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[1] The coupled water-energy balance on long-term time and catchment scales can be
expressed as a set of partial differential equations, and these are proven to have a
general solution as E/P = F(E0/P, c), where c is a parameter. The state-space of (P, E0, E) is
a set of curved faces in P � E0 � E three-dimensional space, whose projection into E/P �
E0/P two-dimensional space is a Budyko-type curve. The analytical solution to the
partial differential equations has been obtained as E = E0P/(P

n + E0
n)1/n (parameter n

representing catchment characteristics) using dimensional analysis and mathematic
reasoning, which is different from that found in a previous study. This analytical solution
is a useful theoretical tool to evaluate the effect of climate and land use changes on
the hydrologic cycle. Mathematical comparisons between the two analytical equations
showed that they were approximately equivalent, and their parameters had a perfectly
significant linear correlation relationship, while the small difference may be a result of the
assumption about derivatives in the previous study.
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1. Introduction

[2] The water-energy balance for a catchment over a
long-term timescale describes the relationship between the
components of water and heat balances of land [Budyko,
1974, p. 322], e.g., the partition of precipitation (P) into
evapotranspiration (E) and runoff (R) controlled.
[3] Many attempts have been made to formulate the mean

annual water-energy balance [Schreiber, 1904; Ol’dekop,
1911]. Budyko [1958] found that the actual evapotranspira-
tion calculated by Schreiber’ equation was lower than ob-
served, while the values calculated by Ol’dekop’s equation
were higher than those observed, and hence he employed the
geometric mean of the two equations. Pike [1964] suggested
a different equation. Budyko [1974] summarized that the
primary factors determining the rate of evapotranspiration
for a long-term mean were the available energy and water.
Since potential evapotranspiration (E0) can measure the
available energy, and precipitation (P) can represent the
available water, the Budyko hypothesis can be expressed as

E=P ¼ F0 E0=Pð Þ; ð1Þ

in which the function F0 was supposed to have a common
form.
[4] In recent years, climate changes are increasingly

significant [Intergovernmental Panel on Climate Change
(IPCC), 2001]; the impact on the water cycle becomes a
focus of hydrological and climatic studies. The Budyko
hypothesis, as an important theoretical tool, has been widely

used to appraise the impact. For evaluating the sensitivity of
runoff (R) to precipitation (P), Schaake [1990] derived the
climate elasticity

eP P;Rð Þ ¼ @R

@P
� P
R

(@R/@P was derived using Budyko curve). In order to
forecast the change in runoff rate due to precipitation and
potential evapotranspiration changes, hydrometeorologists
[Dooge et al., 1999; Arora, 2002] proposed a sensitivity
factor for runoff,

DR

R
¼ 1þ fF 0

0 fð Þ
1� F0 fð Þ

� �
DP

P

fF 0
0 fð Þ

1� F0 fð Þ
DE0

E0

(f = E0/P, and F0
0(f) is the derivative with respect to f).

Koster and Suarez [1999] estimated the evaporation
variability to be as climatic forcing as the evapotranspiration
deviation ratio,

sE

sP

¼ F0 fð Þ � fF 0
0 fð Þ

(sE and sP are the standard deviations of E and P,
respectively). In these quantitative analyses, the derivatives
of F0 have been used.
[5] The form of F0 (including these equations referred

above) has no parameter, so it is unable to capture the role
of landscape characteristics (including vegetation). Consid-
ering the effects of landscape characteristics, an adjustable
parameter was introduced [Choudhury, 1999; Zhang et al.,
2001]. However, there is lack of hydrological consideration
on choosing the particular form of water-energy balance
equation. Table 1 summarizes the formulae commonly used
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for representing the mean annual water-energy balance. In
addition, vegetation also has an effect on hydrologic cycle,
any changes of which should be captured in the mean
annual water-energy balance equation. Therefore an analyt-
ical solution to the water-energy balance equation, which
includes not only the catchment characteristics (including
vegetation) but also their changes, is expected.
[6] Bagrov [1953] first attempted to derive the analytical

equation for the mean annual water-energy balance by
introducing a first derivative dE/dP = 1� (E/E0)

n.Mezentsev
[1955] modified it as dE/dP = [1 � (E/E0)

n]m by assuming
m = (n + 1)/n. Integrating the equation above, he obtained

E ¼ PE0= Pn þ En
0

� �1=n
: ð2Þ

[7] However, it was not explained why the derivative
of dE/dP was the form proposed by them. Fu [1981]
described the Budyko hypothesis as partial differential
equations @E/@P = f (E0 � E, P), when E0 = const; and
@E/@E0 = g(P � E, E0), when P = const. Through dimen-
sional analysis and mathematical reasoning, one analytical
solution was derived [Fu, 1981; Zhang et al., 2004] as

