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Are patch occupancy data suff icient for inferring metapopulation
dynamics using spatially explicit patch occupancy models ?3

Weidong GU ①②33　Robert K. SWIHART①

( ① Depart ment of Forest ry and N at ural Resources , Purdue U niversity , West L af ayette , IN 　4790721159 , USA )

( ② Center of Economical Entomology , Illi nois N at ural History S urvey , 607 Peabody , Cham paign , IL 　61820 , USA )

Abstract　Spatial occupancy data have been widely used to draw inferences about metapopulation dynamics using patch2
occupancy models. In the context of conservation biology , parameter estimation of patch2occupancy models is crucial for
interpretation of metapopulation dynamics and prediction of a species’response to habitat destruction. In this paper , we
explored the uncertainties associated with parameter estimation of a spatially explicit patch2occupancy model , the incidence
function model ( IFM) . By constructing hypothetical networks of habitat patches and metapopulations with known param2
eters , we could estimate parameters based on maximum likelihood methods using different snapshots from the same
metapopulation. Furthermore , we developed a variant IFM with a target2area effect , i. e. , the probability of colonization
was related to the size of a focal patch as well as spatial isolation. Our results show that estimated parameters based on dif2
ferent snapshots collected from the same metapopulation exhibit considerable variation. For example , estimates from one
snapshot may indicate a species with good dispersal and poor local survival probabilities whereas estimates from another
snapshot of the same metapopulation may suggest a poor disperser with good local survival probabilities. Failure to include
a target2area effect in the model yielded a positive bias for the parameter that scaled extinction probability to patch size.
We conclude that inference of metapopulation dynamics based on one snapshot of occupancy data is not reliable [ Acta Zoo2
logica S inica 49 (6) : 787 - 794 , 2003 ] .
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用空间直观模型是否足以从斑块占据性资料中
推断集合种群的动态过程 ?3

Weidong GU ①②33　Robert K. SWIHART①

(①Department of Forestry and Natural Resources , Purdue University , West Lafayette , IN 4790721159 , USA)

(②Center of Economical Entomology , Illinois Natural History Survey , 607 Peabody , Champaign , IL 61820 , USA)

