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[1] The use of a streamflow forecast for real-time reservoir operation is constrained by
forecast uncertainty (FU) and limited forecast horizon (FH). The effects of the two factors
are complicating since increasing the FH usually provides more information for decision
making in a longer time framework but with increasing uncertainty, which offsets the
information gain from a longer FH. This paper illustrates the existence of an effective FH
(EFH) with a given forecast, which balances the effects of the FH and FU and provides the
maximum information for reservoir operation decision making. With the assumption of a
concave objective function, a monotonic relationship between current operation decision
and ending storage is derived. Metrics representing the error resulting from a limited
forecast relative to a perfect forecast are defined to evaluate reservoir performance.
Procedures to analyze the complicating effect of FU and FH and to identify EFH are
proposed. Results show that: (1) when FH is short, FH is the dominating factor for
determining reservoir operation, and reservoir performance exhibits a quick improvement as
FH increases; (2) when FH is long, the inflow information may be too uncertain to guide
reservoir operation decisions and FU becomes the dominating factor; and (3) at a medium
FH, reservoir performance depends on the complicating effects of FU and FH and EFH
locates with a certain balanced level of FU and FH. The statistical characteristics of EFH
are illustrated with case studies with deterministic forecast and ensemble forecast.
Moreover, the impacts of temporal correlation of FU, inflow variability, evaporation loss,
and reservoir capacity on EFH are explored.

Citation: Zhao, T., D. Yang, X. Cai, J. Zhao, and H. Wang (2012), Identifying effective forecast horizon for real-time reservoir

operation under a limited inflow forecast, Water Resour. Res., 48, W01540, doi:10.1029/2011WR010623.

1. Introduction and Background
[2] As advances in weather forecasting, hydrologic mod-

eling, and hydro-climatic teleconnections have significantly
reduced streamflow forecast uncertainty and prolonged the
forecast horizon, streamflow forecasts are now a more
promising tool for improving reservoir operation efficiency
[Carpenter and Georgakakos, 2001; Faber and Stedinger,
2001; McCollor and Stull, 2008; Sankarasubramanian
et al., 2009a]. In recent years, various optimization and
simulation models have been developed to exploit stream-
flow forecasts for reservoir decision making [e.g., Yao and
Georgakakos, 2001; Ajami et al., 2008; Huang and Hsieh,
2010; Valeriano et al., 2010]. However, Applications of
streamflow forecasts to reservoir operation are constrained
by their limited length. A meaningful forecast horizon (FH)
is usually shorter than the reservoir operation horizon. For

example, reservoir flood control operations may last several
months, while a streamflow forecast is only available several
weeks in advance. The practical length of a streamflow fore-
cast is also limited by the complicating relationship between
forecast uncertainty (FU) and forecast horizon (FH), i.e., the
longer the forecast horizon, the more complete the informa-
tion for decision making, but the larger the forecast uncer-
tainty [Simonovic and Burn, 1989; Maurer and Lettenmaier,
2003, 2004].

[3] In previous reservoir operation studies, the impor-
tance of reducing FU has been illustrated by using both
an operational forecast with actual reservoir systems [e.g.,
Georgakakos et al., 1998; McCollor and Stull, 2008; San-
karasubramanian et al., 2009a] and a synthetic forecast with
hypothetical reservoir systems [e.g., Georgakakos and Gra-
ham, 2008; Graham and Georgakakos, 2010; Zhao et al.,
2011]. Meanwhile, most studies assumed that the available
FH was as long as the operation horizon and did not con-
sider the complicating effect of FU and FH. However, a few
previous publications have shed light on the issue. By
employing a Kalman filter forecast technique, Simonovic
and Burn [1989] illustrated the existence of an empirical FH
threshold, and argued that a FH longer than the threshold
would not contribute to reservoir performance. More
recently, You and Cai [2008a] presented both a theoretical
and a numerical framework to determine the optimal fore-
cast horizon for a given decision horizon, which is defined
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as the initial periods in which decisions are not affected by
forecast data beyond the forecast horizon. Furthermore, You
[2008] addressed the dual problem of You and Cai [2008a],
i.e., how far the actual decision is away from the optimal
one under a given forecast with a limited horizon.

[4] Following You and Cai [2008a] and You [2008], the
current study develops metrics to evaluate reservoir release
decisions under a limited forecast and procedures to ana-
lyze the effect of FU and FH and to identify EFH. To con-
duct the analysis, a fixed ending storage is specified for a
reservoir operation problem. With this realistic setting, a
monotonic relationship between reservoir release in the
current period and ending storage is derived with a concave
objective function. With the monotonic relationship, met-
rics representing the error resulting from a limited forecast
relative to a perfect forecast are defined. Following that nu-
merical experiments based on synthetic forecasts are
designed to analyze the complicating effect of FH and FU
and to illustrate the procedures to identify the effective
forecast horizon (EFH), beyond which FH increase will not
contribute to reservoir operation efficiency. The statistical
characteristics of EFH are illustrated with case studies with
deterministic forecast and ensemble forecast. Moreover,
the impacts of temporal correlation of FU, inflow variabili-
ty, evaporation loss, and reservoir capacity on EFH are
explored.

2. Evaluation Metrics of Limited Inflow Forecast
for Reservoir Operation

[5] Section 2 first discusses FU and FH with a particular
reservoir operation optimization model, and then provides
evaluation metrics of a limited inflow forecast for reservoir
operation.

