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a b s t r a c t

Various hydrological forecast products have been applied to real-time reservoir operation, including
deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (pseudo-PSF, pPSF),
and ensemble or probabilistic streamflow forecast (denoted as real-PSF, rPSF). DSF represents forecast
uncertainty in the form of deterministic forecast errors, pPSF a conditional distribution of forecast uncer-
tainty for a given DSF, and rPSF a probabilistic uncertainty distribution. Compared to previous studies that
treat the forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model
the dynamic evolution of uncertainties involved in the various forecast products and explores their effect
on real-time reservoir operation decisions. Through a hypothetical example of a single-objective real-
time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects.
Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty
increases but the magnitude depends on the forecast products used. In general, the utility of the reservoir
operation with rPSF is nearly as high as the utility obtained with a perfect forecast. Meanwhile, the util-
ities of DSF and pPSF are similar to each other but not as high as rPSF. Moreover, streamflow variability
and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the rela-
tive merit of DSF, pPSF, and rPSF.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Advances in weather forecasting, hydrologic modeling, and hy-
dro-climatic teleconnection relationships have significantly im-
proved streamflow forecast precision and lead-time [3,22,24,28]
and provide great opportunities to improve the efficiency of water
resources system operations [23,25,29,39]. In recent years, forecast
products, particularly long-term streamflow forecasts (with a lead-
time longer than 15 days), have been applied to reservoir operation
and water resources management (e.g. [23,25,29,39]).

In addition to forecast precision and lead-time, operation strat-
egies also influence the efficiency of utilizing streamflow forecasts
for real-time reservoir operation [4,20,39]. As a common practice,
reservoir operation curves, which set a target storage level for each
operation period around a year, are adopted as guidelines for real-
time reservoir operation as well as for operation planning [18,34].
Since operation curves are determined by historical streamflow re-
cords [20,34], they reflect suitable reservoir operation decisions
under various historical scenarios rather than real-time stream-
flow conditions. Thus, even a perfect streamflow forecast cannot
improve reservoir operation efficiency when operation curves are
used [39]. In many recent studies, reservoir operation curves have
ll rights reserved.
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been replaced by real-time reservoir optimization and simulation
models, which are supposed to provide more flexible and efficient
approaches utilizing various streamflow forecast products [8].

One important issue with implementing streamflow forecasts in
real-time reservoir operation models is dealing with the uncer-
tainty involved in streamflow forecast products [8,9,26]. Although
forecast uncertainty analysis has been one research focus in
hydrology (e.g. [17,31,32]), there are comparatively less studies
on the effect of forecast uncertainty on real-time reservoir opera-
tions [9,27,33]. Deterministic or probabilistic streamflow forecast
products are usually treated as ad hoc inputs for deterministic or
stochastic reservoir operation models. That is to say, a determinis-
tic forecast or a stochastic forecast represented by a number of
scenarios is pre-designed for a specific reservoir operation problem
for screening test, and no non-generalizable structure of the fore-
cast error is endogenously involved in the operation analysis.
Correspondingly, many previous studies on forecast and reservoir
operation in the literature adopt a two-component approach, one
provides (‘‘recommends’’) a forecast scenario [3,22,24,28] as input
to the other component [23,25,29,39] that dealing with forecast
application. In general, such an approach suggests that forecast
can always improve reservoir operation efficiency especially under
extreme conditions [21].

This study aims at analyzing the effect of forecast uncertainty
on real-time reservoir operations. As different forecast products,
e.g., deterministic and probabilistic streamflow forecasts, can exert

http://dx.doi.org/10.1016/j.advwatres.2011.01.004
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different effects on real-time reservoir operation decisions in opti-
mization and simulation models, this study will explicitly simulate
the uncertainty in each of the streamflow forecasts examined and
assess its effect on real-time reservoir operation decisions. Since
the tool for such a purpose does not exist in the hydrologic litera-
ture, the Martingale Model of Forecasting Evolution (MMFE)
[11,12] used in supply chain management is introduced to quantify
real-time streamflow forecast uncertainty and generate determin-
istic and probabilistic forecast products. Simulations based on
standard operation policy (SOP), dynamic programming (DP), and
stochastic dynamic programming (SDP) [16,18] are adopted to
determine release decisions for a hypothetical reservoir using syn-
thetic streamflow forecasting products.