摘　要　在集合种群的研究中 , 经常要根据空间占据性数据应用斑块模型来推断种群的动态过程 , 在保护生物

学应用中 , 斑块占据性模型的参数估测对于阐释集合种群动态和预测种群对生境破坏的反应极为重要。我们探

讨了一种广泛应用的空间直观模型———率函数模型 ( Incidence function model) 中参数估测的不确定性问题 , 通

过构建由 50个斑块组成的网络和两个假想的已知参数的集合种群 , 应用模拟模型产生集合种群随时间变化的斑

块占据性数据系列 : 即快照 (snapshot) 。然后 , 根据这些快照 , 应用率函数模型和最大似然法估测种群动态参

数。此外 , 我们还给出了传统的率函数模型的一个变形 , 这个变形包含了目标区效应 ( Target area effect) : 即一

个斑块的占据概率不但取决于空间隔离度 , 也取决于斑块本身面积的大小。结果表明 : 根据同一个集合种群不

同的快照所估测的参数可以有很大差异 , 一个快照得出的参数提示的是占据性强但存活率低的集合种群 , 而另

一个快照可能反映的是一个占据性弱但存活率高的集合种群。应用传统的率函数模型于一个包含了目标区效应

的集合种群 , 导致斑块大小相关的灭绝率参数估测的正偏差。因此 , 仅根据一个快照的空间占据性数据来推测

集合种群的过程有很大的不确定性 [动物学报 49 (6) : 787～794 , 2003 ]。

关键词　参数估计　不确定性　最大似然法　目标区效应



　　Predicting the probability of persistence for
species of conservation concern in a fragmented land2
scape is a challenging task for wildlife managers. In a
network of habitat patches , a spatially st ructured
population , i. e. metapopulation , can persist in a bal2
ance of colonization and local extinction ( Lande ,
1987 ; Adler , 1994 ; Hanski , 1998a) . Information
about population processes such as dispersal is crucial
to understanding metapopulation dynamics (Johnson
et al . , 1990 ; Ferriere et al . , 2000 ; Nathan , 2001 ;
King et al . , 2002) . Unfortunately , conservation bi2
ologists and wildlife managers often are frustrated by
a lack of information about demographic parameters
of rare and endangered species. The use of presence/
absence data is almost compulsory in many large2scale
ecological surveys , as gathering longitudinal data on
abundances of multiple species requires enormous re2
sources ( Steinberg et al . , 1997) . Much effort has
been made to obtain the information of metapopula2
tion processes based on readily available data of
species occupancy (Diamond , 1975 ;van Dorp et al . ,
1987 ; Verboom et al . , 1991 ; Hanski , 1994 ; Sjo2
gren2Gulve et al . , 1996) . Patch occupancy models
that only rely on dist ributional data of species in a
network of habitat patches are appealing to conserva2
tion biologists because of their potential power to pre2
dict the fate of endangered species in fragmented
landscapes (Wahlberg et al . ,1996) . Among several
commonly used patch occupancy models , the inci2
dence function model ( IFM) can be useful for esti2
mating parameters of metapopulation processes based
on patch2occupancy data collected at a single point in
time ( i. e. one snapshot of patch occupancy) and
measurable habitat configurations ( Hanski , 1994 ,
1998a) . IFMs have been used widely for predicting
persistence of metapopulations in fragmented land2
scapes ( Quintana2Ascencio et al . , 1996 ; Walhberg
et al . , 1996 ; Moilanen et al . , 1998 ; Crone et al . ,
2001) .

As emphasized by Conroy et al . ( 1995) , pa2
rameter estimation is a necessary and important step
in the application of any type of spatially explicit pop2
ulation model. Because any type of patch2occupancy
model relies on dist ributional data of species for pa2
rameter estimation , factors leading to variation in
patch2occupancy data may introduce uncertainties as2
sociated with parameter estimation of IFM. The fac2
tors include sampling errors in patch2occupancy data
and stochastic dynamics of colonization and extinc2
tion. In the field , non2detection of a species’occur2
rence when it is present at a site may occur due to low
density and/ or poor efficiency of the sampling method
( Gu et al . Ξ ) . The sensitivity of parameter estima2

tion of IFMs to non2detection error has been dealt
with elsewhere ( Moilanen , 2002) and thus will not
be considered in this paper. On the other hand , even
for a metapopulation at equilibrium there can be con2
siderable variation in spatial pattern of occupancy over
time due to inherent stochasticity in colonization and
extinction processes. ter Braak et al . ( 1998 ) has
provided an insightful review about the issue. In
many metapopulations studied , turnover (extinction
of occupied patches and colonization of vacant patch2
es) rates were considerable ( Hanski , 1994 ; Crone et
al . , 2001) . This raises concern about the validity of
parameter estimation of the IFM using one snapshot
of occupancy data (Moilanen , 1999) . For reliable es2
timation of metapopulation processes with patch occu2
pancy data , multiple snapshots of occupancy are need2
ed (O’Hara et al . , 2002 ; ter Braak et al . , 2003) .
In these studies , Bayesian statistical inference based
on Markov chain Monte Carlo ( MCMC) has been
used to address the uncertainties associated with pa2
rameter estimation and missing observations.

In the traditional IFM , colonization and extinc2
tion are assumed to be determined by spatial isolation
and habitat size , the so2called patch area2isolation
paradigm ( Hanski , 1998a ) . Several investigators
have reported that processes other than spatial isola2
tion and habitat size play an important role in
metapopulation dynamics. For the colonization pro2
cess , it is likely that a large unoccupied habitat patch
has a greater chance of being occupied than a small
one , all other things being equal. This is called the
target2area effect , a phenomenon widely recognized in
island biogeographic surveys ( Pokki , 1981 ; Lomoli2
no , 1990 ; Gotelli , 1995 ; Moilanen et al . ,2002) .

To investigate further the extent of the uncer2
tainty in parameter estimation based on a single snap2
shot of spatial occupancy data , in this paper , we con2
ducted simulation studies by constructing hypothetical
metapopulations with known parameters and process2
es. Additionally , we present a variant of IFM which
incorporates the target2area effect and illust rate the
impact of a target2area effect on parameter estima2
tion.

