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CONCERNING DERIVED LIMITS AND SET SEQUENCES
IN COMPLETE METRIC SPACES

By 1.. C. Hsu

Magdalene, Cambridge, England

1. Derived Limit of Higher Order. Let X be a complete metric
space in which @ (z,y) is the distance function defined for every pair of
points z,y, and every Cauchy sequence converges to a limit. Let
X={z,} be an arbitrary bounded sequence of points in X. If z, appears
infinitely many times in {z,} and if {z,} contains only a finite number
of points other than x,, then {z,} is said to have the limit z, of zero order.
Denote by X’ the derived set of X, and by X the set of all those points
each of which appears infinitely many times in {z,}. Then every point
in the union X°U X’ is called a limiting point of {z,}, where X° may be
named the derived set of zero order.

We shall now consider the case where X={z,} has only a finite nu-
mber of successive derived sets (derivatives), say X/, X", ..., X® X&) =0
(empty), where £ is the order of X and each point of X® is called a k-th
limiting point. TL is easily seen that X' 2 X7 2 ... 2 X®, and all the

85
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derivatives are closed sets. 1f X® contains a single point, say x,, then we
denote

N Lm® z, = x,,

n->oco
and call x, the k-th derived limit or the lLinut of {x,} of order k, where
the case of zero order (i.e. £=0) is included. In particular, for A=0 or 1
we may use the usual notation lim z, instead of lim®z,.

2. A Limit Theorem Concerning Mapping Sequences. Let X, -+, X,
be ¥ complete metric spaces with distance functions g, (x,5), -+, 0, (z,7)
respectively. Clearly the product space X, x %, x - .- x %, can again be
made as a complete metric space by introducing a cerlain distance function

»

into the space, e.g. 0(z,y)= /( 2 (Q,- (T ) )2 ), where z=(z,,- - -,1,),
y=(¥;,"**,¥, are any two poull:cls of the product space and x;,y;¢X;
(I=1,---,¥). Generally, X, x X, x - - - x X, is said to be properly metrized,
if the distance function @ (z,y)=F#(0,(z,y),- - -, 0,(x,, 7,)) satisfies the two
postulates of Lindenbaum together with the condition that p— 0 implies
0,—0 and vice versa. Thus it is clear that the properly metrized product
space is always a complete metric space.

We shall call f(x) a continuous mapping of x of £ into a complete
metric space X* (with distance function o¥%) if (i) for all z8€ we have
Sfix)eX®*, where the totality of f(x) forms a bounded set in £®; (ii) for
each fixed x,¢% and an arbitrary €>0 we can find a 0 =0 (z,,&) >0 such
that '

(2) o*(f (), f(xy)] <& whenever o(z,x5) <d, zeX

Now we may state the following

THEOREM 1. Let {z), {rd, 2., - - (.2, 7,€%X,, 26X, +) be v
bounded sequences having limits of orders a,b,c,---(Z1) respectively,
and let f(x,y,2, - -) be a continuous mapping of (x,¥,z,- - <) of the pro-
perly metrized space X, x X, x - -+ x X, Into a complete metric space such
that § f(x,,)0 2, )} is of order S=(a+b+c+.--)—v+1. Then

(3) B f (2, 90 20 -+ ) = (I oy, im® g, i@ 2y, -+ ),
nasoo 7»00

ns>ev 7 se0
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Sketch of The Proof. We shall only sketch a proof of the theorem
by stating the most essential steps as follows:

Q) If .} is a bounded sequence having k-th derived lLimit 4 in a
complete metric space &, and if f(v) is a continuous mapping of v of X
into a complete metric space X¥, then § f(v,)} is of order =<k, and only
the limiting point f (A) can possibly have the greatest order k.

(ii) If the v sequences §x,}, { .}, -+ have limits &, 83, - - of orders
a,b,--- in X,, X,,- -+ respectively, and if X, x --- x X, is properly me-
trized, then the order s of {(x,, ¥, - +)} in the product space does not ex-
ceed the number (a+b+ - - -) —v + 1, and only the limiting point (a,f,- - -)
can possitbly have the greatest order (@+b+--:)—v+1.

The statement (i) can easily be established by induction argument.
For k=1, we see that f(v,)— f(4)=I (as n— o) so that f(4)is a limiting
point in 2*. Now the order of § f(v,)} must be 1. For, otherwise there
would exist different limiting points /, ” such that f(v, )0, f(¥, )>1".
But since {v, 3}, {v,} are sub-sequences we have ¥, —4, ¥, >4, and by
continuity of f, we must have !'=s f(1)=1"”, which is a contradiction.
Similarly, if £=2 and if { f(v,)} is of order 2, then the only possible
second order limiting point of §{ f(»,)} must be f(4), because from the case
k=1 we have seen that any first order limiting point of {#,} can only be
mapped into a limiting point of order =1 by the continuous f, and more-
over, 4 is known as tue only second order limiting point of {v,}. Hence
in general the order of { f(v,)} must be =< 2. Generalizing the above
argument and using induction we easily prove the general case A= 2.

