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Introduction

Diminishing marginal utility with a concave utility function
(i.e., concavity) has been recognized as one of the basic character-
istics of water resources systems (Loucks et al. 1981; Draper and
Lund 2004). For example, willingness to pay for one more unit of
water is high in drought periods, and it decreases as water scarcity
abates (Harou et al. 2010). For reservoir operation, concavity of the
utility function has been applied to both operation rule and solution
algorithm design. For example, given a concave utility function,
hedging rules for reservoir operation are designed to reduce the
current water supply by a certain amount to avoid profit loss in case
of severe future water shortage (Draper and Lund 2004; You and
Cai 2008a, b). An example of using concavity for algorithm design
involves stochastic dual dynamic programming, for which the cu-
mulative utility function is assumed to be concave and is then ap-
proximated by Benders cuts (Tilmant and Kelman 2007; Goor et al.
2011). The monotonicity property has even earlier and broader ap-
plications in operations research. Veinott (1964) derived monotonic

relationships for a multiple-stage dynamic optimization problem.
In more recent years, monotonicity has been applied to detecting
the optimal forecast period given a certain length of the decision
period in supply chain management (Huang and Ahmed 2010).
In this study, an application of concavity to improving dynamic
programming (DP) and stochastic dynamic programming (SDP)
is presented, which illustrates another way to use problem charac-
teristics to improve solution algorithms, particularly for reservoir
operation optimization.

The DP and SDP models are among the most popular reservoir
operation models (Loucks et al. 1981; Yeh 1985; Labadie 2004)
because of their ability to handle nonlinear, noncontinuous objec-
tive functions and constraints and temporally sequential reservoir
decision making. However, applications of DP, particularly SDP to
complex optimization problems, are hindered by the so-called curse
of dimensionality, i.e., computation time and storage requirements
are proportional to nm, where n is the number of storage discreti-
zation and m is the number of reservoirs (Labadie 2004). There are
various approaches to alleviate the curse of dimensionality. One
approach is to decompose the multireservoir problem into multiple
single-reservoir problems, e.g., dynamic programming with succes-
sive approximation (DPSA) (Larson and Korsak 1970; Tilmant and
Kelman 2007; Opan 2010). Another approach is on the basis of
learning and exploring the relationship between storage and release
decision (Lee and Labadie 2007; Castelletti et al. 2010). In oper-
ations research, Galil and Park (1992) provided a detailed review of
the various implementations of DP that take advantage of model
properties, e.g., concavity, convexity, and sparsity. Adding to this
category of studies, this paper first derives a monotonic dependence
relationship between reservoir storage and release, then uses this
relationship to improve DP and SDP for reservoir operation
optimization.

In the remainder of this paper, the “Problem Formulation” sec-
tion introduces the formulation of a dynamic multiple-stage opti-
mization model for reservoir operation. The “Monotonicity and DP
Improvement” section derives the monotonic relationship between
optimal release/storage carryover decisions and reservoir storage,
and then applies this structural relationship between optimal
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decision and model parameters to improve conventional dynamic
programming. The “Monotonicity with Stochastic Parameters and
Improved SDP” section extends the monotonic relationship to sto-
chastic cases and improves SDP. The “Case Study” section presents
an application of improved DP and SDP to the Danjiangkou
Reservoir water supply operation. The last section contains discus-
sions and conclusions.

Problem Formulation

The optimization model for a T-period reservoir operation problem
can be formulated as a series of two-stage optimization models
linked by the recursive function in a backward form (Loucks et al.
1981; Yeh 1985; Labadie 2004). The DP model can be expressed as

FtðstÞ ¼ max
stþ1

ftðrtÞ þ Ftþ1ðstþ1Þ
s.t. rt ¼ st þ qt − stþ1

(1)

In Eq. (1), t = time index; st and rt = reservoir storage and re-
lease at period t, respectively; qt = either the period t inflow or
inflow forecast, which is a given input of the DP model; ft ðrtÞ =
single-period utility function at period t, which is assumed concave
in this study; and Ftþ1ðstþ1Þ = maximum cumulative utility
function during the periods from tþ 1 to T. Storage loss and
utility discount are ignored in Eq. (1), but will be included in
an extended analysis in the appendix of this paper.