E

P
¼ 1þ E0

P
� 1þ E0

P

� �v� �1=v
or

E

E0

¼ 1þ P

E0

� 1þ P

E0

� �v� �1=v
: ð3Þ

[8] It can be recognized that the partial differential
equations @E/@P = f (E0 � E, P) and @E/@E0 = g(P � E, E0)
describe the supposed conditions in which the derivative of
E with respect to P (or E0) can be given as a function of the
variables E0 � E and P (or P � E and E0); under general
conditions, it is nevertheless possible that the derivative of E
with respect to P (or E0) cannot be given in this form, but
only as a function of the variables E0, E and P instead.
Therefore an analytical derivation of the water-energy
balance equation, under general conditions, is required.
[9] This paper aims to prove the existence of a unique

solution to the mean annual water-energy balance equation
and to find the analytical solution under general conditions.
This will supply a theoretical tool for further studies on
the evapotranspiration of catchments with different land-
scapes, and the impacts of land use changes and climate
changes on the water cycle. With the state space (P, E0, E),
we expect an increased understanding on the hydrological

mechanisms implicated in the mean annual water-energy
balance equation.

2. Theoretical Derivation of the Mean Annual
Water-Energy Balance Equation

[10] For the long-term timescale, the soil moisture can
reach an equilibrium state s0 [Eagleson, 1978]; this equilib-
rium soil moisture can be expressed as a function of mean
annual precipitation, potential and actual evapotranspiration:

s0 ¼ s P;E0;Eð Þ: ð4Þ

[11] On the other hand, E can be given by the function
of potential evapotranspiration (defined as the evapotrans-
piration capacity, and estimated using the Penman equation
as recommended by Shuttleworth [1993], i.e., the apparent
potential evapotranspiration referred by Brutsaert and
Parlange [1998]), precipitation and soil moisture as E =
E(E0, P, s0). Mathematically, the mean annual actual evapo-
transpiration can be expressed as an implicit function as
follows:

E ¼ E E0;P; s P;E0;Eð Þ½ 	 ¼ E P;E0;Eð Þ: ð5Þ

[12] In equation (5), E is not expressed as a function of P
and E0, but instead as an implicit function of P, E0, and E,
since E indirectly represents the catchment surface charac-
teristics (because E may be different in different catchments
even if E0 and P are the same). This also means that E
depends on E0 and P, as well as the catchment character-
istics (including vegetation). When there is no water inflow
from the adjacent catchments over the long-term mean, the
zero-order boundary conditions for equation (5) can be
given by

E ¼ E0;P=E0 ! 1
E ¼ 0;P ¼ 0

E ¼ P;E0=P ! 1
E ¼ 0;E0 ¼ 0

;

8>><
>>:

ð6Þ

and the first-order boundary conditions can also be given by

@E

@P
¼ 0; P=E0 ! 1; or E ¼ E0

@E

@E0

¼ 0; E0=P ! 1; or E ¼ P

@E

@P
¼ 1; P ! 0; E0 6¼ 0

@E

@E0

¼ 1; E0 ! 0; P 6¼ 0

:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

[13] It is also possible to find out higher-order boundary
conditions with further understanding of the evapotranspi-
ration mechanism.
[14] On the basis of equation (5), the derivatives of E

with respect to P, and E0 can be expressed as follows,
respectively:

@E

@P
¼ F P;E0;Eð Þ

@E

@E0

¼ G P;E0;Eð Þ
;

8>>><
>>>:

ð8Þ

Table 1. Different Formulae for the Mean Annual Water-Energy

Balance

Formula Parameter Reference

E = P[1 � exp (�E0/P)] none Schreiber [1904]
E = E0 tanh (P/E0) none Ol’dekop [1911]

E = P/[1 + (P/E0)
2]0.5 none Pike [1964]

E = {P[1 � exp(�E0/P)]
� E0 tanh (P/E0)}

0.5
none Budyko [1958]

E = P/[1 + (P/E0)
a]1/a a Mezentsev [1955]