2.1. Problem Formulation

[6] Consider a reservoir operation problem with an oper-
ation horizon of N periods and denote the variables as
follows:

i the index of time periods;
si reservoir storage at the end of period i ;
qi reservoir inflow at period i ;
xi forecast of period i reservoir inflow;
ri period i reservoir release decision;
fi() period i reservoir utility function;
s the minimum reservoir storage;
s the maximum reservoir storage;
r the minimum reservoir release;
r the maximum reservoir release;
d discount ratio of reservoir utility;
l loss ratio of reservoir storage;
s0 the initial reservoir storage;
sT the target storage at the end of reservoir operation ho-

rizon (N) ;
s0T the target storage at the end of reservoir inflow fore-

cast horizon (H).
[7] Based on the aforementioned variables and the selec-

tion of reservoir release ri as decision variable, the multi-
ple-period reservoir operation optimization model can be
formulated as follows [Yeh, 1985; Labadie, 2004]:

max
XN

i¼1

1

ð1þ dÞi�1 fiðriÞ (1a)

s:t:

ð1� lÞsi�1 þ qi � ri ¼ siði ¼ 1; . . . ;NÞ ð1bÞ
s � si � s ð1cÞ
r � ri � r ð1dÞ
sN ¼ sT ð1eÞ

8>>>><
>>>>:

Equation (1a) denotes the reservoir operation objective and
it is defined as the sum of discounted reservoir utility,
which is a function of reservoir release ri and assumed con-
cave (i.e., diminishing marginal utility or f 00ðriÞ � 0, for
example, willingness to pay for one more unit of water is
high in drought periods and it decreases as water scarcity
abates) in this paper [Draper and Lund, 2004; You and
Cai, 2008a, 2008b]; (1b) is the water balance equation
which illustrates the conservation of mass between reser-
voir storage, inflow and release; (1c) is the storage capacity
constraint ; (1d) is the release capacity constraint ; and (1e)
is the ending storage constraint.

[8] Reservoir operation optimization shown in equa-
tion (1) is an ideal case and the underlying assumption is
that reservoir inflows through the operation horizon N are
perfectly known (i.e., no limitation on FH and FU) (Fig-
ure 1). In real-world reservoir operation, the inflow infor-
mation is available only within a limited horizon H [You
and Cai, 2008a; You, 2008] and involves uncertainties
[Simonovic and Burn, 1989; Ajami et al., 2008; Graham
and Georgakakos, 2010]:

xi ¼ qi þ "i; (2)

where "i is a random variable indicating forecast uncer-
tainty of period i (i � H) reservoir inflow.

[9] To bridge the gap between the operation horizon N
and the forecast horizon H, real-world reservoir operation
typically employs a rolling horizon approach (Figure 1),
i.e., (1) making the release decision for the forecast horizon
(FH ¼ H) with a limited forecast; (2) implementing the
current release decision (DH ¼ 1); (3) move to the next

Figure 1. Schematic of reservoir operation rolling hori-
zon decision making and its operation horizon, forecast ho-
rizon, and decision horizon.
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period and repeat (1) and (2) with updated inflow forecast
and reservoir storage until the end of operation horizon
[Simonovic and Burn, 1989; Martinez and Soares, 2002;
Zhao et al., 2011].

[10] In the rolling horizon approach, decision horizon
(DH, how long the generated decision is implemented),
forecast horizon (FH, how long the inflow can be pre-
dicted), and operation horizon (OH, how long the reservoir
operation is targeted) are important issues (Figure 1). As
the inflow forecast can update period by period in real-time
reservoir operation, DH is usually set as 1 (i.e., only the
current period decision is treated as final and decisions in
future periods will be updated with the new forecast). FH
depends on the forecast technology and OH is set equal to
FH, although the original OH (equation (1)) is determined
by inflow variability and reservoir characteristics (e.g., a
seasonal reservoir has an OH of several months and an an-
nual reservoir has an OH of one year).

[11] The reservoir optimization operation model for
rolling horizon decision making can be formulated as
follows:

max
XH

i¼1

1

ð1þ dÞi�1 fiðriÞ (3a)

s:t:

ð1� lÞsi�1 þ xi � ri ¼ siði ¼ 1; . . . ;HÞ ð3bÞ
s � si � s ð3cÞ
r � ri � r ð3dÞ
sH ¼ s0T ð3eÞ

8>>>><
>>>>:

Equation (3) represents a practical reservoir operation
model, which is different from equation (1) in: (1) xi con-
tains forecast uncertainty; (2) the operation horizon is H ;
(3) the user-specified ending storage is s0T (the target end
storage, which is differentiated from sT used in equation
(1)). With the forecast updated and s0T specified in each pe-
riod, the rolling horizon approach can be employed to
determine real-time reservoir releases.

[12] The practical model (equation (3)) can generate a
release sequence [r01, r02, . . ., r0H ] within FH while only the
current decision r01 is implemented (DH is 1, Figure 1) and
subsequent decisions will be obtained by rerunning the
practical model with an updated inflow forecast through the
rolling horizon process. For reservoir operation applica-
tions, the rolling horizon approach generally exhibits supe-
rior performance to the climatology scenario based
stochastic approach, especially in extreme hydrologic con-
ditions [Martinez and Soares, 2002; Sankarasubramanian
et al., 2009a]. For the comparability of decision making
through the rolling horizon process, this paper focuses on
one single period and investigates the gap between r01 (the
local optimal decision with a limited forecast, equation (3))
and r�1 (the global optimal decision with a perfect forecast,
equation (1)).

2.2. Monotonicity Property and Reservoir Release
Bounds

[13] One direct question from the rolling horizon
approach is how the generated local optimal decision can

approximate the global optimal decision, i.e., the gap
between r�1 and r01. Since s0T indicates the trade off between
water use within FH and water use beyond FH and affects
r01 (i.e., ending storage effect, equation (3)), another ques-
tion is what effect s0T exerts on the gap between r01 and r�1.
This paper addresses the second question first and illus-
trates a monotonic relationship between s0T and r01.

[14] The theorem is as follows: Given a pre-
determined forecast horizon FH and inflow forecast
[ x1 x2 . . . xH ], if the reservoir release utility function
fi() exhibits a diminishing marginal utility property (i.e.,
concavity and f 00i () < 0), then r01 underlying a given s0T will
not increase if s0T increases.

[15] The proof of this theorem is given in Appendix A.
This theorem illustrates a monotonic ending storage s0T
effect on first period decision r01. For rolling horizon reser-
voir operation, this monotonic relationship generally sug-
gests that the current release decision r01 will not increase if
we set a higher s0T (i.e., to save more water for periods
beyond FH). It is important to note that the monotonicity
dependence relationship has been studied in supply chain
management [e.g., Veinott, 1964; Huang and Ahmed,
2010]; this paper introduces the relationship to reservoir
operation and extends it by considering the effects of utility
discount and storage loss (Appendix A).