The rest of the paper is organized as follows. Section 2 provides
some background information on streamflow forecasting and fore-
cast uncertainty and introduces the Martingale Model of Forecast-
ing Evolution (MMFE). Section 3 describes the MMFE-based
forecast uncertainty analysis in real-time reservoir operation. Sec-
tion 4 introduces the numerical experiments designed in this
study. Section 5 analyzes the results and Section 6 contains the
conclusions.
2. Background

In hydrology, there are various indices reflecting the magnitude
of streamflow forecast uncertainty (e.g., [24,32]). However, few
models illustrate the forecast uncertainty evolution process. This
paper adopts MMFE from supply chain management [11,12] to
quantify the evolution of the uncertainty of real-time streamflow
forecasts as time progresses.
2.1. Streamflow forecast and forecast uncertainty

Both deterministic and probabilistic streamflow forecast prod-
ucts have been applied to real-time reservoir release decision mak-
ing, as outlined in Fig. 1. Defining q as the actual streamflow and e
as the forecast error, the relationship between deterministic
streamflow forecast (DSF) and q can be interpreted by Eq. (1):

DSF ¼ qþ e ð1Þ

Eq. (1) shows that the forecast uncertainty in DSF is characterized
by a deterministic forecast error e. Usually, e is assumed to be
stochastic and fit a normal distribution (e.g. [2,6,28,29]):

e � Nð0;r2Þ ð2Þ

where r2 denotes the variance of e (i.e., uncertainty level)
Probabilistic streamflow forecasts (PSF) can be generated with

two approaches. One involves treating the PSF as an empirical con-
ditional distribution of forecast uncertainty for a given DSF
(namely pseudo-PSF, denoted as pPSF in this study) [6,29]. The pre-
mise of pPSF is that, since q = DSF � e and e � N(0,r2), the actual
Fig. 1. Schematic of single-period st
streamflow q fits a conditional normal distribution with mean
DSF and variance r2

pPSF � NðDSF;r2Þ ¼ Nðqþ e;r2Þ ð3Þ

Eq. (3) shows that the forecast uncertainty in pPSF depends on the
deterministic forecast error e and the distribution of pPSF is condi-
tional to the distribution of e.

The other approach for generating PSF takes a more rigorous
way to handle forecast uncertainty, which is to characterize the
streamflow forecast uncertainty by either the ensemble stream-
flow forecasting method [5,8,10] or probabilistic streamflow fore-
casting methods [15,17]. We denote this type of PSF, shown in
Eq. (4), as a real-PSF (rPSF) to distinguish it from the pseudo-PSF
(pPSF) presented in Eq. (3). Assuming a normal distribution for
forecast uncertainty, rPSF can also be characterized with a normal
distribution [6,19]:

rPSF � Nðq;r2Þ ð4Þ

Eq. (4) shows that the forecast uncertainty in rPSF is also repre-
sented by a probabilistic distribution form. This is different from
Eq. (3), which contains a deterministic forecast error term as well
as a probabilistic uncertainty term.

This study simplifies forecast uncertainty with the stationary
Gaussian distribution assumption and characterizes the single per-
iod streamflow forecast uncertainty with r2 (the variance of e). In
hydrology, r2 is closely related to popular hydrologic forecast eval-
uation criteria, such as the Nash–Sutcliffe efficiency coefficient
(NSE) and Root Mean Square Error (RMSE) [24]. The calculation of
NSE and RMSE are shown in Eqs. (5) and (6), respectively

NSE ¼ 1�
PM

i¼1ðfi � qiÞ
2PM

i¼1ðqi � �qÞ2
� 1� r2

�q � Cv
ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

i¼1
ðfi � qiÞ

2

r
� r ð6Þ

where M is the number of samples, Cv is the streamflow coefficient
of variation, qi is the streamflow, and fi is the streamflow forecast.
As can be ascertained from Eqs. (5) and (6), NSE measures the com-
parative level of forecast uncertainty to the streamflow standard
deviation and represents the fraction of streamflow variability ex-
plained by the forecast while RMSE is a direct reflection of the fore-
cast uncertainty itself.

The PSF evaluation criteria, e.g., the linear error in probability
space (LEPS), the Brier score, mainly depend on the bias and disper-
sion of the forecasted streamflow distribution, of which r2 is an
effective statistical indicator [22,24,39].

