave tank is 
infinite in our calculation and Sommerfeld’s (1964) radiation condition at infinite is imposed. 
Wave amplifications along the x-axis for three different incident waves with =oohk 1.0, 2.0 
and 3.0 are respectively calculated by the GDRBEM model (Zhu et al. 2000 and Liu 2001) 
based on the MSE and by the current modified GDRBEM model based on the MMSE. These 
numerical solutions together with Suh et al.’s (2001) experimental solutions are presented in 
Fig. 1.    
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Fig 1.  Comparison among the experiment data (Suh et al. 2001), the GDRBEM solution (Liu 2001) 

and the current modified GDRBEM solution for =oohk 1, 2, 3, respectively 
 

It can be clearly seen that the agreement between the experimental solutions and the 
numerical solutions from the current modified GDRBEM model is pretty good in the whole 
range for all three cases. However, large discrepancy between the GDRBEM solutions and the 
experimental solutions can be observed behind the shoal crest. This discrepancy becomes 
more significant when wave period increases from 0.636s ( =oohk 3.0) to 0.791s ( =oohk 2.0) 
and 1.259s ( =oohk 1.0), since the longer waves feel the bottom more strongly and therefore the 
drawback of neglecting both the bottom curvature term related to h2∇  and the slope-squared 
term related to 2)( h∇  in the MSE becomes obvious.    
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