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ABSTRACT

In this paper, the snapping of a thin spherical cap under edge moment is considered.
The snapping of the same cap under line load distributed along a circle as shown in Fig. 1
has been disscussed by Chien Wei-zang!* 5 in two unpublished papers. His results are
brxeﬂy summarized in this paper.

Consider a thin spherical cap of thickness k, span 2a and radius of curvature 2f/a?
under edge moment M per unit length uniformly distributed along the edge of the cap as
shown in Fig. 4. The deflection w and the membrane radial stress N, at a distance r
from the axis of the cap satisfy the equations

D 4 d 14 dw 14 2f 4 ,4.‘&)} -
r dr  dr v dar dr rdr[rN'(a2r+ dr =0, (21a)

L dld anyy 2, ey »( : ) =0, ©(21b)

with the boundary conditions

By integrating Eq. (21a), we get

41 4  dw (/zf_, f!ﬂ) =0.
"ar r dr | ar r N, a2r+ dr 0. (23)

In order to simplify the following calculations, let us introduce the following dimension-
less variables:
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S=ps, (24)

=2 ‘/mbi . om= 1;2(1,':}),\1;}42,(1_71‘:)“_2 M.

By regarding 6 and S as functions of p, Eqgs. (23), (21b) and boundary conditions (22)
reduce to

d 1 d 0s :

—— e 0 + 2S=— s 25
3 o dp (PO) + & 5 (25a)
d 1 4 » 62

— g S — 2 =:—-_.—-, N

dp o dp (pS) —R*0 3 (25b)
».3%~+pfz~=m, S=0 a p=1. (2%¢)

This is a system of two non-linear differential equations. Exact solution of these
equations is very difficult. An approximate solution is given in this paper. Here we
may note that two simple exact solutions can be found when m takes two special values.
The first corresponds to the case when the cap is bent into a flat plate. In this case

0=k*p, Sz_%ﬁép(l-—-pz),. m = (14 p) k% (26)

AN

The second corresponds to the case when the cap is turned over into an inverted spherical
cap. In this case

§=2kp, S=0, m=2(14pk (27)

In order to investigate the behavior of the cap near the form of a flat plate, it is
convenient to make the following substitution:

c =kt s=—K pa—p) s, m=QrwrEe. @)

Substituting expressions (2§) into Egs. (25), we get

4 1 4 & gy =_05

o dp (90’)+16 (1—p)0 o (292)
d 1 d , 62

= Sy = — —,

ap o dp (059 T (29b)
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2 p—=m', =0 a p=1. (29¢)

Equations (25) and (29) are fundamental equations in this paper.

We begin with the investigation of the small bending of the cap in accordance with
the classical linear theory. By neglecting second order terms in Eqs. (25), we get

e (o 0)+k’S—0, (30a)

dp F'dp
; .
A4 sy —r6=0, .
dp P dp( )~ k6 (300)
_dd—g"*_#_z_:m’ S = at p=1, (300)

The solution of Eqgs. (30) under the boundary conditions

0=8 S$=0 at p=1

is

_ B { (Gke) J1(%p)
TGS+ L) (33)

5= 2B {hGke) _ 1(Pkp) )
2 J1(7%) L(PR) 1

i=V—1=vi. (34)

The relation between the edge moment m and edge slop B can be found from Eq. (30c).
Thus we obtain

mo_ R LidoGR) L PTo(k)
g -m=—l+Tprs {J&M) + h%%)}' (35)

Values of m; for several values of & are givén in Table 1.

Integrating formula (33), we get

_ B Il —Jol) | Jo(ike)—Jo(R) |
Y 27({ 1J1(1k)0 ’ 21L(3 ko) . } (36)

Deflection curves for £=0, 2, 4, 6 are shown in Fig. 5. When £ is small, deflection
curves resemble that of a flat plate. But when % is large, deflection curves have several
waves. The transition from n waves to (n+-1) waves occurs when % satisfies the following
condition:
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d . . .
7—% peo = 0, 1. €. *%" Im "Jl (, k) = (, » (40)

The first two roots of this equation are

k=377, k=828, , S C3))

Let us now consider in some details the case when &y <k < k2. When m is small, the
bending moment at the center of the cap is negative and the shape of the deflection curve
resembles to that for k=4 as shown in Fig. 5. But when m is sufficiently large, it is'
evident that the bending moment at the center of the cap must be positive and the
corresponding deflection curve resembles that for £=0 as shown in Fig. 5. The transition
from a waved deflection curve to an unwaved deflection curve cannot occur in a continuous
proccess. The transition must be carried out by a sudden jamp, i.e. by snapping or return
back proccess. Therefore k=3.77 may be regarded as the upper bound of § for the oc-
currence of snapping. A more precise value given below is £=3.54, which justifies the
above reasoning. .