Choudhury [1999]
E = P[1 + w(E0/P)]/

� [1 + w(E0/P) + P/E0]
w Zhang et al. [2001]
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in which F(P, E0, E) and G(P, E0, E) represent functions of P,
E0, and E. The total differential form of E can be given as

dE ¼ @E

@P
dP þ @E

@E0

dE0;

and substitution of equation (8) into this yields

F P;E0;Eð ÞdP þ G P;E0;Eð ÞdE0 � dE ¼ 0; ð9Þ

which is a Pfaffian equation in mathematics.
[15] Mathematically, a necessary condition for equation (8)

to have a solution is that equation

@F

@E0

þ G
@F

@E
¼ @G

@P
þ F

@G

@E

has to have one. This equation can transform into

G � @F

@E

� �
þ F

@G

@E

� �
þ @F

@E0

� @G

@P

� �
¼ 0: ð10Þ

[16] For equation (10), it is essential that the Pfaffian
equation be completely integrable. In other words, if equation
(8) has a solution, equation (9) is completely integrable.
Therefore an integrating factor exists as m(P, E0, E), and
then multiplying both sides of equation (9) with this factor
yields dU = m(FdP + GdE0 � dE) = 0. Integrating this
equation leads to following expression:

U P;E0;Eð Þ ¼ c; ð11Þ

where c is a constant for a particular catchment. Equation (11)
describes a set of curved faces with only one parameter in
the state-space (P, E0, E). In response to the theorem of the
Pfaffian equation, if a Pfaffian equation is completely
integrable in the domain D, any point in the domain D
belongs to one and only one of these curved faces. It
explains that the analytical solution to the mean annual
water-energy balance equation must have a single para-
meter, and can be used for describing the domain D
specified by the boundary conditions in equations (6) and
(7). This also suggests the existence of a unique solution to
the mean annual water-energy balance equation. One curved
face describes the relationship of the water-energy balance
for catchments with an identical parameter c which
represents the catchment characteristics.
[17] According to the Buckingham pi theorem, we define

two dimensionless variables as p1 = E0/P and p2 = E/P, and
equation (11) transforms into p2 = F1(p1, c), i.e.,

E=P ¼ F1 E0=P; cð Þ: ð12Þ

where F1 represents a function. Equation (12) is similar to
the Budyko hypothesis (equation (1)). In addition, this
shows that the analytical equation of the mean annual water-
energy balance has only one parameter.
[18] Only a single dimension is on the right-hand side of

the equation (8), while a dimensionless number is on the
left-hand side. We define two dimensionless variables as

x ¼ P

E
; y ¼ E0

E
; ð13Þ

where x and y represent the effects of available water and
energy on the evapotranspiration of catchments, respectively.
According to the Buckingham pi theorem, equation (8)
transforms into

@E

@P
¼ f x; yð Þ

@E

@E0

¼ g x; yð Þ

8>><
>>:

: ð14Þ

[19] Assumption of P and E0 being independent (i.e.,
@P/@E0 = 0) yields the differentiation of equation (14):

@2E

@E0@P
¼ @f

@x

@x

@E0

þ @f

@y

@y

@E0

¼ � P

E2
g
@f

@x
þ E � E0g

E2

@f

@y

@2E

@P@E0

¼ @g

@y

@y

@P
þ @g

@x

@x

@P
¼ � E0

E2
f
@g

@y
þ E � Pf

E2

@g

@x

8>>><
>>>:

:

[20] As long as E is second-order continuous and differ-
entiable, the equation

@2E

@E0@P
¼ @2E

@P@E0

can be obtained. Hence

� P

E2
g
@f

@x
þ E � E0g

E2

@f

@y
¼ �E0

E2
f
@g

@y
þ E � Pf

E2

@g

@x
: ð15Þ

[21] To solve equation (15), two equations are given as

� P

E2
g
@f

@x
¼ �E0

E2
f
@g

@y
; ð16aÞ

E � E0g

E2

@f

@y
¼ E � Pf

E2

@g

@x
: ð16bÞ

[22] The solution satisfying equations (16a) and (16b) is
the solution to equation (15). One solution to equation (16a)
is

f x; yð Þ ¼ xay yð Þ
g x; yð Þ ¼ ya8 xð Þ

�
; ð17Þ

where 8(x) is a function of x; y(y) is a function of y.
Substituting equations (13) and (17) into (16b) yields

ya 1� xaþ1y yð Þ
� 

80 xð Þ ¼ xa 1� yaþ18 xð Þ
� 

y 0 yð Þ: ð18Þ

[23] When a + 1 6¼ 0, it has

y yð Þ ¼ A1y
aþ1

8 xð Þ ¼ A1x
aþ1 ;