[16] A direct corollary of the monotonicity theorem is
that: r01 is bounded by r01;u (upper bound, corresponding to
s0T ¼ s) and r01;l (lower bound, corresponding to s0T ¼ s). In
general, r01;u implies the release decision under the most op-
timistic expectation of future streamflow, as total inflow
plus initial storage are scheduled to be used up within FH.
Alternately, r01;l implies the release decision under the most
pessimistic expectation of future streamflow and that stor-
age and inflow are planned to be saved as much as possible
for periods beyond FH. For real-time reservoir operation,
when practical values of s and s are given, these two
releases bounds r01;u and r01;l can be used to determine the
range of reservoir release decisions under a given stream-
flow forecast (Figure 2).

[17] Based on the monotonicity property of r01 and the
two release bounds r01;u and r01;l, we can analyze the gap
between r�1 and r01 (i.e., the optimality of reservoir operation
decision with a limited forecast). The gap between r�1 and
r01 is bounded and can be represented by the gaps between

Figure 2. The optimal first period release decision r�1 of
the ideal model and the upper and lower bound for the first
period release decision r01 of the practical model.
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r�1 and r01;u and between r�1 and r01;l. Three error bound indi-
ces are derived:

EBR ¼ r01;u � r01;l; (4)

EBU ¼ r01;u � r�1; (5)

EBL ¼ r�1 � r01;l: (6)

Error bound range (EBR) is the difference between r01;u and
r01;l, or rather, the variation in the range of r01. upper error
bound (EBU) and lower error bound (EBL) indicate the
error bound of the most optimistic and pessimistic expecta-
tion of future streamflow, respectively.

[18] For these three indices, EBR is applicable to real-
time reservoir operation for the determination of the release
range. As r�1 is obtained through perfect information of res-
ervoir inflow (not possible in real-time reservoir operation),
EBU and EBL are retrospective analysis indices with the
assumption that the inflow process has already been real-
ized and release decisions r01;u and r01;l were made prior to
inflow realization. This paper is, thus, a retrospective analy-
sis of real-time reservoir operation and applies EBR, EBU
and EBL to diagnosing the optimality of release decision
under a limited forecast. In the following section 3, this pa-
per will investigate EBR, EBU and EBL by varying FH,
FU, streamflow variability, and reservoir characteristics.
Considering the difficulty of obtaining an analytic optimal
solution for the multiple period reservoir optimization
operation model (equations (1) and (3)), numerical experi-
ments with a hypothetical reservoir are adopted in the sub-
sequent analysis.

3. Numerical Experiments to Detect Effective
Forecast Horizon

[19] Section 3 sets up a hypothetical reservoir system
with an OH of 100 periods to study effect of FH and FU on
reservoir operation decision making. Synthetic forecast
generators are used to generate forecast characterized with
FH and FU; numerical experiments are conducted to ana-
lyze the complicating effect of FH and FU through the
defined evaluation metrics (EBR, EBU, and EBL).

3.1. Numerical Experiment Design

[20] The reservoir system is characterized by storage
capacity s and storage loss ratio l. s is defined as the maxi-
mum active storage (i.e., the difference between the maxi-
mum and minimum storage). The operation of the reservoir
system consists of three steps: streamflow generation, syn-
thetic forecast generation, and reservoir operation decision
making.

[21] 1. Streamflow generation: the Thomas-Fiering
model is adopted for streamflow generation [Loucks et al.,
1981]

qiþ1 ¼ �þ �flowðqi � �Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

flow

q
ð�CvÞ!: (7)

In equation (7), � is the mean generated streamflow and is
set as 1; �flow is the temporal correlation of the streamflow;

Cv is the coefficient of variability ; and ! is a random num-
ber with the standard Gaussian distribution. The minimum
generated streamflow is set as 0 (i.e., nonnegativity).

[22] 2. Synthetic forecast generation: the reservoir
inflow forecast is generated by exerting a random disturb-
ance to the generated streamflow [e.g., Lettenmaier, 1984;
Datta and Burges, 1984; Graham and Georgakakos,
2010], as shown in equation (2). To represent the ‘‘increas-
ing uncertainty with forecast horizon’’ property of stream-
flow forecast [Maurer and Lettenmaier, 2003, 2004; Zhao
et al., 2011], forecast uncertainty "i is assumed to fit a sym-
metric Gaussian distribution with the variance linearly
increasing with i (i.e., the forecast lead-time):

"i � Nð0; &2
i Þ (8)

&2
i ¼ min ði�2; �2CvÞ: (9)

Equations (8) and (9) indicate that the variance of forecast
uncertainty &2

i is not greater than that of streamflow �2Cv.
In addition to � that determines the magnitude of single-
period uncertainty in the forecast, �error is introduced to
characterize the temporal correlation of multiple-period
uncertainties, which is illustrated in detail in Appendix B.

[23] 3. Reservoir operation decision making: the ideal
model in equation (1) and the practical model in equation
(3) are employed for reservoir operation decision making.
To reduce the initial-storage effect on reservoir operation,
s0 in both equation (1) and equation (3) are set as s/2 (mid-
dle level of active storage). sT in equation (1) is also set as
s/2 while s0T in equation (3) is set as s or s to obtain the
maximum or minimum release decision with a limited fore-
cast (Figure 2). The single period utility function is set as

fiðriÞ ¼ ln ðriÞ: (10)

In equation (10), the natural logarithm function is a con-
cave utility function with constant price elasticity equal to
1, which has been used in previous economic studies [e.g.,
Booker and O’Neill, 2006]. With the ideal model (equation
(1)) and the generated streamflow, r�1 can be determined;
and with the practical model (equation (3)) and the gener-
ated forecast sequences, r01;u and r01;l can be obtained. The
optimization models (equations (1) and (3)) are solved
by General Algebraic Modeling System (GAMS) [Brooke
et al., 1998].

[24] This paper will analyze error bounds using Monte
Carlo simulations and design three categories of five
experiments with different parameter combinations to diag-
nose the effect of FH and FU (characterized by �, �error,
and H), streamflow variability (characterized by Cv), and
reservoir characteristics (characterized by l and s) on reser-
voir operation decision making. The parameter values of
the five experiments are summarized in Table 1. As the
utility discount can affect long-term reservoir operation
and is not as important in real-time reservoir operation, d in
equations (1) and (3) is set as zero.