If st þ qt is substituted by ~st and stþ1 is selected as the decision
variable, then Eq. (1) can be rewritten as

FtðstÞ ¼ max
stþ1

ftð ~st − stþ1Þ þ Ftþ1ðstþ1Þ (2)

Eq. (2) represents a typical two-stage resource allocation prob-
lem, where ~st = total available resources; and stþ1 and ~st − stþ1

(i.e., rt) = resources allocated to the two stages characterized by
Ftþ1ðÞ and ftðÞ, respectively.

Monotonicity and DP Improvement

Monotonicity in Reservoir Operation Analysis

For a general analysis, Eq. (2) can be written into the following
form:

GðyÞ ¼ max
x g1ðxÞ þ g2ðy − xÞ (3)

in which y [analogous to ~st in Eq. (2)] = total available resource to
allocate; x and y-x = resource allocated to g1ðÞ and g2ðÞ, respec-
tively; g1ðÞ and g2ðÞ = sectional utility functions, which are analo-
gous to Ftþ1ðÞ and ftðÞ in Eq. (2), respectively; and GðÞ = total
utility function. For the resource allocation problem presented
by Eq. (3), it has been proved that if the sectional utility functions
g1ðÞ and g2ðÞ are concave, then the total utility function,GðÞ, is also
a concave function (Balinski and Baumol 1968). Referring to the
equivalent reservoir operation problem represented by Eq. (2), if
the utility function at all single periods, i.e., f1ðÞ; f2ðÞ; : : : ; fTðÞ
are concave functions, then through the sequential backward recur-
sive procedures from period T to period 1, FT−1ðÞ; : : : ;F1ðÞ are
concave functions. Thus, when the single period utility function
ftðÞ is concave for t ¼ 1; 2; : : : T, the maximum cumulative utility
function FtðÞ is also concave.

The concavity of both the single-period utility function (as-
sumed in this study) and maximum cumulative utility function
[derived from the two-stage optimization in Eq. (3)] can be further

applied to obtaining structural relationships between reservoir
storage and optimal release decisions for the reservoir operation
models in Eq. (2). For Eq. (3), denoting the optimal x correspond-
ing to y as x� and applying the first-order optimality condition,

g 0
1jx¼x� ¼ g 0

2jx¼y−x� (4)

Eq. (4) means that at the optimal solution, the marginal utility of
both sections g1ðÞ and g2ðÞ should be the same. Subsequently, the
monotonic relationship between y and x� can be derived by proof
by contradiction. For the two y values y1 and y2 ðy1 < y2Þ, denoting
the corresponding optimal x values as x�1 and x�2, respectively, and
assuming x�1 ≥ x�2 (the null hypothesis),

y1 − x�1 < y2 − x�2 (5)

Combining the optimality condition in Eqs. (4) and (5) and
using the diminishing marginal utility property of g1ðÞ and g2ðÞ,

g 0
1jx¼x�

1
≤ g 0

1jx¼x�
2
¼ g 0

2jx2¼y2−x�2 < g 0
2jx1¼y1−x�1 (6)

In Eq. (6), g 0
1jx¼x�

1
< g 0

2jx1¼y1−x�1 is contradictory to Eq. (4),
which indicates that the null hypothesis cannot be true, i.e., if
y1 < y2, then x�1 < x�2. Thus, it is proven that when g1ðÞ and g2ðÞ
are strictly concave, there is a strict monotonic relationship between
x� and y.

Considering an upper bound x̄ for x, which usually represents a
resource consumption limit constraint, for example, the maximum
allowed release from a reservoir in a certain period,

GðyÞ ¼ max
x g1ðxÞ þ g2ðy − xÞ s.t. x ≤ x̄ (7)

The increase of y will make x� gradually reach the upper bound;
beyond that, x� remains constant and y-x� increases with y. Thus,
considering resource consumption limitation constraints, the
monotonic relationship still holds (i.e., x� will not decrease if y
increases), although not strictly (i.e., x� will increase if y increases).
In other words, if the total available resource increases, the optimal
resource allocated to each section will increase or at least remain
the same for each section.