2.2. Martingale Model of Forecasting Evolution (MMFE)

In streamflow forecasts, denote H as the length of forecast lead
time or forecast horizon, within which the streamflow is predict-
able with an available forecasting method. The streamflow fore-
casts can be represented by a vector:
reamflow forecast uncertainty.
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Ft;� ¼ ½ ft;t f1;tþ1 ft;tþ2 � � � ft;tþH � ð7Þ
where Ft,� is a vector denoting the forecast sequence made at period
t; ft,t+i denotes the period t’s forecast for the period t + i streamflow.
Denoting rt,t+i as the uncertainty of ft,t+i and assuming (1) stationary
forecast uncertainty (i.e., rt,t+i does not change with t) [6,28]
and (2) a pre-determined ending time, two important properties
of real-time streamflow forecasts hold (as shown in Fig. 2)
[19,22,23]:

rt;t 6 rt;tþ1 6 rt;tþ2 6 � � � 6 rt;tþH ð8Þ
rt�H;t P rt�Hþ1;t P rt�Hþ2;t P � � �P rt;t ð9Þ

Eq. (8) denotes that the uncertainty level of the streamflow
forecast increases with the forecast lead time, which is intuitive
since the longer the forecast lead time, the less reliable the forecast
information is, as shown in the upper part of Fig. 2. Eq. (9) repre-
sents a property that indicates the dynamic updating of the real-
time streamflow forecast, i.e., when the forecast period moves to-
wards the ending time, information becomes more reliable and the
forecast uncertainty level decreases, as shown in the lower part of
Fig. 2.

The MMFE model uses a decomposition approach to measure
the uncertainty in each of the time periods within the forecast lead
time (H):

DFt;� ¼ ½Dft;t Df1;tþ1 Dft;tþ2 � � � Dft;tþH � ð10Þ

where DFt,� is a vector denoting the forecast update made at period
t from the forecasts made at period t � 1 and DFt,t+i is the improve-
ment of streamflow forecast at period t + i, and:

Dft;tþi ¼ ft;tþi � ft�1;tþi ð11Þ

MMFE, which simulates the forecast improvement process, is
based on the following four assumptions [12]: (1) Ft,� is an unbi-
ased forecast for the future; (2) Dft,t+i is uncorrelated with past
forecast updates Dfs,s+i(s < t); (3) the forecast update Dft,t+i forms
a stationary stochastic process of t; and (4) the forecast update
Dft,t+i is normally distributed.

Under MMFE, the total forecast uncertainty can be character-
ized by the variance–covariance (VCV) matrix of DFt,�
Fig. 2. Schematic of the increase in forecast uncertainty with forecast lead-time.
VCV ¼

r2
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where r2
i;j is the covariance between Dft,t+i and Dft,t+j. Denoting

ft,t = qt, with Eq. (11), ft�i,t can be expressed by:

ft�i;t ¼ qt �
Xt

j¼t�iþ1

Dfj;t ð13Þ

With Eq. (13) and the second assumption of MMFE, the forecast
uncertainty level of ft�i,t can be calculated by:

varðqt � ft�i;tÞ ¼
Xi�1

j¼0

r2
j;j ð14Þ

Since var(qt � ft,i,t) increases with i, MMFE naturally reflects
some properties of streamflow forecasts, i.e., increased uncertainty
with forecast lead-time and dynamic forecast updates.

It is important to note that MMFE is not a forecast model but
rather a framework representing the dynamics of forecast updates
[12,14]. Due to its simplicity and effectiveness in illustrating the
forecast uncertainty evolution processes, MMFE has been widely
applied to operations research for quantifying the economic profits
from forecast improvements [12], analyzing the optimality of sup-
ply chain management strategies [14,36], determining the safety
stock level in supply chain management [30], and supporting
restocking decision making under forecast uncertainty [37].
3. MMFE-based streamflow forecast uncertainty analysis

To use MMFE to model the uncertainty of streamflow forecasts,
it is necessary to justify its assumptions, i.e. unbiasedness, non in-
ter-period correlation, stationarity, and Gaussian distribution.
Real-time streamflow forecasts are based on hydrologic model in-
puts, such as precipitation, temperature, and soil moisture. These
inputs are updated at the beginning of each period with new
weather forecasts and hydrologic observations (e.g., streamflow,
soil moisture) to improve the preceding streamflow forecast. Since
hydrologic model input errors are usually considered to be domi-
nated by random factors rather than structural ones, the assump-
tion of unbiasedness in MMFE (i.e., the structural error is
negligible) has been widely adopted in hydrologic studies (e.g.
[9,10,29]).

The second assumption may be justified by the hypothetical
problem setting in this study. As time moves forward to the pre-
scribed ending period, the forecast lead time decreases and more
information becomes available (Fig. 2). At the start of a new period,
new information becomes available, which is not available for the
previous periods. It is reasonable to assume that this new informa-
tion is independent from the information that was previously
available. Therefore, it can be assumed that the update to the
streamflow forecast for a given period is independent of the up-
dates in previous periods.

The third and fourth assumptions imply stationarity and a
Gaussian distribution of the uncertainty, respectively, which are
common assumptions in hydrologic studies [6,29].