[25] Experiment 1 diagnoses the effect of forecast hori-
zon (FH) and forecast uncertainty (FU) and is taken as the
baseline among the 5 experiments. By changing one parameter
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at a time from experiment 1, the effects of the other param-
eters are studied. Experiment 2 changes �error from 0 to
�0.5 and 0.5 to explore the effect of temporal correlation
of single period FUs. Experiment 3 deals with various Cv

ranging from 0.1 to 0.5 to study the reservoir operation
under different streamflow variability levels. Experiment 4
takes the loss ratio varying from 0.00 to 0.10 and analyzes
reservoir operation with different trade-off conditions
between current and future water usage. Experiment 5 stud-
ies the effect of reservoir storage capacity by adjusting stor-
age capacity to a smaller value (1.0) and a larger value
(10.0) than experiment 1. This paper conducts 100 numeri-
cal simulations with randomly generated reservoir inflow
and inflow forecasts for each of the parameter combina-
tions present in Table 1. EBR, EBU, and EBL are calcu-
lated for each simulation and their average value and
standard deviation are used to analyze the complicating
effect of FH and FU on reservoir operation.

3.2. Effect of Forecast Uncertainty and Forecast
Horizon

[26] Experiment 1 studies the effect of FH and FU on
reservoir operation by taking the various H from 5 to 50
and � from 0.00 to 0.10. The values of the three error
bound indices (EBR, EBU, and EBL) are given in Figures
3a, 3b, and 3c, respectively. The average values of EBR,
EBU, and EBL all decrease and converge to zero as FH
increases; the standard deviation of EBR first increases and
then decreases with FH; the standard deviation of EBU and
EBL decreases with FH and then converges to a stable
value depending on FU.

[27] Since both the average value and standard deviation
of EBR (r01;u � r01;l) converge to zero (Figure 3a), the range
of operation decisions underlying an inflow forecast will
decrease as FH increases, and will end with zero (i.e., no
variation with release decisions) when FH is long enough
[You and Cai, 2008a; You, 2008]. Meanwhile, FU exerts
little effect on EBR and the values of EBR remain quite
stable under different values of FU. EBR exhibits low vari-
ability with a short FH or a long FH, and peaks at a medium
FH (Figure 3a). This can be explained as follows: (1) when
FH is short, the inflow information is too limited and there
is little flexibility for reservoir operation decisions, which
results in a large value of EBR. For example, when FH ¼
1, r01;u ¼ s0 þ ~q1 � s, r01;l ¼ s0 þ ~q1 � s, EBR ¼ s� s ; (2)
When FH is long, there is more information but it is less
reliable (Figures 3b and 3c), and consequently, this narrows
the range of reservoir operation release decisions; and (3)
At a medium FH, there is more inflow information than
case (1) and more reliable information than case (2) to sup-
port trade-off analysis between current and future water

use, which induces a large variability of EBR among differ-
ent simulations.

[28] A longer forecast horizon provides more informa-
tion for decision making in a longer time frame but it does
so with a larger uncertainty. Figures 3b and 3c show that
there exists an effective forecast horizon (EFH) beyond
which prolonging FH will not contribute to a decrease in
the error bound, and standard deviation of EBU (EBL) con-
verges to a value depending on FU. Considering that
‘‘EBR ¼ EBU þ EBL’’, the different converging perform-
ances of the standard deviation of EBR, EBU and EBL

Table 1. Parameter Values in the Numerical Experiments.

Experiment Parameters

Streamflow Forecast Reservoir

Cv �flow � �error H l S

Forecast horizon and uncertainty Experiment 1 (�, H) 0.3 0.4 0.00–0.10 0 5–50 0.00 2.0
Forecast horizon and uncertainty Experiment 2 (�error) 0.3 0.4 0.00–0.10 �0.5,0.5 5–50 0.00 2.0
Streamflow variability Experiment 3 (Cv) 0.1–0.5 0.4 0.00, 0.10 0 5–50 0.00 2.0
Reservoir characteristics Experiment 4 (l) 0.3 0.4 0.00, 0.10 0 5–50 0.00–0.10 2.0
Reservoir characteristics Experiment 5 (S) 0.3 0.4 0.00–0.10 0 5–50 0.00 1.0,10.0

Figure 3. (a) Mean and standard deviation of EBR with
FU and FH. (b) Mean and standard deviation of EBU with
FU and FH. (c) Mean and standard deviation of EBL with FU
and FH.

W01540 ZHAO ET AL.: EFFECTIVE FORECAST HORIZON IDENTIFICATION W01540

5 of 15



suggest that : (1) r01 will converge to a value as FH increases
(r01;u and r01;l, the upper and lower bounds of r01, will con-
verge to the same value) [You and Cai, 2008a; You, 2008],
but that value may not reach the optimal level (r�1) due to
the effect of FU; (2) a larger FU induces a larger variability
in the gap between r01 and r�1 across the various simulations.
In reservoir operation analysis, the EFH concept has been
discussed by Simonovic and Burn [1989], who applied
operational forecasts to real-time reservoir operation. By
simulating reservoir operation under different FU levels,
Figures 3b and 3c illustrate that a larger FU induces a
shorter EFH. For example, it takes about 20 periods when
FU ¼ 0.10 for EBU or EBL standard deviation to converge,
about 30 periods when FU ¼ 0.05; and longer than 50
periods when FU ¼ 0.00 (i.e., forecast involves no
uncertainty).

[29] In summary, Figures 3a, 3b, and 3c show that :
when FH is short, the error bound is primarily controlled
by FH and EBR, EBU and EBL exhibit a quick decrease
as FH increases. When FH is long, the control factor on
the error bound switches to FU, because the inflow infor-
mation can be too uncertain to guide reservoir operation;
in this case, although EBR becomes zero (despite FU)
and there is no information to differentiate EBU from
EBL (Figure 3a), EBU and EBL both exhibit a larger var-
iability under a larger FU (Figure 3b and 3c). At a me-
dium length of FH, the gap between r01 and r�1 depends on
the complicating effect of FU and FH, i.e., less but more
reliable versus more but less certain inflow information.
More specifically, the EFH stays with a certain medium
level due to the FU increase induced by a longer FH
which, in turn, offsets the information gain (which
reduces error bound) from the FH increase (Figure 3b
and 3c).