1　Methods
111　Hypothetical patch networks

As suggested by Hanski (1994) , a suitable situ2
ation for parameterization of the IFM is to have a
habitat patch network with at least 30 patches ,
preferably more than 50. Two networks of 50 dis2
crete habitat patches were constructed in a landscape
of 100 units long × 80 units wide. One patch net2
work ( Fig. 1a , hereafter referred to as H1) had larger
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Fig. 1 　Two hypothetical networks of habitat patches used for generating simulated data of metapopulation dynamics
Patch size in H1 has a larger variation than that in H2. Circle diameter is scaled by patch size

variation in patch size (μ= 11139 ,σ = 38171) than
the other network of habitat patches ( Fig. 1b , re2
ferred to as H2) (μ= 11184 ,σ = 12143) . H1 and
H2 were roughly the same in total habitat area. The
two patch networks were used to compare the effect
of a differing range of patch sizes on parameter esti2
mation . To examine whether uncertainties in parame2
ter estimation are affected by species with various life2
history features , two hypothetical species were creat2
ed. Species 1 was a good disperser but was prone to
local extinction. Species 2 was a poor disperser but
survived well in colonized patches. Dynamics of both
species were simulated in H1 and H2 , resulting in
four combinations of species ×landscape.
112　The incidence function model

The IFM was used to simulate metapopulation
dynamics. In IFM , the rate of colonization ( Ci ) of
an unoccupied patch is a function of its isolation ( S i)
f rom extant populations :

Ci =
1

1 +
y

S i

2 (1)

where y is a coefficient for colonization potential and
S i is a measure of spatial isolation of the focal patch

i ,

S i = 6
j≠i

p jexp ( - αd ij) A j (2)

where p j is an indicator (1 = present , 0 = absent)
of species occurrence in patch j with habitat area of
A j , d ij is the Euclidean distance between patch i and

j , and 1/α is the mean dispersal distance for mem2
bers of the species. Extinction probability ( Ei) of an
occupied patch i is expressed as a function of patch
area ( A i) :

Ei =
e

A x
i

(3)

where e , the background extinction rate , and x , the
st rength of area2dependence in extinction rate , are
constants to be estimated. For a metapopulation at e2
quilibrium , the probability of occupancy (i. e. , inci2

dence) of a patch while taking into account rescue ef2
fect ( the reduced extinction by immigration) is ac2
cording to Hanski (1994) :

J i =
1

1 +
e′

S 2
iA

x
i

(4)

where e′= ey2 . For a typical IFM , there are four
parameters (α, e , x and y) to be estimated based on
patch2occupancy data. Because e and y are combined
in equation 4 , additional data would be needed to sep2
arate the effect of these two parameters , such as the
threshold patch size at which the probability of ex2
tinction is unity ( Hanski , 1994) .

Assuming that occurrence of a species among
patches was binomially dist ributed with the probabili2
ty of occupancy given by equation (4) , the log2likeli2
hood is defined as

6
i

[ pilog Ĵ i + (1 - p i) log (1 - Ĵ i) ] (5)

where p i = 1 for occupied patches and 0 for vacant
patches. Ĵ i is the estimated incidence , given by equa2
tion 4. We developed a program that estimated pa2
rameters based on a Fisher information matrix. This
involved calculating second partial derivatives of the
log2likelihood of the observation (equation 5) with re2
spect to parameters e′and x . The inverse of the
Fisher information matrix gives asymptotic estimation
of precision of the parameters. Becauseαenters in e2
quation (4) through S i , which in turn depends on
concurrent occupancy , we estimatedα by determin2
ing the value that maximized equation (5) . The pre2
cision of estimateαwas obtained by subtracting and
adding a small amount , δ, to the maximum likeli2
hood estimate of α to recalculate the log2likelihood ,
log L - and log L + . The standard error (αstd) of α
was estimated as (Bulmer 1979)