In MMFE, the VCV matrix of the linearly dependent components
of Ft,� in Eq. (12) plays a central role. Since the VCV matrix is
positive semi-definite, it can be decomposed into the product of
a matrix multiplied by its transpose through the Cholesky decom-
position [1,12], i.e.,

VCV ¼ V � VT ð15Þ
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Denote [X1 X2 � � � XH+1] as a vector of H + 1 independent stan-
dard normal variables and transposing it with matrix VT:

½Y1 Y2 � � � YHþ1 � ¼ ½X1 X2 � � � XHþ1 � � VT ð16Þ

Then, the generated vector of Y consists of normally distributed
variables with a variance–covariance matrix equal to their original
variance–covariance matrix, VCV = V � VT. Thus, Eq. (16) can be used
for generating forecast errors:

Df1;1 Df1;2 � � � Df1;Hþ1

Df2;2 Df2;3 � � � Df2;Hþ2

..

. ..
. . .

. ..
.

Dft;t Dft;tþ1 � � � Dft;Hþ1

2
66664

3
77775 ¼

x1;1 x2;1 � � � xHþ1;1

x1;2 x2;2 � � � xHþ1;2

..

. ..
. . .

. ..
.

x1;t x2;t . . . xHþ1;t

2
66664

3
77775 � VT

ð17Þ

Assuming the actual streamflow sequence is known:

Q ¼ ½ q1 q2 � � � qN � ð18Þ

The deterministic streamflow forecast error can be expressed by:

et�i;t ¼ qt � ft�i;t ¼
XHþ1

j¼Hþ2�i

Dft�H�1þj;t ¼
Xi�1

j¼0

Dft�j;t ð19Þ

where et�i,t denotes the forecast error for period t streamflow in the
forecast made during period t � i. The synthetic DSF forecast errors,
e.g. e1;5 ¼

P5
i¼2Dfi;5, can then be generated through Eq. (19).

With the second assumption of MMFE, the variance of the fore-
cast error (et�i,t) can be calculated by:

varðet�i;tÞ ¼
Xi�1

j¼0

r2
j;j ði P 1Þ ð20Þ

Combining Eqs. 1, 3, 4 with Eqs. (19) and (20), the DSF, pDSF,
and rDSF made at period t � i for period t streamflow can be explic-
itly expressed with the following equations:

DSF : DSFt�i;t ¼ qt � et�i;t et�i;t � N 0;
Xi�1

j¼0

r2
j;j

 ! !
ð21Þ

pPSF : pPSFt�i;t � N qt � et�i;t;
Xi�1

j¼0

r2
j;j

 !
ð22Þ

rPSF : rPSFt�i;t � N qt ;
Xi�1

j¼0

r2
j;j

 !
ð23Þ

Thus, using MMFE, DSF, pPSF, and rPSF can be synthetically gener-
ated with a common framework. For probabilistic forecasts (pPSF
and rPSF), Eqs. (22) and (23) depict the forecast uncertainty of per-
iod t without reflecting the correlation relationship between the
uncertain terms expressed in Eqs. (10) and (12). To deal with this
concern, this study adopts a scenario-based Monte-Carlo approach
for forecast uncertainty analysis [16,35]. Then, with a deterministic
or stochastic reservoir operation model (see the Appendix for de-
tails), a framework for real-time reservoir release decisions can be
established.

It is worthwhile to note that forecast uncertainty and forecast
horizon are two important features of streamflow forecast and
both can affect reservoir operation using the forecast [33,41], as
the forecast can be too uncertain if it is too long (i.e., it cannot reli-
ably reflect inflow conditions) or too short to be applicable for sup-
porting decision making. This study focuses on the effect of
forecast uncertainty on real-time reservoir operation while the
complicating effect of forecast uncertainty and forecast horizon
will be analyzed in future work.
4. Numerical experiments

A hypothetical reservoir system with N operation periods (i.e.,
studying horizon of the operation problem) is used in this study.
In reservoir operation, the forecast lead time H is assumed to be
the same as the length of remaining operation periods (i.e., the lead
time H is N periods at the beginning, N � 1 periods when decision
moves to next period, and so on). SOP, DP, and SDP models are then
used to generate reservoir operation decisions with various syn-
thetic streamflow forecast products. SOP releases water as close
to the delivery target as possible, saving only surplus water for fu-
ture delivery, and it only needs the current period inflow informa-
tion (Appendix A.1). The formulation of DP and SDP are provided in
Appendices A.2 and A.3, respectively.
4.1. The hypothetical reservoir system

Besides forecast uncertainty, the efficiency of reservoir opera-
tions can also be affected by reservoir inflow variability, demand
change, and reservoir capacity [9,26]. To study these influential
factors, the hypothetical reservoir operation model consists of four
categories of parameters: forecast uncertainty, reservoir inflow,
reservoir capacity, and the objective function.