[30] Experiment 2 investigates the impact of the tempo-
ral correlation between single period FU on the error
bounds under various levels of FH, including the negative

correlation (Figure 4, �error ¼ �0:5) and the positive corre-
lation (Figure 5, �error ¼ 0:5). Comparing Figures 4 and 5
to Figures 3a, 3b, 3c, one can observe that: (1) �error, either
positive or negative has a trivial effect on the average val-
ues of EBR, EBU and EBL but a significant effect on the
standard deviation of the error metrics; (2) a negative �error
results in a smaller standard deviation, while a positive
�error induces a high standard deviation. It is worthwhile to
note that �error will not change the magnitude of single
period FU but instead will change the overall FU over the
entire FH. Single period FU will be offset by the uncertain-
ties from other periods under negative correlation and sin-
gle period FUs will cumulate under a positive correlation,
e.g., assuming a Gaussian distribution of "1 and "2,
when var ð"1Þ ¼ 1 and var ð"2Þ ¼ 1, if corrð"1; "2Þ ¼ �0:5
then var ð"1 þ "2Þ ¼ 1 and if corrð"1; "2Þ ¼ 0:5 then
var ð"1 þ "2Þ ¼ 3. The narrowed range of EBR, EBU and
EBL standard deviation under a negative �error and the
expanded range under a positive �error suggests that the
overall FU over all periods specified by FH can have con-
siderable effect on the optimality of reservoir operation de-
cision [Zambelli et al., 2009]. With the same single period
FU level, the forecast with a smaller error correlation
results in lower overall FU and consequently more efficient
reservoir operation.

3.3. Effect of Streamflow Variability

[31] Experiment 3 examines the impact of different
streamflow variability levels. Figure 6 displays the values
of EBR, EBU, EBL from the case of � ¼ 0.00. As can be
seen, a higher Cv involves a smaller average value of EBR
with a faster convergence rate. This implies that with
higher streamflow variability, lengthening FH becomes
more efficient in reducing the decision range (EBR). In the
case of � ¼ 0.10 (Figure 7), the trends of average value and
standard deviation of EBR, EBU and EBL with FH are sim-
ilar to that under the case with � ¼ 0.00, and EFH becomes

Figure 4. Forecast uncertainty temporal correlation’s effect on error bounds (�error ¼ –0.5).

W01540 ZHAO ET AL.: EFFECTIVE FORECAST HORIZON IDENTIFICATION W01540

6 of 15



shorter. While it seems counterintuitive that to obtain a
low-error bound, a longer FH is needed when reservoir
inflow exhibits lower variability (Figure 6 and Figure 7),
but with a fixed storage capacity, a reservoir system can
regulate the inflow with a lower Cv through a longer time
range [Vogel and Stedinger, 1987]. In other words, low var-
iability allows for the exploring for the optimal solution in
a longer timeframe. As a result more information can be
obtained for decision making, and the uncertainty is still
not too high to dominate the decision. As shown in Figure 6,
with a low Cv, both the average value and standard devia-
tion of EBU and EBL exhibit a slow convergence rate
with FH.

[32] Some differences between EBU and EBL under differ-
ent Cv levels are observed: EBL has a slightly larger standard
deviation than EBU as Cv increases, and the difference
between r�1 and r01;u is smaller than that between r�1 and r01;l.
This suggests that a small s0T can induce a lower error bound
(i.e., to use more water within the FH, equation (3)). The
implication of this result is: if the reservoir is less effective in
regulating the highly variable inflow (i.e., Cv is large), to
release more water for current use is more beneficial.

3.4. Effect of Reservoir Characteristics

[33] Experiment 4 studies the effect of storage loss on
reservoir operation. The results under � ¼ 0.00 and

Figure 5. Forecast uncertainty temporal correlation’s effect on error bounds (�error ¼ 0.5).

Figure 6. Streamflow variability’s effect on error bounds when � ¼ 0.00.
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� ¼ 0.10 are shown in Figure 8 and Figure 9, respectively.
Figure 8 shows that EBL exhibits an increasingly higher
average value and standard deviation than EBU as the loss
ratio increases. This implies that as the loss ratio increases,
it becomes more beneficial to set a lower end storage and
to use more water in preceding periods [You and Cai,
2008b; You, 2008]. With high storage loss conditions, a
reservoir is less effective at regulating inflow and inflow in-
formation becomes less important. When comparing EBU
and EBL convergence under different storage loss ratios,
EFH becomes shorter as the storage loss ratio becomes

higher. The � ¼ 0.10 case (Figure 9) is similar to the � ¼
0.00 case, except that the composite of FU and storage loss
causes both the average value and the standard deviation of
EBU and EBL to converge to a nonzero value.

[34] Experiment 5 examines reservoir operation under
both a smaller (s ¼ 1.0, Figure 10) and a larger (s ¼ 10.0,
Figure 11) storage capacity than experiment 1 (s ¼ 2.0,
Figure 3). As s/(�Cv) indicates reservoir regulation capabil-
ity of inflow variability [Vogel and Stedinger, 1987], a
larger s/(�Cv) allows the reservoir to regulate the inflow in
a longer time range. This corresponds to a longer FH. With

Figure 7. Streamflow variability’s effect on error bounds when � ¼ 0.10.

Figure 8. Loss ratio’s effect on error bounds when � ¼ 0.00.
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a smaller storage capacity (Figure 10), the trends of EBR,
EBU, and EBL are similar to those with s ¼ 2.0, while the
magnitude of the error bounds decreases and EFH becomes
shorter. This can be explained by the lower regulation
capability of a smaller reservoir with a given inflow vari-
ability. In this situation, the impact of the forecast, no mat-
ter if it is perfect or subject to error, is limited, and the
difference of the impact between the perfect and the imper-
fect forecasts is small. Thus, the error bounds defined by
this difference are small, and it is not necessary to have a
long EFH. For the extreme case, s ¼ 0, all the error bounds
are zero and the EFH is zero (i.e., for reservoirs with no

storage capacity, the release is equal to the inflow and fore-
cast may not be needed).

[35] In the case of s ¼ 10.0, the minimum FH is set as
ten to prevent the infeasibility of the practical model due to
the generated low-flow conditions. As shown in Figure 11,
the mean values of EBR, EBU, and EBL all decrease with
FH, but they do not converge within the first 50 periods.
This implies that with a larger s/(�Cv), a longer FH is
needed to utilize storage regulating inflow variability, thus
reducing the error bound. It is important to note that with
a large s/(�Cv), the storage constraint becomes less
active in the optimization model [Booker and O’Neill,

Figure 9. Loss ratio’s effect on error bounds when � ¼ 0.10.

