文章编号: 1000-324X(2006)04-1011-07

ZnO 陶瓷靶制备及其薄膜 RF 溅射工艺研究

陈 祝^{1,2}, 张树人², 杜善义³, 杨成韬², 郑泽渔², 李 波², 孙明霞²

(1. 成都信息工程学院通信工程系,成都610225; 2. 电子科技大学微电子与固体电子学院,成都610054; 3. 哈尔滨工业大学复合材料研究所,哈尔滨150001)

摘 要: 利用固相反应制备了直径为 70mm, 厚度为 10~15mm 高质量掺杂 Li₂CO₂ 的 ZnO 陶瓷靶材,实验了不同摩尔浓度的 Li⁺ 掺杂对靶材性能的影响,确定了最佳 Li⁺ 掺杂量为 2.2mol%,同时通过在不同温度烧结实验、不同成型压力实验确定了 ZnO 靶材制备的最佳工 艺,并采用所制备的 ZnO-Li_{2.2%} 陶瓷靶和 RF(射频磁控) 技术在 Si(100)、玻璃(载玻片)、及 Pt(111)/Ti/SiO₂/Si(100) 基片上制备出高度 c 轴 (002) 择优取向的 ZnO 薄膜,其绝缘电阻率 ρ 为 4.12×10⁸Ω·cm,达到了声表面波器件 (SAW) 的使用要求.

关 键 词: 陶瓷靶;氧化锌薄膜;射频磁控溅射;择优取向 中图分类号: N304, TB43 **文献标识码:** A

1 引言

ZnO 是一种具有压电和光电特性的半导体材料,其六角形纤锌矿结构适合于高质量定向外延薄膜的生长,它在常温下的禁带宽度是 3.3eV,是典型的宽禁带半导体,目前对 ZnO 薄膜的研究主要集中在透明导电性、压电性、光电性、气敏性、压敏性等方面,其性质随掺杂组分和制备条件的不同而表现出很大的差异性^[1~4].高密度 *e* 轴取向的 ZnO 薄膜具有良好的压电性,被广泛用于表面声波器件中^[5,6].

目前制备 ZnO 薄膜的方法有很多种,最常用、简便、经济的方法是溅射法.其原理是 利用离子源 (氩气)产生的离子,在真空中经过加速轰击固体 (靶材)表面,离子和固体表面 原子发生动能交换,使固体表面的原子离开固体并沉积在基片表面,被轰击的固体是用溅 射法沉积薄膜的原材料,称为溅射靶材^[7].采用靶材溅射沉积的薄膜致密度高,与基材之间 的附着性好,靶材的制备工艺与所制备靶的组成、纯度、结构、性能密切相关,同时也很大 程度地影响所制备薄膜的性能.我国是世界上薄膜靶材需求量较大的国家之一,但是靶材 制备技术发展滞后,大直径和特殊的靶材靠国外进口.

本文结合陶瓷靶材制备工艺,研究了不同 Li⁺ 掺杂配比对靶材性能的影响,确定了最 佳 Li⁺ 受主掺杂量及靶材制备工艺,同时使用所制得的 ZnO 靶材,采用射频磁控溅射技术 在不同的基片上制备了高度 c 轴 (002) 取向、均匀、致密、绝缘电阻率 ρ 为 4.12×10⁸Ω·cm,可 满足声表面波器件 (SAW) 要求的 ZnO 薄膜.

收稿日期: 2005-08-01, **收到修改稿日期**: 2005-09-15

作者简介: 陈 祝 (1964-), 女, 博士, 工程师. E-mail: zengyong@ uestc.edu.cn, chenzhu8320@126.com

2 实验

ZnO 靶材制备采用传统的固相反应工艺,大致流程是: 配料 (ZnO 分析纯 99.8%, Li₂CO₃ 分析纯 97%)→ 加锆球磨 (40h)→ 烘干湿料 → 研磨 → 预烧 (700°C 2h)→ 二次球磨 (30h)→ 烘 干湿料 → 研磨 → 预烧 (750°C 2h)→ 研磨 → 过筛 → 加粘合剂研磨造粒 → 压力成型 → 烧结 → 性能测试.