(1) Forecast uncertainty: The forecast error standard deviation r
and the forecast error correlation qerror are introduced to
characterize the streamflow forecast uncertainty [31,32], as
shown in Eq. (24). The VCV matrix is simplified with the
two forecast parameters:
r2 qerrorr2 . . . 0
qerrorr2 qerrorr2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . r2

2
66664

3
77775
ðHþ1Þ�ðHþ1Þ

ð24Þ
r represents the magnitude of uncertainty in the forecast. A higher
r value implies a greater forecast uncertainty. qerror reflects the
temporal correlation relationship of the forecast uncertainty. In
general, a negative qerror implies a lower amount of uncertainty in
the total inflow, as the overestimated forecast errors are more likely
to be balanced by the underestimated forecast errors; meanwhile, a
positive qerror implies a higher degree of uncertainty in the total in-
flow forecast.

(2) Reservoir inflow: The reservoir inflow parameters include the
mean, coefficient of variation, and the correlation coefficient
of the streamflow, which are denoted as l, Cv, and qflow,
respectively. A simplified Thomas–Fiering model [20] is
applied to generate the reservoir inflow sequences:
qtþ1 ¼ lþ qflowðqt � lÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

flow

q
ðlCvÞd ð25Þ
In Eq. (25), d is a standard normal random number. The minimum
streamflow is set to 0.4 so that 93% of the generated streamflow se-
quences can be subsequently used in the MMFE streamflow forecast
model when Cv is at its maximum value, i.e., 0.4 (Table 1).

(3) Reservoir capacity: The reservoir capacity (S) is represented
by the active maximum storage, which is the difference
between the maximum and the minimum storage
S ¼ Smax � Smin ð26Þ
To avoid adverse effects of initial storage and end storage on reser-
voir operation decisions, the initial storage and end storage are set
to half of S.



Table 1
Parameters of the hypothetical reservoir system.

Reservoir
components

Parameters
symbol

Type Value range Base
value

Forecast
uncertainty

r Variable 0.02–0.20 0.10
qerror Variable �0.50 to

0.50
0

Reservoir inflow l Constant 1 –
Cv Variable 0.05–0.40 0.30
qflow Variable 0.4 –

Reservoir capacity S Variable 0.20–5.00 2.00

Reservoir utility Dmin Constant 0.4 –
Dmax Constant 1.2 –
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(4) Objective function: The objective function is defined as the
sum of the single-period reservoir release utility (Eq. (27))
and is maximized in the DP and SDP formulations, in which
the reservoir storage and inflow are discretized into inter-
vals with a width of 0.01
gt ¼
Dt � Dmin

Dmax � Dmin

� �1=2

ð27Þ
Fig. 3. Schematic of rolling horizon decision making in reservoir operation (H is
assumed equal to N in this study).

Fig. 4. Procedures of modeling exercise for testing the various forecasts with
reservoir operation models.
where Dt is the beneficial release (excluding the reservoir spill DSt)
at time period t, while Dmax and Dmin represent the maximum and
minimum beneficial releases, respectively. Eq. (27) is concave with
a decreasing marginal utility property [7,20,40].

The parameters of the hypothetical reservoir operation model
are summarized in Table 1. Each of the impact factors discussed
above (as shown in Table 1) is assessed individually, i.e. adjusting
the value of a given factor while holding the base values of all other
parameters. Table 1 shows the range of values tested for each
parameter. It is necessary to note that forecast uncertainty param-
eters (Eq. (24)) have already been specified with values in Table 1
for this hypothetical case study and the underlying assumption is
that MMFE has already been validated before the policy simula-
tion. For real-world application of MMFE, a validation step is
needed.

4.2. Reservoir operation strategies

The following generic procedures are used to model the hypo-
thetical reservoir operation problem: (1) time series of streamflow
Q during the N operation periods are generated using a flow syn-
thesis model with given reservoir inflow statistics; (2) DSF, pPSF,
and rPSF are generated with Q and MMFE using the predefined
forecast uncertainty statistics; for pPSF and rPSF, 500 forecast error
scenarios are generated to approximate the streamflow probability
and state transition probability [8,16] (see Appendix A.3 for details
on the transition probability in the context of SDP); (3) with the
synthesized forecast products from (2), optimization models (DP
and SDP) and the simulation model based on SOP are employed
for reservoir operation analysis. For each parameter test, the
numerical experiment is conducted with 100 randomly generated
streamflow scenarios, and the mean value and standard deviation
of the utility are computed using the 100 samples.