Figure 10. Reservoir storage capacity’s effect on error bounds (s ¼ 1.0).
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2006] and to set s0T (equation (3)) as s or s may become nei-
ther necessary nor realistic and EBU and EBL as defined in
this paper will exaggerate the actual range of the reservoir
release decisions. To regulate reservoirs with large s/(�Cv)
(e.g., annual and multiannual reservoirs), balancing
between water usage within FH and beyond FH, establish-
ing a proper end storage level s0T becomes more important.

3.5. An Extended Experiment Considering
Autoregressive Forecast Uncertainty

[36] Experiment 1–5 adopts an additive forecast uncer-
tainty [Lettenmaier, 1984; Graham and Georgakakos,
2010; Zhao et al., 2011]. As a comparison, we design an
extended experiment with an autoregressive forecast uncer-
tainty incorporating the dependence between streamflow qi

and its forecast xi [Weigel et al., 2008; Sankarasubrama-
nian et al., 2009b]

xi ¼ �i þ �iðqi � �iÞ þ � i: (11)

In equation (11), i is time index, �i is the average of
streamflow in period i, �i is the correlation between xi and
qi, and � i is the random disturbance with a mean of
ð1� �iÞ�i and a variance of ð1� �2

i Þ�2C2
v . For the forecast

generated with equation (11), �i indicates the forecast
skills ; �i ¼ 1 implies that xi ¼ qi (perfect forecast). In gen-
eral, we can assume that the forecast skill decreases with
FH increase

�i ¼ max ð0; 1� i�Þ (12)

Equation (12) ensures that �i is not negative [Weigel et al.,
2008]; � represents the forecast uncertainty magnitude and
it is analogy to � in equation (9).

[37] Weigel et al. [2008] proposed the innovative model
(10) to evaluate streamflow forecast and suggested that in

equation (11), � i can be in the form of either a deterministic
random disturbance (��) or an ensemble of disturbances
½�1; �2; . . . ; �M �T

� i ¼ ��

� i ¼

�1

�2

..

.

�M

0
BBBBB@

1
CCCCCA
:

8>>>>>>>><
>>>>>>>>:

(13)

As shown by Weigel et al. [2008], when � i ¼ ��, xi ¼
�i þ �iðqi � �iÞ þ ��, which represents a deterministic
forecast, � i ¼ �� cannot interpret the distribution of � i and
the forecast (xi) is overconfident; when � i¼½�1;�2; . . . ;
�M �T , xi¼�iþ�iðqi��iÞþ½�1;�2; . . . ;�M �T , which repre-
sents a well dispersed ensemble forecast and can interpret
forecast uncertainty well.

[38] This experiment uses � in equation (12) to indicate
the magnitude of forecast uncertainty and equations (11)–
(13) to synthesize a forecast, through which the effect of
FH and FU on the optimality of r01 in both deterministic
and ensemble forecast conditions can be examined. We
evaluate three levels of � (0.00, 0.02 and 0.04) and set other
parameters used in this experiment the same as those in
experiments 1–5. It should be noted that the ensemble fore-
cast corresponds to a stochastic case, for which the monoto-
nicity property between reservoir release and ending
storage is adopted and the improved stochastic dynamic
programming algorithm proposed in the work of Zhao
et al. [2012] to handle ensemble forecast is employed. The
average and standard deviation of EBR, EBU, and EBL in
the deterministic and ensemble forecast cases are plotted in
Figure 12 and Figure 13, respectively.

Figure 11. Reservoir storage capacity’s effect on error bounds (s ¼ 10.0).
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[39] As can be seen from Figure 12 and Figure 13, in
both deterministic and ensemble forecast cases, the average
value and standard deviation of the error bound metrics ex-
hibit a decreasing trend when FH increases. The value of
standard deviation of EBR converges to 0 while that of
EBU, EBL converges to a certain value depending on FU:
a larger FU induces a quicker convergence rate, which
again shows the complicating effect of FU and FH and the
existence of the EFH as discussed in section 3.2–3.4. At the
same FU level, EFH in both deterministic and ensemble
forecast cases are in general the same. However, ensemble
forecast results in significantly lower standard deviation of

EBU and EBL than the deterministic forecast. This shows
that an ensemble forecast can be more efficient in guiding
reservoir decision making [Carpenter and Georgakakos,
2001; Faber and Stedinger, 2001; Valeriano et al., 2010;
Zhao et al., 2011].

4. A Real-World Case Study
[40] The analysis described above is applied to a real-

world case study—the Danjiangkou Reservoir, one of the
major reservoirs for water transfer in the central route of
the South-North Water Transfer Project (SNWTP) in

Figure 13. Error bounds under ensemble forecast uncertainties.

Figure 12. Error bounds under deterministic forecast errors.
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China. The retrospective analysis period is selected as June
1 to September 30 in 2008 (122 days). The series of inflow
and water demand in the period are plotted in the upper
part of Figure 14.

[41] The case study focuses on the water supply function
of the reservoir and the objective function is chosen as min-
imizing the shortage index:

min SI ¼
X122

i¼1

TSi

TDi

� �2

(14)

in which i is the time index (i ¼ 1, 2, . . . 122); TDi is the
water demand in period i ; TSi is the water shortage defined
as below

TSi ¼ max ð0; TDi � riÞ (15)

The constraints are similar to that in equation (3). s and s
are set as 121.0 � 108 m3 and 146.6 � 108 m3, respec-
tively; the release constraint is not considered. Since the
reservoir also serves for flood control, as well as water sup-
ply, during the study period, the ending storage s0T is set as
the minimum storage (s ) for flood control, 12.1 billion m3.
As s0T is set as the minimum following the flooding control
regulation and r01 is the maximum, only EBU described in
section 3 is analyzed for the case study.