Structural relationships between optimal solutions and model
parameters can provide insightful information regarding the opti-
mization model, as shown in operations research studies (Veinott
1964; Geoffrion 1976). For example, a monotonic relationship be-
tween the optimal production of the current period and the demand
in future periods indicates the existence of a forecast horizon,
i.e., demands beyond a certain critical horizon have no effect on
the current production decision (Huang and Ahmed 2010). In water
resources studies, the monotonic relationship contributes to the
existence of effective forecast horizon regarding forecast uncer-
tainty (Zhao et al. 2012).

The monotonic relationship between y and x� in Eq. (3)
indicates an equivalent relationship between st þ qt (the total avail-
able water resources in period t) and s�tþ1 (i.e., st þ qt − r�t , the
optimal storage carried over to period tþ 1), and also r�t
(i.e., st þ qt − s�tþ1, the optimal reservoir release in period t) in
Eq. (2). Thus, the increase of total available water resources in
period t will induce the increase of both the storage carried over
to period tþ 1 and the reservoir release in period t. Considering
the storage capacity and release capacity constraints [i.e., an upper
bound of current release or storage carryover, which is analogous to
the maximum resource consumption constraint in Eq. (7)], this
monotonic relationship still holds. Extending the monotonicity
property from period t to its subsequent periods, it can be
concluded that if the single-period utility function ftðÞ is concave,
then the optimal release decision in periods from t to T,
[r�t ; r�tþ1; : : : ; r

�
T] corresponding to a certain st þ qt with any
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realizations of future inflows [qtþ1; qtþ2; : : : ; qT] will not decrease
with st þ qt.

This study derives a monotonic relationship between st þ qt and
s�tþ1 (and also r�t ) for reservoir operation optimization. The mon-
otonic relationship considering storage loss and utility discount is
elaborated in the appendix. This monotonic relationship provides
the following implications for reservoir operation optimization with
a concave utility function
(1) Considering inflow uncertainty, if the inflow upper bound

Q̄ ¼ ½q̄1; q̄2; : : : ; q̄T � (e.g., the maximum of inflow forecast)
and lower bound Q ¼ ½q

1
; q

2
; : : : ; q

T
� (e.g., the minimum

of inflow forecast) are provided, then the actual optimal
release decision is bounded by R̄ ¼ ½r̄1; r̄2; : : : ; r̄T � and
R ¼ ½r1; r2; : : : ; rT �, the optimal release sequences corre-
sponding to Q̄ and Q, respectively.

(2) A higher initial storage or a lower ending storage will result in
more water available within the operation periods, and corre-
spondingly the same or larger release during the operation per-
iods whereas a lower initial storage or a higher ending storage
will result in the same or smaller release.

Although these implications are simple, they are useful for
speeding up the search of optimal releases under the various inflow
and storage conditions, as described in the following section.

Improving DP Using the Monotonic Relationship

In conventional DP, the optimal storage carryover s�tþ1, correspond-
ing to a current storage st, is determined in an exhaustive search
approach. To find s�tþ1 for each st, every stþ1 value should be
searched (Fig. 1, left). Supposing st is discretized into nt intervals
and stþ1 into ntþ1 intervals (equal interval length) (as shown in
Fig. 1), to determine the optimal s�tþ1 for p, the ntþ1 discretized
stþ1 intervals should all be tested. When the single-period utility
function is concave, according to the monotonic relationship be-
tween st and s�tþ1 (and also r�t ), if the optimal state q (at stage
tþ 1) corresponding to p (at stage t) is known, then to search
for the optimal s�tþ1 for pþ 1, only two stþ1 values at the states
of q and qþ 1 (Fig. 1, right) need tested. Thus, by applying the
monotonic relationship, the computation of determining s�tþ1 for
st can be potentially reduced from ntþ1 to 2.