Decision horizon (DH, how long the generated decision is
implemented), forecast horizon (FH, how long the inflow can be
predicted), and operation horizon (OH, how long the reservoir
operation is targeted) are important issues in reservoir operation
(also see [41]). In our study, DH is set as 1 and FH is assumed to
be the same as the length of OH (i.e., the lead time H is N periods
at the beginning, N � 1 periods when decision moves to next per-
iod, and so on). The following procedures are undertaken for the
modeling exercise: (1) reservoir operation decision is determined
for each period with the streamflow forecast provided up to the
end of the operation periods; (2) for the generated decision se-
quence (Eqs. (A3) and (A4)), only the current period decision is
treated as final; (3) decisions in future time periods will be up-
dated period by period, i.e., at the beginning of the next period,
the reservoir state is updated with inflow and release, and new re-
lease decision is made with updated forecast (i.e., rolling horizon
decision making, see Fig. 3). This process is repeated from period
1 to N (N is set as 6 in this study).

This study undertakes a finite horizon specified with the ending
storage, which is set equal to the initial storage for this theoretical
study. Five operation scenarios, shown in the last column of Fig. 4,
are examined. The optimization models of dynamic programming
(DP) and stochastic dynamic programming (SDP) are utilized to
generate the operation decisions with the streamflow forecast.
The perfect forecast, Q, and DSF are implemented through DP while
the probabilistic forecast scenarios (pPSF and rPSF) are imple-
mented through SDP. These results are compared to a simulation
model of standard operation policy (SOP) using Q. A brief summary
of reservoir operation models is provided in the Appendix.
5. Result analysis

The effect of streamflow forecast uncertainty on real-time res-
ervoir operation is analyzed with reservoir operation models DP,
SDP, and SOP. In the context of forecast uncertainty analysis, the
effect of streamflow variability and reservoir capacity are also as-
sessed under a pre-specified forecast uncertainty level, as shown
in Table 1.
5.1. The role of forecast uncertainty for reservoir operation

With the base parameter values in Table 1, effects of different
values of r and qerror are assessed. Figs. 5 and 6 show the effect
of r and qerror on the utility level of the reservoir operation, respec-
tively. The mean value and standard deviation of the reservoir
operation improvement (in terms of utility increase) with deter-
ministic forecasts (Q-DP and DSF-DP) and probabilistic forecasts



Fig. 5. Relationship between reservoir operation efficiency improvement from SOP and streamflow forecast uncertainty level.

Fig. 6. Relationship between reservoir operation efficiency improvement from SOP and correlation of forecast errors.
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(pPSF-SDP and rPSF-SDP) from Q-SOP are compared in Fig. 5. As can
be seen from the upper part of Fig. 5, a threshold level exists in the
rPSF-SDP performance. With a medium uncertainty level r < 0.1
(r = 0.1 is about one third of the streamflow standard deviation
lCv = 0.3), the operation of rPSF-SDP is similar to Q-DP (i.e., the
optimal reservoir release decision) in terms of the mean utility
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improvement from Q-SOP. Beyond this uncertainty level r > 0.1,
rPSF-SDP has a decreasing trend with the increase of forecast
uncertainty level. The performances of DSF-DP and pPSF-SDP are
similar with a declining trend in the forecast uncertainty level. In
terms of the standard deviation of the utility improvement, Q-DP
and rPSF-SDP both exhibit a lower variation while DSF-DP and
pPSF-SDP show a higher variation. In general, rPSF performs supe-
riorly to pPSF in terms of improving the real-time reservoir opera-
tion, which suggests that merely carrying out an empirical
uncertainty analysis based on DSF is not as efficient as an ensemble
streamflow forecast.

Fig. 6 shows the reservoir performances under different forecast
uncertainty correlations varying between �0.5 and 0.5. As with the
impact of uncertainty levels (Fig. 5), both Q-DP and rPSF-SDP per-
form similarly, which further illustrates the robustness of reservoir
operation under rPSF with respect to uncertainty correlation. DSF-
DP and pPSF-SDP both show worse performances than Q-DP and
rPSF-SDP. However, the performance of pPSF-SDP is more stable
with different qerror levels, while the mean performance of DSF-
DP shows a slightly declining trend with qerror, as shown in Fig. 6.