�
ð19Þ

where A1 is an integral constant. When a + 1 > 0, for the
boundary condition y!1 and x 6¼ 0, f (x, y) = xaA1 y

a+1!1,
i.e., @E/@P ! 1, which does not satisfy the boundary
condition @E/@P = 1/P ! 0, E0 6¼ 0. When a + 1 < 0, for
the boundary condition x ! 1, it has y ! 1, so f (x, y) =
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xaA1y
a+1! 0, and y 6¼ 0, i.e., @E/@P! 0, which also does not

satisfy the boundary condition @E/@P = 1, P ! 0, E0 6¼ 0.
When a + 1 = 0, equation (18) transforms into

x

1� 8 xð Þ
@8 xð Þ
@x

¼ y

1� y yð Þ
@y yð Þ
@y

; ð20Þ

where x and y are independent variables, so both sides of
equation (20) must equal a constant n, i.e.,

x

1� 8 xð Þ
@8 xð Þ
@x

¼ y

1� y yð Þ
@y yð Þ
@y

¼ n:

[24] Integration leads to the following expression:

y yð Þ ¼ 1þ A

yn

8 xð Þ ¼ 1þ B

xn

8><
>: ; ð21Þ

where A and B are integral constants. Substituting equations
(13), (14), and (17) into (21) yields

@E

@P
¼ E

P
1þ A

En

En
0

� �

@E

@E0

¼ E

E0

1þ B
En

Pn

� �
8>><
>>:

: ð22Þ

[25] Since E = 0 when E0 = 0 or P = 0, therefore E =
PE0z(P, E0) (where z(P, E0) is a function of P and E0), and
substituting it into equation (22) yields

Az
PE0zð Þn

En
0

¼ P
@z
@P

Bz
PE0zð Þn

Pn
¼ E0

@z
@E

8>><
>>:

: ð23Þ

[26] Integration of equation (23) gives

z P;E0ð Þ ¼ 1

�BPn � AEn
0 þ C

� �1=n ;

so

E ¼ E0P

�BPn � AEn
0 þ C

� �1=n ; ð24Þ

since E = E0 when P/E0 ! 1, and therefore B = �1; E = P
when E0/P ! 1, and therefore A = �1; E = P when P ! 0,
and therefore C = 0. Therefore equation (24) becomes

E ¼ E0P

Pn þ En
0

� �1=n ; ð25Þ

which has the same form as the equation proposed by
Mezentsev [1955] and Choudhury [1999] but is different
from the analytical equation given by Fu [1981].

3. Discussion

3.1. State Space of Mean Annual Water-Energy
Balance

[27] The state space (P, E0, E) is defined as the solution
space of the mean annual water-energy balance equation,
which is specified by two asymptotic faces. In the state
space, one curved face, corresponding to a certain parameter
c (or n), describes the water-energy balance for a certain
catchment. In other words, when the parameter is given, the
unique curved face is also determined (i.e., E is determined
when P and E0 are given for a certain catchment). As shown
in Figure 1, two asymptotes join at point A at which E, P,
and E0 are equal; OA is the wet edge at which E = E0, and
AB is the dry edge at which E = P. The state space (P, E0, E)
is below the asymptote OAB. The state space (P, E0, E) can
be projected into the two-dimensional space (E0/P, E/P),
and the relationship between E0/P and E/P is referred to as
the Budyko [1974] hypothesis. In the two-dimensional space
(E0/P, E/P), the shape of the curve is determined by
parameter n. The curve close to the x-axis (n ! 0) describes
the water-energy balance relationship in the catchments
with a very low water storage in the subsurface, such as
the rocky, mountain catchments, where the precipitation
completely transforms into runoff. The curve close to OAB
(n ! 1) describes the water-energy balance in the catch-
ments with a very high water storage in the subsurface, such
as the plain catchments with a deep quaternary soil layer,
where E can reach the maximum (i.e., E0 in a humid climate
and P in an arid climate).

3.2. Comparing Different Formulae for the Mean
Annual Water-Energy Balance

[28] In addition to equation (25) and Fu’s equation, other
equations, as listed in Table 1, can also be shown to satisfy
the boundary conditions in equations (6) and (7). This
indirectly confirms the validity of these boundary conditions.
Nevertheless, their solution spaces are not equivalent to the
state space (E0/P, E/P), since, as an analytical solution,
satisfying the boundary conditions is a necessary but not
sufficient condition. In mathematics, a function f1(w) can be

expressed as a series of f1(w) =
Pm
i¼0

ai(w � w0)
i, which

represents the expansion at w = w0. If the function form of
f1(w) is unknown, to obtain its mathematical representation
through a nonanalytical derivation may require boundary
conditions from 0-order to m-order for fixing the parameter
ai (i = 0, 1, . . ., m). Therefore it is possible that some
equations, as given in Table 1, cannot satisfy the higher-
order boundary conditions, but satisfies the 0-order and
1-order boundary conditions, and they only approximate the
analytical solution as a result of neglecting higher-order
differences. Different from a nonanalytical derivation, in an