ZnO 薄膜制备是采用日本 ULVAC 公司生产的 MB02-9303/9304 射频磁控薄膜溅射系统,溅射前先将系统真空抽至 1.7×10⁻⁴Pa,衬底温度为室温,溅射气体为 Ar、 O₂ 混合气体 Ar:O₂=20:3 (Ar 纯度 99.95%, O₂ 纯度 99.9%),溅射功率为 50W,溅射时沉积气压保持在 0.2~0.8Pa,衬底基片材料分别是单晶 Si(100)、Pt(111)/Ti/SiO₂/Si(100) 和厚度 1.0mm 玻璃,基片在沉积前分别用无水乙醇、丙酮和去离子水进行超声清洗处理,正式溅射前先预溅射靶 30min. 绝缘电阻与损耗测量采用 Automatic LCR Merer 4225 自动测量仪,结构性能分析采用英国 Bwde 公司生产的 Bede D1 System 多功能射线衍射仪,薄膜表面形貌与晶粒尺寸分析采用日本 Seiko 公司生产的 SPA-300HV 型扫描探针显微镜.

3 结果和讨论

3.1 最佳掺杂 Li⁺ 浓度实验

试验采用 ZnO 分析纯原料,同时掺杂不同浓度配比的 Li₂CO₃,其 Li⁺ 掺杂摩尔百分比 量分别为: 0、0.55、1.10、2.20、3.30、4.40、5.50、按上述工艺流程,研磨造粒后取 0.4g 粉料,用直径为 1cm 的不锈钢造粒模具在 10MPa 下压成小圆形片.将成型的小圆片置 于 Al₂O₃ 中在 1120°C 高温埋烧 2h 后,再通过两面涂抹铟、镓混合电极,对其进行电性能测 试,在 1kHz 频率下的测试数据如表 1.

dimerent concentrations of $L_{12}CO_3$								
${\rm Li^+/mol\%}$	Diam./cm	$Area/cm^2$	Thickness/cm	$IR/\mathrm{M}\Omega$	${ m tg}\delta/\%$			
0	0.966	0.7329	0.111	4.2	6.87			
0.55	0.958	0.7208	0.106	6.6	3.78			
1.1	0.964	0.7299	0.108	7.2	3.12			
2,2	0.958	0.7208	0.112	16.6	1.66			
3.3	0.962	0.7268	0.104	10.2	2.79			
4.4	0.976	0.7482	0.098	6.6	2.76			
5.5	0.966	0.7329	0.113	4.8	4.32			

表 1 不同 Li/Zn 摩尔比的 ZnO 陶瓷靶材样品电性能测量数据 Table 1 Electrical data of ZnO ceramic targets doped with different concentrations of Li₂CO₃

从表 1 和图 1 可以看到随着 Li⁺ 掺杂量的增加其绝缘电阻 IR 缓慢增加,同时损耗 tgδ 减少,当 Li⁺ 掺杂量为 2.2% 摩尔比时,绝缘电阻出现最大值,同时损耗也降低到最小,以 此可以确定 ZnO 中掺杂的 Li₂CO₃ 最佳含量为 2.2% 摩尔比.

ZnO为n型半导体,其导电来源于其存在的锌间隙与氧空位^[6],分析其导电机理如下:

Zn 正离子填隙形成的 n 型半导体:

$$Zn_{Zn}^{x}+O_{O}^{x} \rightleftharpoons Zn_{i}^{\cdots}+2e+\frac{1}{2}O_{2}$$
 (1)
O 空位形成的 n 型半导体:
 $O_{O}^{x} \rightleftharpoons V_{O}^{\cdots}+2e+\frac{1}{2}O_{2}$ (2)

而当实验采用受主 Li⁺ 掺杂时,由于 锂离子 (Li⁺) 半径 0.78Å与锌离子 (Zn²⁺) 半 径 0.74Å非常接近,故在 Li⁺ 掺杂时容易取 代 Zn²⁺,因为掺杂原子有取代和它电负性 相近的原子形成取代式原子的倾向,当掺杂 元素的电负性刚好介于 Zn 和 O 元素之间 时,粒子尺寸的相对大小起决定性作用.而 Li⁺ 掺杂取代 Zn²⁺ 后可以降低 ZnO 陶瓷靶 n型半导体化趋势,使绝缘电阻增大,其掺 杂取代机理: Li₂O ZnO₂ 2Li_{Zn} + 2h+O_o^{*},