[42] The autoregressive forecast uncertainty is incorpo-
rated into the retrospective analysis in a rolling time win-
dow, as shown in Figure 1. In each day, a deterministic
streamflow forecast within the FH is generated using equa-
tions (11)–(13) and it is assumed that the forecast error � i

fits a gamma distribution with the mean of ð1� �iÞ�i and

the variance of ð1� �2
i Þ�2C2

v [Sankarasubramanian et al.,
2009b]. In the rolling horizon reservoir operation (Figure 1),
the release decision of the current day determined by the
optimization model is implemented, and the reservoir stor-
age is updated to next day. In the numerical experiments,
FH is varied from 3 days to 15 days and three � levels (� ¼
0.00, 0.05, and 0.10) are tested. The results that illustrate
the relationships between FU, FH and average shortage
index are presented in the lower part of Figure 14.

[43] As can be seen from Figure 14, at the same FH
level, the lower the FU, the better the reservoir perform-
ance; meanwhile, at the same FU level, if there is no uncer-
tainty (� ¼ 0.00), the longer FH, the better the reservoir
performance; while if FU exists, to prolong FH beyond a
certain threshold (i.e., EFH) will even decline the reservoir
performance. EFH ¼ 12 corresponding to � ¼ 0.05 and
EFH ¼ 7 when � ¼ 0.10, which verifies that a larger FU
ends with a shorter EFH.

5. Discussions and Conclusions
[44] In real-time reservoir operation, FH and FU can

affect reservoir release decisions in a complicating manner
as the forecast can be too uncertain if it is too long (i.e., in-
formation is not reliable) or too short to support decision
making effectively. This paper addresses the complicating
effect of the two factors using an optimization model estab-
lished in the framework of rolling horizon decision making.
Given a concavity (i.e., diminishing marginal utility)
assumption of the reservoir utility function, it is proved that
a monotonicity relation exists between the first period (i.e.,
current) release decision and the ending storage. Based on
this property, three error bound metrics are proposed to

Figure 14. Danjiangkou reservoir water supply operation evaluation under different FU and FH condi-
tions (Note: average shortage index with perfect forecast guided reservoir operation (FH ¼ 122 and � ¼
0.00) is 0.116 and that without forecast guided reservoir operation is 0.186).
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evaluate the performance of reservoir operation with an
imperfect inflow forecast characterized.

[45] From numerical experiments with a hypothetical
reservoir operation model incorporating a synthetic forecast
generator, it is found that (1) when FH is short, reservoir
decision is primarily controlled by FH and the reservoir
performance is improved significantly (error bounds
decreases largely) as FH increases; (2) when FH is long,
the control factor on reservoir decision is switched to FU,
because the inflow information can be too uncertain to
guide reservoir operation; (3) at a medium FH, reservoir
performance depends on the complicating effect of FU and
FH (i.e., less but more reliable versus more but less certain
inflow information) and EFH stays with a certain medium
level with a balanced level of FU and FH. In general, EFH
is shorter with a higher FU but the relation depends on
inflow variability and reservoir characteristics.

[46] Numerical experiments also show the impact of the
various factors on the EFH. A smaller temporal correlation
between FU in single periods results in lower overall FU
and consequently more efficient reservoir operation. Lower
inflow variability allows a longer timeframe to explore the
optimal solution and results in a longer EFH. A reservoir
with a large storage loss is less effective at regulating inflow,
and inflow information becomes less important. A reservoir
with a large storage capacity can regulate inflow through a
longer time range. We also verify the complicating effect of
FH and FU and illustrate the statistical characteristics of
EFH under both deterministic and ensemble forecast cases.
Although the ensemble forecast leads to a better reservoir
performance, there is not a significant difference between
the EFH resulting from the two forecasts, which is probably
due to the existence of FU in the two cases.

[47] Moreover, this study shows how to obtain statistical
characteristics of EFH through Monte Carlo simulations, as
well as identifying the influencing factors of EFH. For a
real-world reservoir system, the characteristics of EFH can
be identified by retrospective analysis with historical inflow
time series and synthetic forecast generators with forecast
uncertainty statistics. Given stochastic forecast uncertainty,
it is not realistic to identify a deterministic EFH. However,
the statistical characteristics of EFH based on retrospective
analysis are valuable to real-time reservoir operation.

Appendix A

A1. Theorem
[48] Given a predetermined forecast horizon FH and

inflow forecast [ x1 x2 . . . xH ], if the reservoir release
utility function fi() exhibits a diminishing marginal utility
property (i.e., concavity and f 00i () < 0), then r01 underlying a
given s0T will not increase if s0T increases.

A2. Proof
[49] This theorem can be proved by the falseness of its

counter proposition: for two ending storage levels s0T ;1,
s0T ;2 of the practical model in equation (3), denoting the
corresponding optimal release decision sequences are
R01¼ ½r

0
1;1 r02;1 . . . r0H ;1 �, R02¼ ½r

0
1;2 r02;2 . . . r0H ;2 � respec-

tively, and the corresponding optimal storage sequences are

S01¼ ½s
0
1;1 s02;1 . . . s0H ;1 �, S02¼ ½s01;2 s02;2 . . . s0H ;2 �,

respectively.
[50] If the counter proposition is true, then there exist two

end storage levels s0T ;1 <s0T ;2 and

r01;1 < r01;2 (A1)

[51] By equations (3a), (3b), and (3c), we can deduce that

ð1� lÞH s0 þ
XH

i¼1

½ð1� lÞH�iðxi � r0iÞ� ¼ s0T : (A2)

[52] With equation (A2), we can get

XH

i¼1

½ð1� lÞH�iðr0i;1 � r0i;2Þ� ¼ s0T ;2 � s0T ;1: (A3)

[53] Since s0T ;1 <s0T ;2, then

XH

i¼1

ð1� lÞH�ir0i;1 >
XH

i¼1

ð1� lÞH�ir0i;2: (A4)

[54] If r01;1 < r01;2, then according to equation (A4), there
is at least one integer i (1 < i � H) satisfying that

r0i;1 > r0i;2: (A5)

[55] Suppose k is the minimum of such integers i and denote

"1 ¼ min ½r01;2 � r01;1; ð1� lÞ1�kðr0k;1 � r0k;2Þ�

"k ¼ min ½ð1� lÞk�1ðr01;2 � r01;1Þ; r0k;1 � r0k;2�
;

8<
: (A6)

[56] "1 and "k show a relationship

"k ¼ ð1� lÞk�1"1: (A7)

[57] Create a new solution NR01 for the end storage level
s0T ;1 as

NR01 ¼ ½~r
0
1;1 . . . ~r0k;1 . . . ~r0H ;1 �

¼ ½ r01;1 þ "1 . . . r0k;1 � "k . . . r0H ;1 �
: (A8)