Figure 1. Solution space for the water-energy balance.
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analytical derivation, boundary conditions are expected to
resolve undetermined parameters (e.g., the integral constants
when solving a partial differential equation).
[29] The solution space of the equation introduced by

Zhang et al. [2001] is not equivalent to the state space (P,
E0, E), for example, point (0.40, 0.42) given by Zhang’s
equation (w = 2) is not included in the state space (Figure 2).
This means that Zhang’s equation does not agree with the
wet boundary condition (the asymptote OA).
[30] It can be shown that the solution spaces given by

Fu’s equation (equation (3)) and equation (25) have the
same asymptote OAB (see Appendix A), and they are the
state space (P, E0, E). It can be concluded that only Fu’s
equation and equation (25) are possible analytical solutions
to the mean annual water energy balance equation.

3.3. Difference Between Fu’s Equation and
Equation (25)

[31] If there exists only a single analytical solution to the
mean annual water-energy balance equation, Fu’s equation
and equation (25) should be comparable, and its necessary
and sufficient condition is

P þ E0 � Pv þ Ev
0

� 1=v¼ E0P

Pn þ En
0

� �1=n : ð26Þ

[32] Dividing both sides by E0, the above equation yields

P=E0ð Þ þ 1� P=E0ð Þvþ1½ 	1=v¼ 1

1þ E0=Pð Þn½ 	1=n
: ð27Þ

[33] Define z = P/E0, and we have

f1 zð Þ ¼ 1þ z� 1þ zv½ 	1=v� 1

1=zð Þnþ1½ 	1=n
¼ 0: ð28Þ

[34] If the two equations are comparable, parameter n
should have a unique relationship with parameter v, and the
relationship should be independent from P, E, and E0. The
Taylor expansion of equation (28) at z = 1 can be written as

f1 zð Þ ¼ 2� 21=v � 2�1=n
� �

þ 1

2
2� 21=v � 2�1=n

� �
z� 1ð Þ

þ 1

8
nþ 1ð Þ2�1=n � v� 1ð Þ21=v

h i
z� 1ð Þ2

þ O z� 1ð Þ3¼ 0: ð29Þ

[35] In nonhumid regions, z  1, neglecting the small
quantity (z � 1)2 and its higher order, equation (29) trans-
forms into

21=v ¼ 2� 2�1=n: ð30Þ

[36] Similarly, in humid and subhumid regions, defining
z = E0/P  1, and equation (28) will be obtained. Therefore
equation (30) still comes into existence. Thus it can be
concluded that the two equations are approximately similar
solutions to the mean annual water-energy balance equation.
[37] In addition, the parameters v and n were calibrated

using long-term water balance data from 108 catchments of
the nonhumid regions of China. These catchments have
relatively few human alterations (e.g., dams and irrigation)
to interfere with the water balance. Monthly discharge data
for each catchment have been collected from 1960 to 2000.
Daily meteorological data are available from 238 stations
between 1960 and 2000. The procedures for calculating
catchment average potential evapotranspiration (E0) and
precipitation (P) are (1) interpolating a 10-km grid data set
covering the study areas from the gauge data; (2) estimating
E0 in each grid using the Penman equation recommended by
Shuttleworth [1993]; and (3) calculating the catchment
average E0 and P. The actual evapotranspiration (E) was
calculated on the basis of water balance (i.e., E equals
precipitation minus runoff for mean annual) (see Yang et al.
[2007] for more details). The high linear correlation be-
tween 21/v and 2 � 2�1/n is shown in Figure 3a. It proves

Figure 2. Solution to Zhang et al.’s [2001] equation with
the parameter w = 2.0.