To prove (ii) we need only make repeated use of induction. For
v=1, the statement is trivial. For v=2, we may first prove the simple
case a= 1, b=1 by induction on a. Then, by generalizing the argument
and wvsing induction on b we may easily establish the case a=1, b=1.
The procedure and reasoniug can easily be extended to the general case
v=2,

Finally we may deduce Theorem 1 from (i) and (ii). For, it is ob-
vious that we may consider £, x £, x - - - x %, as the complete metric space
Xiu (1) so that v, = (25,5 - )y k=(@+b+ - )=v+1l=s, A=(a,83, - -),
and our theorem follows.
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5. Limiting Elements of Set Sequences in X. In what follows we
use X, Y,Z,- .. to denote point sets (containing points z’s, ¥’s, z’s,- - -
respectively) in the complete metric space X. By generalizing the ord-
inary notion of limit for a sequence of points in a metric space we now
define the limiting element for an arbitrary sequence of point sets as
follows:

Definition 5.1. To every {X,} in X there corresponds a set X ., called
limiting element, which is defined to be the totality of all Limiting points

of convergent sub-sequence {x, Vs with z, ¢ X, (n=1,2,3,---). In not-

i

ation,

4 Xoo=Lim X,
s

Here we use Lim (not lim) to indicate that the limit operation is
applied to the sequence of sets. Obviously our definition is quite general
and comprehensive in its meaning. For example, in Euclidean 2-space
1f{X,} is a sequence of plane sets tending to a circular region (circle) as
limit, then X simply represents the circle (including its circumference)
on the plane. Moreover, if{X,,, } and {X,} tend to a circular region and
a triangular rcgion respectively, then X represents the union of these
two closed plane regions. In particular, if each set X, consists of only one
point z, (f.e.X,=(z,)), then Lim X represents the totality of all the

N

limiting points of {z,},7.¢. X, =X°UX', where {z,}=X.

Denote {X, U Y, }={2} and {X NV, }={I[}, where N is known as
the set-theoretic intersection relation. 'Then it is easily observed that

&5) Zw =X U Y""’ l] L) g X°° n Yu'

4. Differences of Sets, Generalized Uniform Convergence. Let
X, (n,m=1,2,3, ) be a double sequence of bounded point sets in X.
Using the definition of limiting elements we may express
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XH’ X12’ Xlsv MY Xl:m
X219 X221 X281 Y X2na

Xaclﬂ Xmg, Xoc;‘,z Tty Xoebc ())

Now since Lim X, and Lim X _, are not necessarily the samne, we
72+ 00 n-»o00

cannot of course assume that the double array has the limit X at the
corner. This naturally leads us to the generalization of the notion
of uniform convergence. ILet us now introduce the following*

Definition 4.1. Given two point sets X, Vin X, every point z of X
has a g-distance from Y, and every y of Y has a @-distance from X, then
the maximum or the lexast upper bound of all these distances Is de fined to
be the difference of X, Y, and it is denoted by || X —Y]||.

Clearly in accordance with the definition we may express
(6) {| X — Y] =bound (¢ (=, Y), 0 (5, X)),
ze X, y2 Y

where
gz, Y)="Doundp(x,y); o (y, X) = bound g (x,%).
CyaY T rex

[t can be easily observed that

D X —Yil=[Y-X|[>0,
i) X —Y||=0 ifand only if X =7,
iii) NX—Y|i+ | Y—=2Zliz|IX—2Z]|.

Lel us now give a formal proof of iii). Without loss of generality we

may assume
bound (¢ (&, Z), 0 (2, X)) = ¢ (0, Z), 9 e X.

Clearly we have

*Cf. I Hausdorff, Mengenlehre, I, pp. 236, 293,
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“bound (g (z, Y), 0 (y, X)) = bound ¢ (z, Y) = ¢ (0, ¥) = 0 (0, ¥0), ¥0e?,

bound (¢ (y,Z),¢(z, Y)) = bound ¢ (¥, Z) Z ¢(¥0, Z) = 0 (y0, 20), Zo¢Z.
Adding these inequalities together and using Definition 4.1, we get
X = Y|l + 1Y = Zli Z ¢ (0. 50) + ¢ (0 20) Z @ (0, 20) Z 0 (70, Z) = || X — Z}],

which is what we want to prove. Hence we have the following simple
conclusion:

THEOREM 2. Al the hounded open sets (or closed sets) contained n
the metric space X, when considered as elements, also form a metric space
with respect to the distance function (difference) | X — Y | which is defined
Sor every pair of sets X, Y in X.

Having defined the difference for any two sets, we may now introduce
the notion of uniform convergence for set sequences.

Definition 4.2. The sequence X, X, 5, X3, + - Us said to converge to
the limiting element X, ., uniformly with respect to n, if for every given

£>0, there exists a large number N (depending on € only ) such that for
all n,

(7) lan]"‘ nae”<8

whenever ] Z N =N (&).
We are now going to establish the following

THEOREM 3+ [f the sequence X, X, 9, X,z + - of bounded point sets
in X converges to X,,., uniformly with respect to n, then we have

(8) Lim (Lim X,,,,.) =Lim (Lun X,,,,,).