αstd =
δ2

log L - - 2log L 0 + log L +
(6)

where log L 0 is the likelihood given the maximum
likelihood estimate ofα. We setδ = 010001.
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Simulations of metapopulation dynamics were
conducted for 200 time units with known parameters
(for species 1 and 2 ,α, e′and x were 0118 , 15 ,
017 and 0128 , 5 , 115 , respectively) . Initially all
patches were occupied. Patch occupancy for use in es2
timating parameters of the IFM was sampled from
time units 100 to 200 , after metapopulations had
reached quasi2equilibrium states.
113　IFM with target2area effect

Fig. 2 　Simulated patch occupancy of two hypothetical species ( panel a , species
1 and panel b , species 2) in two patch networks
Solid lines and dotted lines for H1 and H2 respectively

A simple way to incorporate target2area effects
is to assume that colonization probability is not only
dependent on spatial isolation but also is related to the
focal patch size. Studies have shown that island ge2
ometry , for example , island width perpendicular to
the line of immigration , could be important in affect2
ing immigration rates (Lomolino , 1990) . Therefore ,
equation 1 becomes :

Ci =
1

1 +
y2

A b
i S

2
i

(7)

where b is constant scaling colonization probability to
the focal patch size. Note that the effect of spatial
isolation and the focal patch size is multiplicative.
Consequently , equation 4 was modified to account for
the target2area effect as :

J i =
1

1 +
e′

S 2
iA

b+ x
i

(8)

　　Clearly , an estimate of x derived using the tra2
ditional IFM in truth is a combination of x and b in
the presence of the target2area effect .

2　Results
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211 　Effect of stochasticity in metapopulation dy2
namics on parameter estimation

The predicted occupancy of metapopulations
with various life2history features in the landscape was
displayed in Fig. 2. Both species had a higher occu2
pancy in H2 , the network with more homogeneous
patch sizes , than in H1 , the network with greater
variation in patch size. This was due to many small
patches in H1 that had high extinction probabilities.
Turnover rates were around 20 % and 10 % for
Species 1 and 2 , respectively. Occupancy by species
1 , the good disperser prone to local extinctions , oscil2
lated more than that of species 2 ( Fig. 2) .

There was considerable variation in individual
parameters estimated from a sequence of occupancy
data of the same metapopulation , despite relatively
small variation in occupancy ( Table 1) . Interpreta2
tion of metapopulation dynamics based on these esti2
mates could be inconsistent . For example , parameters
in the second (α = 0125 , e′= 11532 , x = 0187)
and third row (α = 0107 , e′= 1504192 , x =

01211) of Table 1 specified species with fundamental2
ly different characters in term of dispersal ability and
proneness to extinction. Significant correlations be2
tweenα and e′and betweenα and x were detected
in 100 repeats of estimates for both species in the two
habitat networks ( Table 2) .

Despite the large variation in individual parame2
ter estimates from consecutive snapshots of occupan2
cy , the averages of the estimates from 100 replicates
of estimated parameters were seemingly unbiased for
parametersα and x . However , there were substan2
tial positive biases in estimates of e′( Table 3) . The
bias of estimates of was larger for the species in H1
than H2 ( Table 3) . Both species exhibited similar
levels of uncertainties in term of parameter estima2
tion. Because e′is a combination of e and y that re2
flect extinction and colonization effect , respectively ,
it is impossible to ascertain the relative role of the two
parameters in generating the huge bias in estimated e′
based on only occupancy data.

Table 1　Parameter estimation based on 10 consecutive snapshots time units of 120 - 129

of occupancy sampled from a simulated metapopulation of hypothetical species 1

Occupancy
Number of

turnovers
α Stdα e′ Std e′ x Std x

Patch network H1

016 10 0112 01010 125142 60154 01648 01321

0156 10 0125 01018 11532 01825 01870 01376

016 10 0107 01006 1 504192 618194 01211 01228

0162 9 0112 01010 102127 51130 01669 01346

0154 6 0109 01008 779122 333147 01300 01238

0152 9 0108 01007 1 318153 560153 01184 01219

0148 10 011 01008 662199 292142 01263 01231

0152 10 0123 01016 21011 11230 01284 01325

0148 10 0119 01013 15138 81362 01271 01275

0154 7 0113 01010 100186 50168 01311 01278

Patch network H2

018 6 0119 01014 17163 19197 01823 01602

0182 5 0115 01012 133116 133174 11176 01576

0186 4 0124 01022 81459 10166 11626 01782

019 6 0116 01016 56113 69194 11480 01828

019 4 0116 01016 40104 50103 11249 01786

0186 4 0125 01018 11877 21402 01919 01706

0182 8 0117 01013 51571 61420 - 01190 01542

0184 9 0119 01014 91054 101226 01499 01599

0184 6 0132 01021 11123 11428 11778 01752

0176 8 0124 01015 41059 51000 01640 01628

α = 0118 , e′= 15 , x = 017 in the two networks of habitat patches
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Table 2　Correlations between parameters of incidence function