An improved DP algorithm is proposed (as shown in Fig. 2),
including the following steps: (1) start by discretizing st and
stþ1 into intervals of equal length and number them in ascending
order, 1 to nt and 1 to ntþ1, respectively; (2) for initialization, set
p ¼ 1 (the minimum discretized st) and search between 1 to ntþ1 to
find its corresponding optimal s�tþ1, and initialize q ¼ s�tþ1 ; (3) for
computation, set p ¼ pþ 1 and search between q and qþ 1, and
use the better of the two to update s�tþ1 corresponding to p; (4) re-
peat step 3 until p ¼ nt. Steps 1 through 4 are designed for DP

computation at stage t. By recursive computation from T to 1,
the T-stage reservoir optimization operation problem can be solved
[Eqs. (1) and (2)]. As illustrated in Fig. 1, when n ¼ nt ¼ ntþ1,
the computational complexity of the improved algorithm is
nþ 2�ðn − 1Þ ¼ 3�n − 2, whereas that of the conventional algo-
rithm is n2, i.e., each of the stþ1 states (n) should be tested with
each of st states (n). Thus, for a large number of state discretization
(n), 3�n − 2 << n2, the computational order of the improved algo-
rithm can be considerably reduced.

Monotonicity with Stochastic Parameters and
Improved SDP

In real-world reservoir operations, hydrological uncertainty is taken
into consideration (You and Cai 2008a, b; Zhao et al. 2011), and the
cumulative utility function of the two-stage operation optimization
model includes an expectation operator to handle the uncertainty

Ftðst; qtÞ ¼ max
stþ1

E½ftðrtÞ þ Ftþ1ðstþ1; qtþ1Þ� (8)

In SDP, hydrological uncertainty can be described by state tran-
sition probability Pqtþ1jqt of reservoir inflow, which represents the
conditional probability of qtþ1 in period tþ 1 on qt in period t
(Kelman et al. 1990; Faber and Stedinger 2001; Zhao et al. 2011).
Incorporating Pqtþ1jqt into Eq. (8), the recursive function of SDP is
obtained as

Ftðst; qtÞ ¼ max
stþ1

ftðrtÞ þ
X
qtþ1

Pqtþ1jqtFtþ1ðstþ1; qtþ1Þ (9)

Defining

FFtðstþ1Þjqt ¼
X
qtþ1

Pqtþ1jqtFtþ1ðstþ1; qtþ1Þ (10)

then Eq. (9) is rewritten as

Ftðst; qtÞ ¼ max
stþ1

ftðrtÞ þ FFtþ1ðstþ1Þjqt (11)

When assuming a partially-concave dependence relationship be-

tween Ftþ1ðstþ1; qtþ1Þ and stþ1 (i.e.,
∂2Ftþ1ðstþ1;qtþ1Þ

∂s2tþ1

< 0), given that

the state transition probability Pqtþ1jqt is positive, the partial
dependence relationship between FFtþ1ðstþ1Þ [the weighted
sum of Ftþ1ðstþ1; qtþ1Þ, Eq. (10)] and stþ1 is concave

(i.e.,
∂2FFtþ1ðstþ1Þjqt

∂s2tþ1

¼ P
qtþ1

Pqtþ1jqt
∂2Ftþ1ðstþ1;qtþ1Þ

∂s2tþ1

< 0). Thus, with

a fixed qt [Eq. (11)], ftðrtÞ and FFtþ1ðstþ1Þjqt are concave func-
tions, and an assumption of a partially concave dependence rela-
tionship between Ftþ1ðstþ1; qtþ1Þ and stþ1 leads to the same
relationship between Ftðst; qtÞ and st (Balinski and Baumol 1968).

Hence, when assuming that ftðrtÞ is concave, following the pro-
cedures described in the “Monotonicity in Reservoir Operation
Analysis” section, it can be concluded that (1) FT−1ðsT−1;
qT−1Þ; : : : ; F1ðs1; q1Þ are partially concave functions of
sT�1; : : : ; s1, respectively; and (2) with a fixed qt, there is a mon-
otonic relationship between st and s�tþ1 (and also r�t ). When apply-
ing the monotonic relationship to improving SDP, the procedures
are shown in Fig. 3 with two steps: step 1, for a fixed value of qt,
run the improved DP (Figs. 1 and 2) to search for s�tþ1 correspond-
ing to each of the possible values of st; and step 2, updating qt
and repeating step 1 until all possible qt values are tested and
s�tþ1 corresponding to all (st, qt) combinations is then identified.
By employing the improved SDP in the backward recursive

1

…

n

…

2

p

1

…

n

…

2

q

…

n

…

p

p+1

…

n

…

q

q+1

St St+1 St St+1

1 1

Fig. 1. A schematic diagram of conventional dynamic programming
computation (left) and the improved dynamic programming computa-
tion (right)
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formulation, the multistage stochastic reservoir operation problem
can be solved.