Figure 3. Relationship between the two parameters in the two equations (equation (25) in the present
paper and Fu’s [1981] equation).
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equation (30) statistically. Additionally, the linear correla-
tion of the two parameters is very high (R2 = 0.999) as
shown in Figure 3b; the linear regression equation is

v ¼ nþ 0:72: ð31Þ

[38] Figure 4 illustrates the mean annual water-energy
balance in a three-dimensional state space. It can be found
that the three-dimensional curved faces given by the two
equations are approximately equivalent when v = 1.25,
n = 0.5, v = 1.74, n = 1, and v = 4.69, n = 4. Figure 5
projects them into a two-dimensional state-space.
[39] Some subtle differences between the two equations

should be notable. First, equation (30) is as a result of
neglecting the small quantity (z � 1)2 and its higher order in
equation (29), and this will result in a small error. Second,
some small differences can be observed in Figure 5, e.g., the
curve with n = 1 agrees very well with Fu’s result (v =
1.74) when E0/P < 0.5 or E0/P > 2, while this is less than
Fu’s result when 0.5 < E0/P < 2. These differences may be
the result from the assumptions made about the derivatives
of E with respect to E0 and P by Fu [1981] (i.e., @E/@P =
f (E0 � E, P) when E0 = const; and @E/@E0 = g(P � E, E0)
when P = const). In the present paper, we consider the
partial differential equations as a general form with @E/@P =
f (E0, P, E) and @E/@E0 = g(E0, P, E) originating from the
equation E = E(P, E0, E).

3.4. The Single Parameter of the Water-Energy
Balance Equation

[40] Only a single parameter of the mean annual water-
energy balance equation represents the integrated effects of

catchment and vegetation characteristics, which has a sig-
nificant effect on evapotranspiration. Factors affecting pa-
rameter n mainly include plant-available water holding
capacity or root depth [Milly, 1994; Wolock and McCabe,
1999; Laio et al., 2001; Zhang et al., 2001; Potter et al.,
2005], average slope [Zhang et al., 2004], vegetation type
or land use [Choudhury, 1999; Zhang et al., 2001; Bounoua
et al., 2004], vegetation cover [Eagleson, 2002; Zhang et
al., 2004], etc. The effect of every factor on the water-
energy balance is mostly known. Nevertheless, because of
strong cross correlations among these factors, to ascertain
the key factors and derive an analytical equation for
parameter n is not impossible, but difficult. Instead of an
analytical equation, the empirical formula as proposed by
Yang et al. [2007] correlates the parameter in Fu’s equation
with the relative infiltration capacity (the ratio of saturated
hydraulic conductivity to mean precipitation intensity),
relative soil water storage (the ratio of plant extractable

Figure 4. Solution to the mean annual water-energy balance equation in the three-dimensional state-
space of P � E0 � E.

Figure 5. Comparison of the curves given by the two
equations (the solid represents equation (25) in the present
paper and the plus represents Fu’s [1981] equation).
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water capacity to mean annual potential evapotranspiration),
and the average slope. It is noted that this equation does not
include the effect of vegetation except the plant extractable
water capacity. Further studies are therefore required.
[41] Land use changes (e.g., deforestation, urbanization,

farming, etc.) have an effect on the hydrologic cycle. As
shown in Figure 5, when n increases from 0.5 to 1, E/P can
increase by up to 50%. The effect can best be described with
changes of n (dn), and after that the effect on evapotrans-
piration is calculated by dE = @E/@n � dn.
3.5. Derivatives of This Equation

[42] As an analytical equation, equation (25) can be
differentiated with respect to P or E0. The derivatives
describe the effect on the hydrologic cycle as a result of
changing P or E0 as follows:

@E=@P ¼ 1

�
1þ P=E0ð Þn½ 	1þ1=n

@E=@E0 ¼ 1

�
1þ E0=Pð Þn½ 	1þ1=n

8>><
>>:

: ð32Þ

[43] In Figure 6a, if neglecting the changes in storage,
the curves describe the partition of the increment of
precipitation (dP) into the increments of evapotranspiration
(@E/@P � dP) and runoff (dR = dP � @E/@P � dP). In humid
regions (E0/P < 1), most of dP transforms into runoff, while
most evapotranspirates in arid regions (E0/P > 1). Therefore
runoff modifies more significantly when P changes in
humid regions than in arid regions. In arid regions, the
larger n becomes, the smaller the effect of dP on runoff is;
however, in humid regions, when P increases, both an
increase and a decrease of runoff is possible. Figure 6b
illustrates the sensitive of E to E0.
[44] As shown in Figure 7, the effect of climate changes

on the hydrologic cycle can be described as a function of
climatic characteristics (f = E0/P) and catchments character-
istics (n). When f = 1, it gives @E/@P = @E/@E0; when f < 1,
@E/@P > @E/@E0, the change in evapotranspiration is
dominated by the change in precipitation; when f > 1, the
change in evapotranspiration is dominated by the change in
potential evapotranspiration. And the larger n becomes, the
larger the effect of climate changes on E is. According to n
and f, catchments can be classified, since the same f and n
determine the same sensitivity to changes in climate (@E/@P,

@E/@E0), as well as the same evapotranspiration ratio (E/P,
the partition of precipitation). Subsequently, because
E + R = P, we can obtain @E/@P + @R/@P = 1 and @E/@E0 +
@R/@E0 = 0, where R represents runoff. Hence the same
sensitivity of R to changes in climate (@R/@P, @R/@E0) can be
obtained. In addition, Figure 7 shows @E/@P + @E/@E0  1.