One characteristic of the probabilistic streamflow forecast is its
explicit probabilistic representation of future low and high flow
conditions, which is important in decision risk analysis. In reser-
voir operation practice, hedging, which means slightly reducing
the current water supply to mitigate future water shortages, is
an important real-time reservoir operation practice [7,40]. As fore-
cast uncertainty increases, it becomes more beneficial to adopt
hedging to avoid large shortages [40]. Comparing the first period
reservoir release reduction under DSF-DP, pPSF-SDP, and rPSF-
SDP to that under the perfect forecast Q-DP (i.e., the optimal reser-
voir operation without forecast uncertainty), the hedging effects of
both pPSF-SDP and rPSF-SDP exhibit an increasing trend with the
increase of the uncertainty level. On the other hand, DSF-DP shows
no significant hedging effect (as shown in Fig. 7), which illustrates
Fig. 7. Hedging effects resulting from application o
the effectiveness of adopting probabilistic streamflow forecasts to
represent the future risks. Meanwhile, although the hedging trends
under pPSF and rPSF are similar, there are differences between
pPSF-SDP and rPSF-SDP in terms of utility improvement from Q-
SOP (as shown in Figs. 5 and 6). The reason can be that the pPSF-
SDP operation hedges against both the deterministic forecast error
and the random forecast uncertainty. Since the magnitude of the
deterministic forecast error is approximate to that of the forecast
uncertainty (denoted by the standard deviation of the determinis-
tic forecast error, as shown in Eqs. (1)–(3)), the benefit of hedging
is not as significant in pPSF-SDP as rPSF-SDP. Also, the hedging ef-
fect of pPSF-SDP tends to be more variable than that of rPSF-SDP.
5.2. Effect of streamflow variability

A reservoir is built to regulate natural streamflow variability
and to maintain a reliable utility from natural streamflow
[18,20]. The coefficient of variation Cv, which is defined as the ratio
of the streamflow standard deviation over the mean value, is com-
monly used to characterize the inter-period streamflow variability.
Fig. 8 displays the effect of Cv on reservoir operation performances
under the various forms of forecast uncertainty.

Fig. 8 illustrates that, with the increase of Cv, the utility
improvements relative to SOP under all the optimized solutions
with deterministic or probabilistic forecasts tend to increase. This
generally implies that the more variable the streamflow is, the
more valuable the forecast is for improving reservoir operation
efficiency. Meanwhile, reservoir operation under rPSF shows
robustness with a high uncertainty level (comparable to the natu-
ral variability), for example, when Cv = 0.1 (i.e., the forecast uncer-
tainty is comparable to the streamflow variability r), about 50% of
the reservoir operations under DSF-DP and about 80% of the reser-
voir operations under pPSF-SDP are inferior to Q-SOP, while rPSF-
SDP shows a performance similar to Q-DP and better than DSF-DP.
f streamflow forecasts to reservoir operation.



Fig. 8. Effect of streamflow variability on the application of streamflow forecasts to reservoir operation.

Fig. 9. Effect of reservoir capacity on the application of streamflow forecasts to reservoir operation.
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5.3. Effect of reservoir capacity

The effect of reservoir capacity is studied by varying reservoir
capacity S from 20% to 500% of the mean inflow (l in Eq. (25)),
of which the results are shown in Fig. 9. With respect to mean util-
ity improvement, the DSF-DP and rPSF-SDP perform similarly. DSF-
DP performs more poorly than pPSF-SDP when the storage is small,
and gradually improves and approaches the performance of pPSF-
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SDP as the reservoir storage becomes larger. This is different from
the above comparisons between DSF-DP and pPSF-SDP, where the
DSF-DP performs similarly to pPSF-SDP under various forecast
uncertainty and streamflow variability levels. Note that pPSF dif-
fers from DSF because it includes an empirical uncertainty analysis
that addresses the risk induced by forecast error. Thus the poor
performance of DSF-DP compared to pPSF-SDP when the reservoir
storage is small implies that small reservoirs are more sensitive to
forecast uncertainties [9,13,15]. Standard deviation values of util-
ity improvements show a similar performance with the increase
of reservoir storage, except that the DSF-DP has a larger standard
deviation when the reservoir storage is small. This also suggests
that the DSF-guided reservoir operation is vulnerable to forecast
errors when the reservoir is small.
6. Conclusions

Streamflow forecast uncertainty plays an important role in res-
ervoir operation, but the effects of forecast uncertainty on reservoir
operation have yet to be thoroughly addressed in a unifying frame-
work. Rather than treating the forecast products as ad hoc inputs to
reservoir operation models, this study provides a method to char-
acterize the forecast uncertainty evolution and explicitly assess the
effect of streamflow forecast uncertainty on real-time reservoir
operation. The Martingale Model of Forecast Evolution (MMFE) is
introduced to synthetically generate deterministic and probabilis-
tic streamflow forecasts through explicit representations of fore-
cast uncertainty under various scenarios. A simulation model
based on SOP with a perfect forecast, two DP models with a perfect
forecast and DSF, respectively, and two SDP models with pPSF and
rPSF, respectively, are employed to analyze the impact of forecast
information on reservoir operation.