models estimated from 100 repeats of parameter sets

H1 H2

Species 1 Species 2 Species 1 Species 2

αvs1 e′ - 016433 - 015733 - 013533 - 015233

αvs1 x 012733 015233 013833 016233

e′vs1 x - 0124 3 - 0117 - 014433 0115

3 : Significant at P = 0105　33 : Significant at P = 0101

212　Impact of target2area effect on parameter esti2
mation

As expected , the presence of the target2area ef2
fect yielded positively biased estimates of x ( Table
3) . The degree of the bias was associated with the
strength of the target2area effect , represented by the
coefficient b.

3　Discussion
Our simulations demonstrate that estimated pa2

rameters varied from one snapshot to another even
when sampled from the same metapopulation at quasi2
equilibrium1 Such inaccuracy in parameter estimation
might be negligible if the IFM were used to predict
the probability of long2term persistence in the same
landscape without disturbance1 However , it could
produce erroneous predictions regarding the response
of a metapopulation to landscape change , because pa2
rameters of the IFM characterize a species’ability to
respond to habitat loss and fragmentation1 Predictions
regarding the species’ response to habitat change
could differ radically , depending on which snapshot
(e1g. , year of sampling) was used to derive parame2
ter estimates. A snapshot yielding large estimated
values ofαand x would be interpreted as characteriz2
ing a species with poor dispersal and good survival a2
bility. Such a species responds differently to habitat
loss and fragmentation than a species with good dis2
persal and poor survival ability , characterized by small
αand x . Although the estimated parameters ofαand
x averaged over 100 snapshots were unbiased ( Table
3) , estimates from one snapshot of patch occupancy
data often were unreliable. Our results highlight the
difficulty associated with utilization of the IFM with2
out much empirical data to verify the predictions. We
echo concerns raised by other investigators that data
on patch occupancy are insufficient to unravel under2
lying population processes ( ter Braak et al . , 1998 ;
Tyre et al . , 2001 ; Clinchy et al . , 2002) .

Based on the patch area2isolation paradigm , the
traditional IFM makes simplifications to facilitate pa2
rameter estimation. In some situations , these approx2
imations have been useful in predicting species occu2
pancy ( Hanski , 1992 ; Wahlberg et al . , 1996 ) .

However , recent studies have underscored the need to
expand the IFM paradigm to include other factors
which are important for metapopulation dynamics
(Fleishman et al . , 2002 ; Harding et al . , 2002) .
For example , using a decade of census data for st ream
fishes , Gotelli et al . ( 1999 ) showed that annual
probabilities of colonization and extinction were relat2
ed to position in the stream gradient . For most
species , colonization was less likely and extinction
more likely in upstream than downstream sites.
Therefore , spatial variability in colonization and ex2
tinction should be incorporated for populations that
are dist ributed across environmental gradients ( Gotelli
et al . , 1999) . Habitat quality , rather than patch
area and isolation , has been shown to be related to oc2
cupancy , colonization and extinction in a riparian2ob2
ligate butterfly metapopulation ( Fleishman et al . ,
2002) .