Case Study

This study takes the Danjiangkou Reservoir located in central
China (Fig. 4) as a case study to test the improved DP and
SDP. The Danjiangkou Reservoir has a storage capacity of
17.45 billionm3 and is used as one of the major storages for water
transfer in the central route of the South-North Water Transfer
Project (SNWTP) in China (Li et al. 2009). The primary purpose
of the reservoir is water supply, although hydropower generation
and flooding control are also important functions of this reservoir.
This study considers the water supply function of the reservoir only
with an objective to minimize water supply shortage.

The shortage index (SI) (Hydrologic Engineering Center 1981;
Hsu and Cheng 2002; Tu et al. 2008) is used to define the objective
function as follows:

SI ¼ 100

T

XT
t¼1

�
TSt
TDt

�
2

(12)

in which T = reservoir operation horizon; and TDt and TSt = water
demand and water shortage in period t, respectively. The SI is
a monotonic convex function of TS, and dSI=dTS ≥ 0,
d2SI=dTS2 ≥ 0; i.e., SI increases with TS, and the marginal SI in-
creases as water shortage becomes more severe. As minimizing a

convex function is equivalent to maximizing a concave function,
the monotonicity property and the proposed improved DP algo-
rithm are also applicable to reservoir optimization problems with
increasing marginal cost, e.g., SI in Eq. (12).

The constraints include storage capacity constraint, nonnegative
release constraint, and water balance constraint, respectively, as
follows:

s ≤ st ≤ s̄ (13)

rt ≥ 0 (14)

st ¼ st−1 þ qt − rt (15)

In Eqs. (13)–(15), st, s, and s̄ = reservoir storage in period
t, minimum storage, and maximum storage, respectively;

Start

Initialization:
p=1, Search between 1 

and nt+1 for the optimal 
st+1* and set it as q

p=p+1

Computation:
Search between q and

q+1 to find a better 
s*t+1 for p and use it to 
update q

p=nt

End

Yes
No

Fig. 2. Flowchart of the improved dynamic programming algorithm
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… …
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Fig. 3. Flowchart of the improved stochastic dynamic programming algorithm (l and n represent inflow and storage discretization, respectively)

Fig. 4. Location map for the Danjiangkou Reservoir
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rt = reservoir release in period t; and qt = reservoir inflow in
period t. Water shortage, TSt, in Eq. (12) is calculated with rt

TSt ¼ maxð0;TDt − rtÞ (16)

Eqs. (12)–(16) form a multiple-period reservoir water supply
operation optimization model.

This study applies the improved DP to annual operation of the
Danjiangkou Reservoir with five deterministic scenarios. The op-
eration period (one year) is split into 36 periods, each with a length
of approximately 10 days. A sequence of historical inflows (1956–
1995) is employed to calculate the inflow cumulative probability
function in each period. Following that, five inflow scenarios
are defined on the basis of five inflow sequences corresponding
to cumulative probabilities of 10, 30, 50, 70, and 90%, which re-
present very-dry, dry, normal, wet, and very-wet inflow scenarios
and are numbered 1, 2, 3, 4, and 5, as shown in Fig. 5. Both conven-
tional DP and improved DP are applied to optimizing water supply
decision making under the five scenarios S 1, S 2, : : : , and S 5,
respectively.

Furthermore, both conventional SDP and improved SDP are ap-
plied to stochastic reservoir operation optimization with marginal
probabilities and state transition probabilities obtained from histori-
cal sequences (Stedinger et al. 1984; Kelman et al. 1990; Faber and
Stedinger 2001).

The values of the key parameters of the reservoir operation
model are given as follows: s is set as 0 and s̄ is set as the con-
servation storage of the reservoir, 17.45 billionm3; and TDt
(t ¼ 1; : : : ; 36) is set as 1.04 billionm3. In DP formulation, the
number of state variable (reservoir storage) discretization ranges
from 100 to 1,000 to compare computation times between conven-
tional DP and improved DP. The algorithms are implemented with
Matlab (http://www.mathworks.com) on a Lenovo Thinkpad T410
laptop with Intel(R) Core(TM)i5 CPU M560, 4.00 GB of RAM.
The computation time is summarized in Tables 1–3.