In order to determine the critical value of % for the occurrence of snapping, it is
sufficient to consider the stability of the cap when’it is bent to the form of a flat plate.
It is quite clear that the form of a flat plate is the most unstable state of all deformations
corresponding to different values of m. If this state is stable, there will be no snapping
action. If this state is unstable, then snapping is possible.  Therefore the critical value
of k for the unstability of the flat plate form ‘is also the critical value for the occurrence
of snapping. '

The critical value of & for the unstability of the flat plate form is the first cigenvalue of
the following differential equation:

d 1 d ’ 54 — v2 '=
aa , . 0 _ _
dp +y.———P =0 at p=1. (43b)

This value is determined by an approximate method. It is found that

3.4813 < k; < 3.5946. (55a)
Therefore if we take

k1 = 3.5379, (55b)

the possible error of this value is less than 1.6%.

“We next investigate the behavior of the cap near the form of a flat plate. Our purpose

e
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is to find out the relation between 8'=(6"),=; and m’ when B’ is small. By neglecting
second order terms in Egs. (29), we get :

d 1 e k 2\ 4 —

dp p dp (P )+ X=(1—p) 8 =0, v (56a)
a6’ S —

dp + 'u? =m’ at p=1 (56b)

This equation is solved approximately. We obtain an approximate relation between m’
and B’ as follows:

: y[1- (Y
g’ =m;= (1 +]:1 ‘!:1 ](;{4)] ) (63)
1_(70 LTI TCET

Several values of m"y, taking k;=3.5379, are given in Table 2.

Up to now we have disscussed only two linear problems. We do not intend to solve
the non-linear equations (25) or (29). Based upon the previous results, it is possible to
construct approximately the non-lincar relation between m and B.

When % > %, corresponding to one value of m there may be several deflection curves.
Therefore in this case B is a multiply valued function of m. But for not too large values
of £, m may be a single valued function of B.-It is found that the critical value %, of %
that, when % <%,, m is a single valued function of B lies in the interval

4237 < k, < 4.369. (66a)

Therefore, when £<<4.237, m is certainly a single valued function of ﬁ In this case m
may be expressed by a power series of B, or, what is the same thmg, m’ may be expressed
by a power series of B,

According to the results obtained previously, the curve m"=m (ﬁ') in the (B, m’)
plane (Fig. 6) have the following properties:

1) The slop of the tangent at the origin O is my, see Eq. (35).

2) The curve passes through the point O’ with coordinates B=k% m=(1+p) k2,
see Eq. (26).

3) The slop of the tangent at the point O’ is my, see Eq. (63).

4) ‘The curve is skew-symmetric with respect to coordinate axes O’B’, O’m’. This
follows immediately from Eq. (29).
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Besides these results, the area OCO’D in Fig. 6 can be found without any difficulty.,

This area represents the work done by the external edge moment m. According to the
principle of conservation of energy, it must equal to the strain energy of thc cap at the
state corresponding to the point O’. In this way we find

fLow@re=-Larmr+ i, (69b)

Thus for the approximate representation of the relation between m”and B’, we assume
a curve of 7-th degree .

_;(T;i_ml e +m3( )+"’s %)5+m§ %)7 o (70)

where m'y, m’3, m’s, m'y, are determmed by the properties cited above. In this way we
obtain :

’ ’ 4
m3=‘%1"(1+f")+ L—6m, ‘3&2_! )
4

’ ‘ 4
m7=3(1+/~l)+m1—4m;—-§2—.

Several values of m's, m's, n'y are given in Table 3.

Equation (70) in conjunction with coefficients (71) defines approximately the relation
between the edge moment m and the edge slop B. In Fig. 7 is shown m-B curves for
k=38, 39, 4.0, 4.1.

Let us now examine in some detail the behavior of the m=m (B) curve in connection
with the stability of deformation. For k<kj, m is a steadily increasing function of PB.
For k> k1, the function m=m (B) has relative maximum and minimum. Apart from
a slight difference near the origin O, a typical curve for £>%, is shown in Fig. 8, where
the curve at the right hand side of the m’-axis has been added. It may be proved that the
maximum value of m is the snapping moment m, in the process of loading and the
minimum value of m is the return back moment m; in the process of unloading. Values
of m, and m; found from Eq. (70) are plotted in Fig. 9 in dependence with £.

Since m~PB curves are skew-symmetric with respect to axes O’B’, O'm’, it is easily seen
that

This is an exact relation theoretically.