[58] NR01 will be a feasible solution of the practice model
for the following:

[59] 1. Since r � r01;1 < r01;1 þ "1 ¼ ~r01;1 � r01;2 � r and
r � r0k;2 � r0k;1 � "k ¼ ~r0k;1 < r0k;1 � r, the solution NR01 sat-
isfies the release constraint ;

[60] 2. Denote the storage sequence NS01 corresponding to
NR01 as

NS01 ¼ ½~s01;1 ~s02;1 . . . ~s0k�1;1 ~s0k;1 . . . ~s0H ;1 �

¼ ½ s01;1 � "1 s02;1 � "2 . . . s0k�1;1 � "k�1 s0k;1 . . . s0H ;1 �
(A9)

In equation (A9), "i ¼ ð1� lÞi�1"1 ðj ¼ 1; . . . ; k � 1Þ.
Since s � s0j;2 � s0j;1 � "j ¼ ~s0j;1 < s0j;1 � s ðj ¼ 1; . . . ; k � 1Þ
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and ~s0j;1 ¼ s0j;1 ðj ¼ k; . . . ;HÞ, the solution NR01 also satisfies
the storage constraint.

[61] Since R01 and NR01 are the optimal solution and a fea-
sible solution for s0T ;1, respectively, we can get

XH

i¼1

ð1þ dÞ1�i fiðr0i;1Þ �
XH

i¼1

ð1þ dÞ1�ifið~r0i;1Þ

¼ f1ðr01;1Þ þ ð1þ dÞ1�k fkðr0k;1Þ

� f1ð~r01;1Þ � ð1þ dÞ1�k fkð~r0k;1Þ

¼ f1ðr01;1Þ þ ð1þ dÞ1�k fkðr0k;1Þ

� f1ðr01;1 þ "1Þ � ð1þ dÞ1�k fkðr0k;1 � "kÞ
> 0

(A10)

[62] Perform the taylor expansion for equation (A10) and
omit the second-order items; from this we can derive

1� l

1þ d

� �k�1 dfkðrÞ
dr

�����
r0k;1

� df1ðrÞ
dr

�����
r01;1

> 0 (A11)

[63] Based on the diminishing marginal utility assumption
of fi(), since r01;1 < r01;2 and r0k;1 > r0k;2, we can get

df1ðrÞ
dr

�����
r01;2

<
df1ðrÞ

dr

�����
r01;1

; (A12)

dfkðrÞ
dr

�����
r0k;2

>
dfkðrÞ

dr

�����
r0k;1

; (A13)

[64] From equations (A11), (A12), and (A13), we can
deduce that

1� l

1þ d

� �k�1 dfkðrÞ
dr

�����
r0

k;2

� df1ðrÞ
dr

�����
r01;2

>
1� l

1þ d

� �k�1 dfkðrÞ
dr

�����
r0k;1

� df1ðrÞ
dr

�����
r01;1

> 0

: (A14)

[65] Create a new solution NR02 for the end storage level
s0T ;2 as

NR02 ¼ ½~r
0
1;2 . . . ~r0k;2 . . . ~r0H ;2 �

¼ ½ r01;2 � "1 . . . r0k;2 þ "k . . . r0H ;2 �
: (A15)

NR02 is a feasible solution, for which the proof is similar to
that of NR01.

[66] Make Taylor expansion for
XH

i¼1

ð1þ dÞ1�ifiðr0i;2Þ�XH

i¼1

ð1þ dÞ1�ifið~r0i;2Þ, we can get that

XN

i¼1

ð1þ dÞ1�ifiðr0i;2Þ �
XN

i¼1

ð1þ dÞ1�ifið~r0i;2Þ

¼ f1ðr01;2Þ þ ð1þ dÞ1�k fkðr0k;2Þ

� f1ð~r01;2Þ � ð1þ dÞ1�k fkð~r0k;2Þ

¼ f1ðr01;2Þ þ ð1þ dÞ1�k fkðr0k;2Þ

� f1ðr01;2 � "1Þ � ð1þ dÞ1�k fkðr0k;2 þ "kÞ

� � 1� l

1þ d

� �k�1 dfkðrÞ
dr

�����
r0

k;2

� df1ðrÞ
dr

�����
r01;2

0
@

1
A"1

: (A16)

[67] As R02 is the optimal solution for s0T ;2, we can deduce
that

1� l

1þ d

� �k�1 dfkðrÞ
dr

�����
r0k;2

� df1ðrÞ
dr

�����
r01;2

< 0: (A17)

Equations (A17) is a contradiction to equation (A14), so
the counter proposition in equation (A1) is false and the
theorem is true.

Appendix B
[68] The forecast uncertainty sequence ½ "1 "2 . . . "H �

contains H (i.e., forecast horizon) elements with increasing
standard deviation with forecast lead time (equations (8)
and (9)) and a correlation �error between forecast errors of
two consecutive periods.

[69] We use the variance-covariance matrix of
½ "1 "2 . . . "H � to generate this sequence

VCV¼

&2
1 �error&1&2 	 	 	 0 0

�error&1&2 &2
2 	 	 	 0 0

..

. ..
. . .

. ..
. ..

.

0 0 	 	 	 &2
H�1 �error&H�1&H

0 0 	 	 	 �error&H�1&H &2
H

2
666666664

3
777777775
:

(B1)

[70] As the VCV matrix is semidefinite, it can be decom-
posed into the product of a matrix multiplied by its trans-
pose through Cholesky decomposition, i.e.,

VCV¼ V �V T : (B2)

[71] Denote ½	1; 	2; . . . ; 	H � as a vector of H independent
variables with identical standard Gaussian distribution,
then by transposing ½	1; 	2; . . . ; 	H � with V T , i.e.,

½#1;#2; . . . ;#H � ¼ ½	1; 	2; . . . ; 	H �V T ; (B3)

we get H new random variables and we can verify that
½#1;#2; . . . ;#H � are Gaussian random variables whose var-
iance-covariance matrix is identical to VCV.

[72] Thus by setting

½ "1 "2 . . . "H � ¼ ½#1; #2; . . . ; #H �; (B4)
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we generate the forecast uncertainty sequence with prede-
fined statistical characteristics.
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