In deterministic cases (one scenario only), conventional DP and
improved DP provide the same results, whereas their computation
time exhibits differences. As can be seen from Tables 1 and 2, the
computation time of DP is approximately proportional to n2, and
that of the improved DP proportional to n. For example, when
n increases from 100 to 1,000, conventional DP computation time
increases from 0.52 to 53 s (100 times), whereas the improved DP
computation time from 0.022 to 0.23 s (10 times). With the stochas-
tic models (Table 3), the improved SDP also exhibits higher com-
putational efficiency than the conventional SDP and for the two
flow discretization cases (100 and 1,000). Again, the computation
time of the conventional SDP is proportional to n2, and that of the
improved SDP is proportional to n.

Discussion and Conclusions

Diminishing marginal utility is an often realistic and important fea-
ture of water resources systems. Given a concave utility function
(with diminishing marginal utility), this study proves that a mon-
otonic relationship exists between reservoir storage and release
under optimality. Taking advantage of this property, this study
provides an approach to improve the computational efficiency of
DP and SDP. For a real-world reservoir operation problem with
a concave water supply objective, the improved DP and SDP com-
putation complexity is OðnÞ (order of n), compared to Oðn2Þ with
the conventional DP and SDP.

Although the proposed algorithm is demonstrated for single res-
ervoir operation optimization, it can be extended to multireservoir
operation optimization. For example, for cascade reservoir opera-
tion, the improved algorithm can be incorporated into dynamic
programming with successive approximation (DPSA) (Larson
and Korsak 1970), which decomposes a multiple reservoir problem
into a number of subproblems with one single reservoir and uses
the DP or SDP to solve each of the subproblems (Larson and
Korsak 1970; Opan 2010). When all the subproblems exhibit the
diminishing marginal utility characteristics and the feasible region
is convex, DPSA with the improved DP or SDP can potentially
enhance the computational efficiency.

Finally, in real-world reservoir operations, utilities usually de-
pend on complicating factors, e.g., hydropower generation depends
on both release and hydraulic head, and may not be concave or

Fig. 5. Inflow scenarios and water demand year round in Danjiangkou
Reservoir water supply operation optimization

Table 1. Computation Time (s) of Conventional DP under Different
Scenarios and Storage Discretization

No. of storage discretizations

Scenario 100 200 300 400 500 600 700 800 900 1,000

S 1 0.5 2.1 4.8 8.5 13.2 19.0 25.9 33.8 42.8 52.8
S 2 0.5 2.1 4.7 8.5 13.2 18.9 25.8 33.7 42.7 52.7
S 3 0.5 2.1 4.7 8.4 13.1 18.9 25.7 33.6 42.5 52.4
S 4 0.5 2.1 4.7 8.4 13.1 18.8 25.6 33.3 42.3 52.1
S 5 0.5 2.1 4.6 8.2 12.9 18.5 25.2 32.9 41.6 51.4

Table 2. Computation Time (s) of Improved DP under Different Scenarios
and Storage Discretization

No. of storage discretizations

Scenario 100 200 300 400 500 600 700 800 900 1,000

S 1 0.03 0.05 0.07 0.10 0.12 0.14 0.17 0.19 0.21 0.24
S 2 0.03 0.05 0.07 0.09 0.12 0.14 0.17 0.19 0.21 0.24
S 3 0.02 0.05 0.07 0.10 0.12 0.14 0.17 0.19 0.21 0.23
S 4 0.02 0.05 0.07 0.09 0.12 0.14 0.16 0.18 0.20 0.22
S 5 0.02 0.04 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21

Table 3. Computation Time (s) Comparison of Conventional SDP and
Improved SDP under Different Inflow and Storage Discretization