图 1 不同 Li 离子掺杂配比的 ZnO 靶材样品的 $IR 与 tg\delta 曲线图$ Fig. 1 IR and tg δ curves of ZnO ceramic targets doped with different concentrations of Li₂CO₃

可见, Li⁺ 掺杂后可以增加空穴的浓度, 而释放的空穴与(1)、(2)两式中的自由电子复合, 从而使导电率下降, 绝缘电阻增加. 而当过多的增加 Li⁺ 掺杂量, 其填隙于晶界处的 Li⁺ 又会使导电率增大, 降低薄膜的绝缘电阻率. 故理论上存在一个最佳掺杂量, 通过上述 实验摸索出了其最佳掺杂 Li⁺ 量为 2.2% 摩尔比.

3.2 不同烧结温度实验

烧结温度的选择是制备靶材的关键,为了避免靶材出现烧不透、靶材变形、微龟裂纹甚 至开裂现象,要采取缓慢升温,较长时间保温与缓慢降温处理工艺,保证靶材整体的结构 相转变充分、均匀,同时消除应力和具有完好的几何形状,以获得理想的溅射靶材.

实验将掺杂 Li⁺2.2% 摩尔配比的 ZnO 陶瓷靶材小圆片在不同的温度下烧结 2h, 煅烧前 后分别用精度为万分之一电子天平 (FA1104) 称其重量,同时测量其几何尺寸,其质量损失 与相对体积收缩率如图 2 所示.

从图 2 可见,随着烧结温度的升高其质量损失率与相对体积收缩率都同时增大,在烧结温度为 1100°C 达到最大值,然后随着温度的增加又开始下降,其原因可能是由于 ZnO 在 1100~1200°C 开始出现晶化,故质量损失呈现下降趋势;而进一步升高烧结温度,如超过 1200°C,有可能出现 ZnO 的极小部分挥发,故其质量损失与相对体积收缩率又出现上升趋势.

ZnO 在不同烧结温度下的绝缘电阻与损耗如图 3 所示,可见随着烧结温度的上升其绝缘电阻先增加然后降低,在 1100°C 出现最大值;同时损耗随着温度的上升先迅速降低,然后随温度升高其降低速率较为缓慢,在 1150°C 达到最小值后,进一步升高温度,如在 1250°C 又出现少量增大.这可能是因为在较低烧结温度下,如低于 1100°C, ZnO 有未烧透现象,故其绝缘电阻相对较低且损耗也大;但当温度过高如超过 1200°C 时 (Zn 的沸点为 907°C,相对较低),可能有部分 Zn 挥发导致在陶瓷靶内产生较多的锌空位.如下式所示: ZnO \rightleftharpoons Zn+ V''_{Zn} + 2h + $\frac{1}{2}$ O₂,从而使导电率增大,绝缘电阻降低,同时损耗 tgδ 也出现微量增加;另外 ZnO 晶体中的固有原子点缺陷: Zn^x_i, Zn^x_i, O^x_i, O^x_i, V^x_{Zn}, V^x_{Zn}, V^x_o, Zn^x_o, Zn^x_o, 在高温热激发下也会成为导带或价带中的自由载流子,这也可能是其导电率增加,绝

1013

缘电阻降低的原因之一.结合上述实验结果可以确定 ZnO 掺杂 2.2% Li⁺ 陶瓷靶的最佳烧结 温度在 1100~1150°C 之间.

图 2 不同温度下烧结 ZnO-Li_{2.2%} 靶材样品的 质量损失及相对体积收缩率

Fig. 2 Weight loss and shrinkage of ZnO-Li $_{2.2\%}$ ceramic target at different sintering temperatures

图 3 ZnO-Li_{2.2%} 靶材样品在不同烧结温度 下的损耗与绝缘电阻

Fig. 3 IR and tg δ curves of ZnO-Li_{2.2%} ceramic target sintered at different temperatures

3.3 不同成型压力实验

为了减少靶材固体中的内表面与气孔率,一般要求溅射靶材具有较高的密实度,靶材的密实度不仅影响溅射时的沉积速率、溅射粒子的密度和放电现象等,还影响着溅射薄膜的结构与性能^[7,8].因此,提高靶材的密实度是烧结法制备靶材的技术关键之一.为保证大尺寸靶材在烧结过程中均匀收缩,成型压力是非常重要的工艺参数.