71-»00 PO m>»00 ‘71-»00

Proof. Let z* be an arbitrary limiting point contained in Lim X, .

n-»0co

Then therc is a sequence {z,} converging to #* with z, X, .. Given
an arbitrary & >0, we can determine a large number M= M (&, z*%)
depending on & and z* only such that
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1 1
9 Q($,n,x")<7{8, “Xkl_'kaH <—4'~€,

whenever v, = M, j = M, (k=1,2,3,-..). Thisis always possible, since,
by uniform convergence, we have .V=N(¢) such that the second inequality
of (9) holds for j = N, and we may take M > N. Now the second
inequality implies that there are points z;; of X, (=M, M+1,--.)
satisfying

1
(10) o2l jm,) < i

for all v, =2 M. Comparing (9) with (10), we get

1 1
(11) o (x; 7,1«‘*)<—4(€+8)=~2—£,

Yn

for all v, j = M. Since {2} } is bounded, there exists at least a conver-

Vi
gent sub-sequence {z] } of it such that lim z} ;=u/ Clearly zjeX_,

tnl i j =
n-»00

(J=M,M-+1,...) and from (11) we have

1 2
(12) g(x;,x*)§§e<ge.

Thus there is a convergent sub-sequence of {27},say {z] },s0 that lim x| wz”
n-»o

n

belongs to Lim X, ; and obviously we have (by (12))

R J’]
]9&
2
(13) e(x”,x*)gge<e.

This shows that z* has a distance < & from LimX_. Note that ¢ is
jroo

arbitrary and Lim X, is closed, we may therefore infer that +* is a point

of Lim X_. Hence we have

jr

(14) Lim Xpeo & Lim Xy,

nos« j,g.
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It remains to show that “<”’ can be replaced by “2”. The following
is just a reverse of the foregoing procedure with suitable modifications.
Let z* be any point of Lim X, and & an arbitrary number > 0. By

. jre .
uniform convergence there exists a large number V (depending on & only)
such that

" 1
(15) ”an"‘AnﬂH<':+_8’

for all j= N and n=1,2,5,-... By our supposition there exsits an
M =z N such that

1
(16) o(xa2a*) < Y &,

with 2,6 X_,,. Clearly there is a convergent (column) sub-sequence {z, }
such that lim z, =z, and x, €X, ,,(n=1,2,3,.--). Hence there is a
K = M such that

1
17) olzy, ) < i

whenever v, = K. Comparing (16) with (17) we get
1
(18) o (x,,2%) < 58
Sforall v, = K. Note that z, €X, ;; and (15) implies
1
15y | Xngpe = Xom ! < 4

where n=1,2,3,---. Thus it follows that X, ., must contain a point xf,ﬂ
such that

1
(19) ¢ (xvna x:,,) < 4 ¢

whenever n=1,2,3,.--. Comparison of (18) and (19) gives
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1 1 3
(20) oGl am <+ 7 )em= -

Now obviously

Lim (x] ) & Lim X, « & Lim X,

71>00 7100 7500

so there is a convergent sub-sequence {z/} of {z] } such that

lim .r:fl =2 ¢ Tim X, .

700 77-»00

Hence from (20) we obtain

(21) o ¥ < e

This shows that z* has a distance < & from the closed set Lim X .

n->oe

Thus we see that ¥ musl belong to L.im X _, and the relation “C” of (14
jad 71003

n-»x

can be reversed. Our theorem is therefore established.

Note. It is clear that, in accordance with Definition 5.1, every
sequence of bounded sets {X,} in X has always a limiting element X, but
the upper limit
is not necessavily equal to zero. Thus it is easy to see that our proof of
Theorem 3 cannot be simplified very much by merely making use of the
triangular relation || X - Y||+||Y—Z{| = || X - Z]].

THEOREM 4. Under the same hypothesis of Theorem 5 we have
(23) Lim (Lim X)) = Lim X, = X ...

N +® Moo >0
Detailed proof of this theorem will be omitted here, as it can be

easily produced by using the same principle as already ewmployed in our
proof of Theorem 3. As a matter of fact, by the uniform convergence of
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Xty Xy X5+ + - — X, it 1s easy to show that for every point x* of Lim X,
n-»o0

there can always be found a diagonal sub-sequence {z, .} (z, , €X, , )
ntn n'n nn
such that lim x, , =z*, and conversely, for every point 2’ of X there is

a (columnsl;c&b-sequence {x,,} of points (z, £X, .) converging to z'.

I am indebted to Dr. F. Smithies for kindly reading through my
manuscript and suggesting that the definition of limiting sets of §3 can be
made more abstractly in terms of “Filters” (See Bourbaki, Topologie
geénérale, Chap. 1). It may therefore be remarked that our Theorems 5
and 4 can be further generalized, but the essential reasoning involzed in
such generalizations may be quite similar to that here adopted.
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