The hypothetical case study shows that reservoir operation effi-
ciency decreases as forecast uncertainty increases, while these ef-
fects also depend on the type of forecast product being used. In
general, the reservoir operation under rPSF is near-optimal and
comparable to the optimized reservoir operation decision obtained
with a perfect forecast. The reservoir operations under DSF and
pPSF are similar but not as efficient as they are under rPSF. Thus,
ensemble and probabilistic streamflow forecasts, which are widely
used in stochastic hydrologic modeling, have the potential to im-
prove real-time reservoir operation. Moreover, the effect of fore-
cast uncertainty is complicated by streamflow variability and
reservoir storage capacity. As the streamflow variability increases,
the reservoir system is subject to more frequent extreme flow
(both low-flow and high-flow) threats and streamflow forecasts
are more valuable for guiding reservoir operations. The results also
show that reservoirs with a smaller storage capacity are more sen-
sitive to forecast errors and, as a result, it is more valuable to con-
sider the forecast uncertainty in the operation of these reservoirs.
In summary, the simulations presented in this study show the sig-
nificance of considering deterministic and probabilistic forecast
uncertainty in real-time reservoir operation and illustrate the
promising application of ensemble and probabilistic streamflow
forecasts.

This study simulates the forecast uncertainty using a conceptual
model, MMFE, which decomposes the total forecast uncertainty
into the uncertainties of individual single periods and assumes
unbiasedness, non inter-period correlation, stationarity, and the
Gaussian distribution of the single period uncertainty. It should
be noted that the forecast simulated in this study is simplified
compared to the real-world situation, which can be complicated
by correlated, heteroscedastic, and non-Gaussian features. While
only one parameter needs to be simulated in MMFE with a Gauss-
ian distribution, more than one parameter with a non-Gaussian
distribution must be handled in MMFE. This will make the analysis
complex with both conceptual and computational issues to re-
solve, although the general procedures of MMFE are applicable to
a non-Gaussian case. For example, the correlation among the mul-
tiple parameters may be considered; the assumptions for forecast
improvement (Eq. (10)) may need to be adjusted. On the other
hand, studies on hydrologic forecast errors that attempt to remove
the stationary and/or Gaussian assumptions are undergoing
[26,31,32], which is expected to provide more scientific support
to the use of forecast for real-world reservoir operations.
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Appendix A. Reservoir operation models

A.1. Standard operation policy (SOP)

SOP releases water as close to the delivery target (Dmax) as
possible and saves only surplus water for future delivery [40]:

Dt ¼
St þ qt ðSt þ qt 6 DmaxÞ
Dmax ðSt þ qt > DmaxÞ

�
ðA1Þ

The spill in SOP is determined as follows:

DSt ¼
0 ðSt þ qt � Dt 6 SmaxÞ
St þ qt � Dt � Smax ðSt þ qt � Dt > SmaxÞ

�
ðA2Þ
A.2. Dynamic programming (DP)

Denoting i and j as the index of discretized reservoir storage, t as
the index of time period, DP employs reservoir storage St,i for the
state variable and the recursive function is as follows [18,38]:

GtðSt;iÞ ¼max
j
½gtðDtÞ þ Gtþ1ðStþ1;jÞ�

St;i þ xt � ðDt þ DStÞ ¼ Stþ1;j

(
ðA3Þ

In Eq. (A3), xt is the deterministic streamflow forecast (Eq. (1)), gt( )
and Gt( ) are the single-period and maximum cumulative utility
function respectively.

A.3. Stochastic Dynamic Optimization (SDP)

Denoting i and j as the index of discretized reservoir storage, p
and q the index of discretized inflow, and t the index of time per-
iod, SDP employs both xt,p and St,i for the state variables and the
recursive function can be written as follows:

GtðSt;i; xt;pÞ ¼max
j
fgtðDtÞ þ

P
q
½STtðp; qÞGtþ1ðStþ1;j; xtþ1;qÞ�g

St;i þ xt;p � ðDt þ DStÞ ¼ Stþ1;j

8<
: ðA4Þ

In Eq. (A4), STt(p,q) represents the inflow state transition probability
from p in period t to q in the following period. Denote PXt(p) as the
probability of inflow is p at period t, then

PXtþ1ðqÞ ¼
X

p

PXtðpÞSTtðp; qÞ ðA5Þ
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If the temporal independence of forecast uncertainty is ignored,
STt(p,q) can be simplified as PXt+1(q), but this can underestimate
the risk of consecutive high/low flow. Thus, STt(p,q) and Eq. (A4)
is adopted for decision making with pPSF and rPSF.
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