3.6. Assumption About P and E0 Being Independent

[45] In this paper, when deriving equation (25), it is
assumed that P and E0 are independent (i.e., @P/@E0 = 0),
as well as in Fu’s [1981] derivation. Under a given climatic
condition, we can consider P and E0 as independent
variables. In fact, because of the feedback of atmosphere
on land surface, E increases as a result of increasing P; and
E0 decreases according to the complementary relationship
between actual and potential evapotranspiration [Bouchet,
1963]. P, E0, and E are therefore not independent, which
also can be expressed as a point (P, E0, E) in the state space
or as U(P, E0, E) = c. In other words, as a result of
precipitation changing from P1 to P2, the state changes
from an initial state (P1, E0,1, E1) to a new state, not being
(P2, E0,1, E2), but (P2, E0,2, E2). To estimate (P2, E0,2, E2),
two equations are set: one from the water-energy balance
(considering P2 and E0,2 as given variables), and the other
from the complementary relationship between potential and
actual evapotranspiration [Brutsaert and Stricker, 1979;

Figure 6. Relationship between (a) @E/@P and E0/P, and (b) @E/@E0 and E0/P calculated using
equation (32).

Figure 7. Relationship between @E/@P and @E/@E0

calculated using equation (32).
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Parlange and Katul, 1992; Brutsaert and Parlange, 1998;
Kahler and Brutsaert, 2006], i.e.,

bE þ E0 ¼ 1þ bð ÞEw: ð33Þ

where b is a constant of proportionality; Ew represents the
wet environment evapotranspiration [Brutsaert and Stricker,
1979], which can be calculated from the net radiation (Rn)
by the Priestley-Taylor equation [Priestley and Taylor,
1972]. Additionally, these two equations have two inde-
pendent variables (P and Rn, not being interrelated, i.e.,
@P/@Rn = 0), and therefore the two dependent variables
(E and E0) can be resolved. This implies that a relatively
stabile state (P, E0, E) can be reached under given catchments
characteristics, radiation and precipitation. Simultaneously,
equations dE = @E/@P � dP + @E/@E0 � dE0 (the differential
of equation (25)) and bdE + dE0 = (1 + b) dEw (the
differential of equation 33) lead to following expression:

dE ¼ @E=@P � dpþ 1þ bð Þ@E=@E0 � dEw½ 	= 1þ b@E=@E0ð Þ:
ð34Þ

[46] Substituting CpEpa (E0 being proportional Cp to pan
evaporation Epa) in equation (33) for E0, Brutsaert and
Parlange [1998] interpreted the evaporation paradox, in-
creasing terrestrial evaporation (E) and decreasing pan
evaporation. Further, Brutsaert [2006] evaluated the change
in E on the basis of the change in Rn, T, and Epa. According
to equation (34), the response of the hydrologic cycle (not
only dE but also dR = dP � dE) to climate changes dEw (dT
and dRn) and dP instead of dEpa, can be evaluated.
[47] As discussed above, the effect of vegetation on the

hydrologic cycle is captured by parameter c (or n), but the
effect of the hydrologic cycle on vegetation is not consid-
ered here. In fact, vegetation and hydrologic cycle are
interactive. The climate and hydrologic cycle through water,
energy, and carbon dioxide to the surface helps to determine
the type and structure of the vegetation [Eagleson, 2002].
Therefore vegetation will change as a result of changes in
climatological conditions, and it will reach a balanced state,
possibly for a long time. The balance state can be expressed
as (P, E0, E, c) with c including the effect of vegetation.
Thus the third equation relating c with other factors (maybe
some empirical relation) is also expected. Then the state (P,
E0, E, c) can be obtained as the solution of the three
equations, which is also determined by the parameters of
the equations, climatic forcing (P and Rn), etc. This indi-
cates that the vegetation and hydrologic cycle will reach
equilibrium under a given condition (e.g., land topography,
radiation, precipitation). If any of these factors changes, the
state will alter from (P1, E0,1, E1, c1) to (P2, E0,2, E2, c2),
corresponding to the point moving from one curved face to
another in the state space (P, E0, E).