No. of inflow
discretizations

SDP
algorithms

No. of storage discretizations

100 200 300 400 500

100 Conventional 307 1,275 2,898 5,354 8,118
Improved 8 16 28 34 40

1,000 Conventional 6,163 25,381 59,410 111,889 170,486
Improved 122 245 367 486 617
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partially concave (Tilmant and Kelman 2007; Goor et al. 2011).
One of the main advantages of conventional DP and SDP is the
great flexibility in dealing with any kind of objective functions with
no restrictions, which is paid in terms of the curse of dimension-
ality. As usual, introducing some regularities (i.e., constraints)
will mitigate the computational burden. The improved DP and
SDP exhibit high computational efficiency, which is based on a
concavity assumption of the utility function. Thus, to apply this
algorithm to real-world reservoir operation problems, special atten-
tion should be paid to the dependence relationships between utility
and the various influencing factors.
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Appendix: The Monotonic Relationship Considering
Storage Loss and Utility Discount

The derivation in the “Monotonicity and DP Improvement” section
does not consider storage loss attributable to evaporation and/or
seepage, which is an important factor for reservoir operation in arid
or semiarid regions. This section includes this factor into the analy-
sis to further examine the validity of monotonicity property for
reservoir operation optimization.

Reservoir storage loss can be calculated through the following
two approaches: (1) calculating the storage loss l proportional to
storage s, i.e., l ¼ k � s ð0 < k < 1Þ (e.g., You and Cai 2008b);
and (2) calculating l as a function of s, e.g., l ¼ eabð3sabÞ

2
3þ

dð3sabÞ
1
3 (where a and b = constants reflecting the stage-storage re-

lationship; and e and d = coefficients for evaporation and seepage,
respectively) (Lund 2006). A storage carryover function cðsÞ can
be defined as

cðsÞ ¼ s − l (17)

Under both aforementioned storage loss circumstances, cðsÞ
exhibits the following two properties:

c 0ðsÞ > 0 (18)

which means the more water saved for the future, the more water
can be carried over to the future, and

c 00ðsÞ ≤ 0 (19)

which means that the marginal carryover ratio will decrease as stor-
age increases; i.e., it becomes increasingly difficult to carry over
reservoir storage for the future as storage increases, which can
be attributed to the increase of surface area (contributing to evapo-
ration) and water head (contributing to seepage) with reservoir
storage increase (Lund 2006).

When considering the effect of storage loss, g2ðy − xÞ in Eq. (3)
will be replaced by a composition function, g2½cðy − xÞ�. The con-
cavity of g2½cðy − xÞ� depends on the properties of first- and
second-order derivatives of g2ðÞ and cðÞ

d2g2ðcðxÞÞ
dx2

¼ g 00
2 c

0 þ g 0
2c

00 (20)

Because c 0ðÞ > 0, c 00ðÞ ≤ 0, and g 00
2 ≤ 0 (i.e., diminishing mar-

ginal utility), it can easily be concluded that if g 0
2 ≥ 0 (i.e., g2ðÞ is a

monotonically increasing function or the utility will monotonically
increase with the allocated resource), then

d2g2ðcðxÞÞ
dx2

¼ g 00
2 c

0 þ g 0
2c

00 ≤ 0 (21)

which means that g2ðcðÞÞ is a concave function and the monoto-
nicity property holds. In the case of g 0

2 < 0, to validate the concavity
of g2ðcðÞÞ, more details about c 0, c 00, g 0

2, and g 00
2 are needed to

verify if d2g2ðcðxÞÞ
dx2 ≤ 0 or not.

Therefore, when the effect of storage loss in reservoir opera-
tion is considered, if the predefined ftðÞ is a monotonically in-
creasing concave function, it can sequentially be deduced that
FT�1ðÞ; : : : ; F1ðÞ are monotonic concave functions and the mono-
tonicity property will hold. Previous studies (e.g., Draper and
Lund 2004; You and Cai 2008b) have already adopted the mono-
tonically increasing assumption (i.e., f 0

t ðÞ ≥ 0) as well as the
concavity assumption (i.e., f 00

t ðÞ ≤ 0) in reservoir system analysis,
which reflects a simple relationship: more water supply induces
more utility, but the utility increase rate declines.

Moreover, for long-term reservoir operation, utility discount
may also be an important factor. Because it does not change the
concavity of the single-period utility function, both concavity of
maximum cumulative utility function and monotonicity property
will hold when utility discount is taken into consideration.
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