A target2area effect on colonization has been
widely recognized in island biogeography ( Gotelli ,
1995 ; Moilanen et al . , 2002) . Increases in species
richness with increasing area might result partly from
a positive correlation between immigration rates and
island size ( Gilpin et al . , 1976 ; Simberloff , 1976) .
Larger islands may serve as more effective target areas
for potential immigrants because they are more likely
to be seen ( by active dispersers) or intercepted ( by
passive dispersers) (Lomolino , 1990) . Habitat fea2
tures related to target2area effect are different for
these two different types of dispersers. An island
width perpendicular to the line of immigration is more
important than patch area for active dispersers ,
whereas the latter plays a more important part in col2
onization by passive dispersers (Lomolino , 1990) .
Therefore , large patches have two advantages over
small ones in colonization2extinction dynamics of a
metapopulation , i. e. smaller extinction probability
and larger colonization probability. If these two ef2
fects are both related to patch size , as assumed in our
modified IFM , they cannot be distinguished without
additional information. Empirical data documenting
the correlation between numbers of immigrants and
patch size could be used to estimate b independently.
Ignoring a target2area effect when it was present
yielded a positive bias in estimates of x ( Table 3) .
The bias increased with increasing magnitude of the
target2area effect (results not shown) . The parameter
x has been designated as an important indicator of
environmental stochasticity ( Hanski , 1998a) and has
been linked to demographic parameters of local popu2
lations ( Hanski , 1998b) . Thus , overestimates of x
induced by neglecting target2area effects would lead to
misinterpretation of a species’response to habitat and
environmental change.
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Table 3　Parameter estimates of the incidence function models

Given values of parameters Mean Standard deviation ? min max

Habitat1

Species 1

α 0118 01183 01054 0107 0128

e′ 15 117143 260182 01655 1 504191

x 017 01616 01327 - 01289 11541

Species 2

α 0126 01250 01054 0114 0137

e′ 5 32123 79191 01502 547193

x 113 11263 01382 01535 21793

Habitat 2

Species 1

α 0118 011828 01042 0113 0132

e′ 15 43109 76128 01332 424102

x 017 01783 01738 - 01764 21959

Species 2

α 0128 012834 01045 0116 0143

e′ 5 61779 11191 01833 72135

x 113 11279 01579 - 01041 21618

Habitat 1 with target area effect b = 017

Species 1

α 012 01193 01063 0108 0133

e′ 15 284191 962137 01485 7 911112

x 015 11130 01382 01412 21325

Species 2

α 0128 01278 01063 0113 0142

e′ 5 23165 63101 01458 411115

x 113 11995 01661 01863 41060

Statistics were obtained from 100 repeats of parameters estimated from sequences of occupancy sampled from time unit 100 to 200

　　Crone et al . (2001) estimated parameters based
on the patch2occupancy data from a six2year survey of
vole populations in Tvarminne archipelago , Finland.
Likelihood ratio tests were used to choose between
nested models that assumed various processes underly2
ing metapopulation dynamics. We found that there
were substantial variations in log2likelihoods calculat2
ed from various snapshots sampled from the same
metapopulations. Given the substantial variation in
log2likelihoods calculated from various snapshots of
patch2occupancy data , caution is warranted in model
selection solely based on log2likelihood ratio tests.
Moreover , equifinality , a phenomenon recognized in
mechanistic modeling of complex ecological systems ,
indicates that various models can fit to the same data

set with similar levels of goodness2of2fit but funda2
mentally different interpretations ( Beven et al . ,
2001) . There are many different model st ructures
and many different parameter sets within a chosen
structure that may be acceptable in reproducing the
behavior of the system. For example , incorporation
of spatially correlated extinction could readily explain
the pattern of patch occupancy typically cited as evi2
dence of the preeminent importance of dispersal in
metapopulation dynamics (Clinchy et al . , 2002) .

The inherent stochasticity induced by coloniza2
tion2extinction dynamics may prevent reliable estima2
tion of metapopulation processes based solely on one
snapshot of occupancy data and landscape configura2
tion , especially for small patch networks. Presum2
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ably , stochasticity will be less influential as the num2
ber of patches increases. Since a single snapshot of
occupancy is insufficient to reliably specify IFMs ,
multiple surveys of species occupancy would be neces2
sary to improve statistical inference about metapopu2
lation dynamics (O’Hara et al . , 2002 ; ter Braak et
al . , 2003) . An advantage of multiple surveys is that
turnovers of recolonization of vacant patches and ex2
tinction of occupied patches can be estimated. These
allow one to separately estimate colonization and ex2
tinction parameters , thus increasing the resolution of
statistical inference (Sjogern2Gulve et al . , 1996) .
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