实验采用在不同成型压力: 5~20MPa 下制备掺杂 Li⁺⁺ 量为 2.2% 摩尔比的 ZnO 靶材样 品小圆片 (0.4g), 然后在 1120°C 烧结 2h, 涂铟、镓混合电极,分别测量其物理与电学性能参数,其测量数据如表 2 所示.

表 2 不同压力下制备 ZnO-Li_{2.2%} 陶瓷靶的物理与电性能测量数据 Table 2 Physics and electrical data of ZnO-Li_{2.2%} ceramic target press-formed at different pressure

Load-pressure/MPa	Volume relative contractive rate/%	Weight loss rate/%	$\rho/\mathrm{M}\Omega{\cdot}\mathrm{cm}$	${ m tg}\delta/\%$
5	23.0599	62.0758	16.61	2.94
8	21.3317	58.9641	24.92	3.18
10	18.0893	55.9761	111.39	0.98
12	17.3562	56.8588	72.62	1.88
15	14.1928	57.2232	48.86	2.11
20	13.9825	57.80517	83.04	2.13

从表 2 可见,随着成型压力的增大体积收缩率一直呈下降趋势(通常靶材的收缩率为 15%~20%),而质量损失率先是下降然后再缓慢增加,在压力为 10MPa 时最小,而在此时的 绝缘电阻率 ρ 最大,损耗 tgδ 最小,如图 4、5 所示.其原因可能是在较低压力下成型,其 压制成的陶瓷密度低,气孔率高,故其质量损失大,随着压力的增加,成型密度也相应增 加,其质量损失率逐渐降低至最小,此时制备的陶瓷靶材性能最佳,其损耗最低且绝缘电 阻最大;但当进一步增加成型压力,会出现内部分层现象,缺陷增多,不利于高温烧结时相的转化,而缺陷的增加也将导致其性能的下降,故损耗增大.

图 4 不同成型压力下 ZnO-Li_{2.2%} 陶瓷靶材的 绝缘电阻率与质量损失率曲线

Fig. 4 IR and weight loss curves of ZnO-Li_{2.2%} ceramic target at different forming pressure

图 5 不同成型压力下 ZnO-Li_{2.2%} 陶瓷靶材的 介电损耗与质量损失率曲线

Fig. 5 Dielectric loss and weight loss curves of ZnO-Li_{2.2\%} ceramic target at different forming pressures

3.4 ZnO薄膜 RF 溅射试验

ZnO-Li_{2.2%} 靶材小样的 XRD 结构性能分析图谱如图 6 所示,可见 ZnO 掺杂 Li⁺ 陶瓷靶 呈现与 ZnO 六角形纤锌矿 PDF 卡片上较一致的多晶结构,只是掺杂 Li⁺ 后,其 (002) 峰取 向的相对强度明显增大,而 (101) 峰的相对强度减小,这也是选择掺杂 Li⁺ 制备 ZnO 高度 (002) 择优取向薄膜的原因之一.

图 7 ZnO-Li_{2.2%} 陶瓷靶照片 Fig. 7 Photo of ZnO-Li_{2.2%} ceramic target

RF 溅射 ZnO 薄膜实验是采用所制备的 ZnO-Li_{2.2%} 陶瓷靶,其直观照片如图 7 所示. 分别在 Si(100)、普通玻璃、与 Pt(111)/Ti/SiO₂/Si(100) 基片上,基片温度为 25°C,采用相同 的氩氧气氛比例 Ar:O₂=20:3,溅射功率为 50W 的条件下,溅射 6h. 然后将在 Si(100) 和玻璃 基片上制备的 ZnO 薄膜在 450°C 常规退火 10min(玻璃熔点较低),在 Pt(111)/Ti/SiO₂/Si(100) 基片上制备的 ZnO 薄膜在 600°C 常规退火 10min,其 XRD、 AFM 分析图谱分别示于图 8、 9.