4. Conclusion

[48] Through dimensional analysis and mathematical rea-
soning, this paper mathematically derived the general solu-
tion to the mean annual water-energy balance equation, and
proved its uniqueness. Additionally we obtained an analyt-
ical solution to the mean annual water-energy balance
equation, which was different from Fu’s [1981] equation.

Only a single parameter of the solution is able to capture the
catchment characteristics (including vegetation) and their
changes. Furthermore, the derivatives of this analytical
solution supply a theoretical tool for the study on the effects
of land use and climate changes on the water cycle.
[49] Mathematical comparison between equation (25) and

Fu’s equation shows that the two equations are very similar,
although not exactly equivalent. Statistically, it was found
that the two parameters in both equations have a significant
linear relationship, and the two equations give the same
solution space. There are nevertheless some subtle differ-
ences between the two equations, which is possibly because
of the assumption about the derivatives in Fu’s [1981]
derivation.

Appendix A: Asymptotes of Fu’s Equation and
Equation (25)

[50] Defining x = E0/P, Fu’s equation can be written by

g1 xð Þ ¼ 1þ x� 1þ xvð Þ1=v; ðA1Þ

and equation (25) can be written by

g2 xð Þ ¼ 1= 1þ 1=xð Þn½ 	1=n: ðA2Þ

[51] First, we prove that OA (i.e., y = x) is the asymptote
of equation g1(x), when x 2 (0, 1]. The distance between the
lines OA and (A1) can be given as follows:

x� g1 xð Þ ¼ 1þ xvð Þ1=v�1: ðA3Þ

[52] Equation (A3) is a monotone increasing function of
x, so

1þ xvð Þ1=v�1  1þ 1ð Þ1=v�1 ¼ 21=v � 1:

8e > 0; 9v0 ¼
ln 2

ln 1þ eð Þ þ 1;

when

v > v0;v >
ln 2

ln 1þ eð Þ þ 1 >
ln 2

ln 1þ eð Þ ;

i.e., (1 + xv)1/v �1 < e.
[53] Second, we prove that AB (i.e., y = 1) is the asymptote

of equation g1(x), when x 2 [1, +1). Similarly, the distance
between the lines AB and (A1) can be expressed as

1� g1 xð Þ ¼ 1þ xvð Þ1=v�x: ðA4Þ

[54] Equation (A4) is a monotone decreasing function of
x, so

1þ xvð Þ1=v � x  1þ 1ð Þ1=v � 1 ¼ 21=v � 1

8e > 0; 9v0 ¼
ln 2

ln 1þ eð Þ þ 1;

when

v > v0;v >
ln 2

ln 1þ eð Þ þ 1 >
ln 2

ln 1þ eð Þ ;
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i.e., (1 + xv)1/v �x < e. Consequently, Fu’s equation has the
asymptote OAB.
[55] In the same way, for equation (A2), when x 2 (0, 1],

the difference between the lines OA and (A2) can be
expressed as

x� g2 xð Þ ¼ x� 1= 1þ 1=xð Þn½ 	1=n: ðA5Þ

[56] The derivative of equation (A5) is

1� 1

xn þ 1ð Þ1=n xn þ 1ð Þ
> 0;

so equation (A5) is a monotone increasing function of x.
Therefore

x� 1= 1þ 1=xð Þn½ 	1=n 1� 2�1=n;

8e > 0; 9N ¼ � ln 1� eð Þ
ln 2

þ 1;

when

n > N ; n > � ln 1� eð Þ
ln 2

þ 1 >
ln 1� eð Þ

ln 2
;

i.e., x � 1/[1 + (1/x)n]1/n < e.
[57] When x 2 [1, +1), we can express the distance

between the lines AB and (A2) as follows:

1� g2 xð Þ ¼ 1� 1= 1þ 1=xð Þn½ 	1=n: ðA6Þ

[58] Equation (A4) is a monotone decreasing function of
x, so

1� 1= 1þ 1=xð Þn½ 	1=n 1� 2�1=n;

8e > 0; 9N ¼ � ln 1� eð Þ
ln 2

þ 1;

when

n > N ; n > � ln 1� eð Þ
ln 2

þ 1 > � ln 1� eð Þ
ln 2

;

i.e.,

1� 1= 1þ 1=xð Þn½ 	1=n< e:

[59] Therefore equation (25) also has the asymptote OAB.
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