从图 8 可见在 Si(100) 和玻璃基片上都能够溅射出高度择优取向的 ZnO 薄膜, 同时说明

图 8 在玻璃 (a) 和 Si(100)(b) 基片上 RF 溅射 ZnO 薄膜的 XRD 、 AFM 图谱 Fig. 8 XRD patterns and AFM photos of ZnO films deposited by FR sputtering on glass (a) and Si(100) (b) substrates

另外,图 9的 XRD、 AFM 分析图谱显示在 Pt(111)/Ti/SiO₂/Si(100) 基片上溅射也能够 获得结晶性能良好、高度 (002) 择优取向的 ZnO 薄膜,其 RMS 为 2.63,通过蒸 Ag 上电极测 得其绝缘电阻率 ρ 为 $4.12 \times 10^8 \Omega$ ·cm,可满足声表面波器件 (SAW) 的使用要求 ^[9].

图 9 在 Pt(111)/Ti/SiO₂/Si(100) 基片 RF 溅射 ZnO 薄膜的 XRD 、 AFM 图谱 Fig. 9 XRD patterns and AFM photo of ZnO films deposited by FR sputtering on Pt(111)/Ti/SiO₂/Si(100) substrate

4 结论

1. 研究了 ZnO 这类蓬松粉体材料陶瓷靶的制备工艺,实验了不同 Li⁺ 浓度掺杂对 ZnO 靶材性能的影响, Li⁺ 受主掺杂能够部分提高材料的绝缘电阻与降低损耗,其实验最佳掺杂量为 2.2%.

2. 分析比较了 ZnO 陶瓷靶材制备过程中的成型压力及最后的烧结温度对其性能与结构 的影响,确定了 ZnO-Li_{2.2%} 陶瓷靶材制备的最佳工艺.

3. 采用所制备的靶材, 通过 RF 溅射技术, 同时结合 XRD 及 AFM 分析方法, 在 Si(100)、 玻璃 (载玻片) 和 Pt(111)/Ti/SiO₂/Si(100) 基片上制备了具有高度 *c* 轴 (002) 取向、均匀、致 密、平整度好的 ZnO 薄膜.

参考文献

- [1] King S L, Gardeniers J G E, Boyd I W. Appl. Surf. Sci., 1996, (96-98): 811-818.
- [2] Srikan T V, Clarke D R. J. Appl. Phys., 1998, 83(10): 447–451.
- [3] 吕建国, 叶志镇. 功能材料, 2002, 33(6): 581-585.
- [4] Jimenez-Gonzalez A E, Soto U, Jose A, et al. J. Cryst. Growth, 1998, 192 (34): 430-438.
- [5] Ling Y, Gorla C R, Lin G S, et al. J. Elec. Mater., 2000, 29(1): 69-74.
- [6] Inb J, Baesh H, Lee S Y, et al. Mater. Sci. Eng. B, 2000, 71(123): 301-305.
- [7] 杨邦朝, 崔红玲. 真空, 2001, (3): 11-15.
- [8] 黄焱球,刘梅冬,李楚荣,等. 压电与声光, 2001, 23(5): 384-386.
- [9] Walter W, Chu S Y, Juang Y D, et al. Mate. Letters, 2002, 57: 998–1003.

Li-doped ZnO Ceramic Target Preparation and RF Magnetron Sputtering ZnO Films

CHEN Zhu^{1,2}, ZHANG Shu-Ren², DU Shan-Yi³, YANG Cheng-Tao², ZENG Ze-Yu², LI Bo², SUN Ming-Xia²

 Department of Telecommunication Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
 School of Microelectronics and Solid State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
 Center for Composite Materials. Harbin Institute of Technology, Harbin 150001, China)

Abstract: We successfully prepared high quality Li-doped ZnO ceramic targets with 70mm in diameter and 10~15mm in depth by solid-state reactions. The paper studied the influence of different concentration of Li₂CO₃ on the electrical properties of ZnO ceramic target. By comparing and analyzing the IR(insulative resistivity) and $tg\delta$ (dielectric loss), the optimum concentration of Li₂CO₃ doped in ZnO ceramic target was obtained(2.2%mol ratio). And the optimum process for preparing ZnO-Li_{22%} ceramic target was also realized through the investigation of physics and electrics of ZnO ceramic under the different sintering temperatures and molding pressure treatments. By using Li_{22%}-doped ZnO ceramic as the target, the ZnO films with highly *c*axis (002) preferred orientation were grown by RF magnetron sputtering on Si(100), glass and Pt(111)/Ti/SiO₂/Si(100) substrates respectively.

Key words ceramic target; zinc oxide films; RF magnetron sputtering; preferred orientation