文章编号:1001-8166(2005)06-0671-08

用¹³⁷ Cs 计年法确定湖泊沉积物 沉积速率研究进展

张 燕,潘少明,彭补拙

(南京大学城市与资源学系 江苏 南京 210093)

摘 要:¹³⁷Cs计年法利用¹³⁷Cs固有的理化和沉降特性,在湖泊沉积物的¹³⁷Cs垂直分布与大气¹³⁷Cs 沉降间确立对应关系,找出有异常¹³⁷Cs含量的沉积层作为时标,但需注意¹³⁷Cs从水体表面至湖底 的时间和粘粒含量对各层¹³⁷Cs含量的影响,并用其它方法校验时标的可靠性。再求取不同时标层 间的年均沉积厚度,或因克服了压实效应而更能反映真实沉积速率的年均沉积通量,且结合GIS等 手段进一步估算湖泊各区域的沉积总量还可延伸研究湖泊内源污染负荷及相关环境演变和湖泊 演化。但是,沉积柱样的分割厚度取多少才能既满足计年精度要求又不使工作量过大,¹³⁷Cs的大 气沉降时间与进入沉积物时间还与泥沙的陆地迁移时间有关,沉积物中究竟是否发生¹³⁷Cs下渗及 其机理等都还是此法应用中有待解决的问题。

关 键 词:¹¹⁷ C^s 计年 沉积通量 滞后 下渗 中图分类号 2512.32 文献标识码 A

湖泊是流域侵蚀土壤的汇 淤积直接或间接导 致湖泊老化、衰亡 但湖泊沉积物却可完整记录区域 环境变化的信息 要了解湖泊演化进程 回顾区域环 境变迁 估算湖泊内源污染负荷 都需确定湖泊沉积 速率。

在确定湖泊沉积物沉积速率的众多方法中,利 用放射性同位素测定沉积年代的方法近几十年来发 展很快。1961 年 Ravera^[1]分析了湖泊沉积物剖面 中放射性射线的分布 到²⁰世纪⁶⁰年代中期,人们 又对总、总 活度、¹³⁷ C^a和其他放射性核物质在 沉积物中的垂直分布做了许多研究^[2-4],并提出,沉 积物中总 活度的垂直分布与逐年沉降比率有关, 因此可用这种分布在沉积剖面中确定对应不同时间 的沉积层。尤其因半衰期较长(^{30,2} a),北半球的 沉降量又大,且在^{662 Kev}处的 射线很强,并无需 特殊的化学处理和分离,用高纯锗等探测器配上多 道分析仪便可相对容易和准确地从 射线能谱中 分离和测量^{662 Kev} 处的特征峰 故^{137 Cs} 受到人们 的格外重视。

²⁰世纪⁷⁰年代初发表的许多独立研究报 告⁵·³]指出,沉积物中¹³⁷C^s的垂直分布可能与来自 大气的¹³⁷C^s沉降的时间分布有关,因此可用它来推 断沉积剖面的地质年代。这些研究还利用¹³⁷C^s在 沉积剖面中的垂直分布度量了沉积速率。将其与利 用标准的沉积调查方法在同样位置处测量的结果对 比^[*,9]表明,不同技术测量的沉积速率具有可比性。 而且相比其它测量技术,¹³⁷C^s技术具有快速、只需 一个沉积剖面便可进行测量、不需对同一位置做重 复测量等优点^[10],所以,¹³⁷C^s计年法已被广泛用于 湖泊、河流和海洋近几十年沉积速率的研究^[11-13]。 自万国江^[14-16]较早于²⁰世纪⁸⁰年代中期将这方 面研究的方法与成果介绍到国内以来,中国也普遍

^{*} 收稿日期 2004-09-14 修回日期 2005-02-16.

^{*} 基金项目:国家重点基础研究发展规划项目"河流入海物质通量变异及其对流域自然变化和人类活动的响应"(编号: 2002CB412401);国家自然科学基金重点项目"长江三角洲水土资源环境与调控研究"(编号:49831070)资助-作者简介:张燕(1962-) 女 江苏南京人,副教授,博士,主要从事资源与环境方面的研究-B-mail:nhangynju@yahoo.com.cn

开展了用放射性核素测算沉积速率的研究^[17~22]。

1 ¹³⁷Cs 计年的基本原理及主要特点

地上核试验释放大量放射性物质到自然环境 中 后又逐渐通过干湿沉降返回陆地表面与水体, ¹³⁷ Cs 便是其中一种。世界很多地区都有放射性核素 沉降的记录,如美国伯明翰(Birminghan)、哥伦比亚 (Columbia)、纽约(New York)^[23]加拿大萨斯喀彻 温(Saskatchewan)^[24],丹麦各地^[25],南半球 Brisbane^[26], Owens^[27]还报导了全球年际¹³⁷Cs沉降量。 尽管不同区域的¹³⁷ Cs 沉降量有差异,但却有明显的 时段变化^[10,12]:¹³⁷ Cs 广泛散布到全球环境始于 1952年的热核试验,土壤中可检测到¹³⁷Cs的最早年 份为1954 年 受地上核试验影响 全球¹³⁷ Cs 沉降的 主要时期是1958 和1963 /1964 年 次要时期为1971 和 1974 年 1983 和 1984 年在北半球的¹³⁷Cs 沉降已 降到检测限水平以下 1986 年前苏联切尔诺贝利核 事故将放射性物质喷射到大气层中 致使欧亚很多 地区可测到核事故产生的¹³⁷ Cs^[28,29]。

水体中的¹³⁷ Cs 来自大气¹³⁷ Cs 直接沉降于水体 表面及由陆地流失土壤搬运入湖、沉降干水体表面 的¹³⁷Cs被水体中的悬浮物吸附 吸附于悬浮物及流 失于壤颗粒上的¹³⁷Cs 大部分随之沉至水底蓄积于 沉积物中 仅有少部分流出水体或随溢岸洪水在洪 积平原及河湖漫滩上沉积^[10,12]。含有粘土矿物质 与特殊伊利石的沉积物对¹³⁷Cs 强烈吸附,目沉积物 中的¹³⁷ Cs 绝大部分处于固定态^[20] 使得沉积物中 ¹³⁷ Cs的垂直分布与大气沉降¹³⁷ Cs 的时间分布相 关^[10~12,17],¹³⁷Cs沉降量随时间变化特征可完好保存 于沉积序列中 即沉积的顺序发生使沉积物垂直剖 面中各层¹³⁷Cs 值反映了各层沉积时的大气¹³⁷Cs 沉 降量,干是¹³⁷Cs在沉积物中的特异值(主要是峰 值)可用作时标。因此,可采集未受扰动的湖底沉 积物柱样,测量沉积柱样各层位的¹³⁷ Cs 值,根据 ¹³⁷ Cs/值的垂直分布甄别出特定年份的沉积层即可作 为沉积层的时标 进而以此估算沉积物沉积速率。

2 ¹³⁷Cs时标的确定

2.1 ¹³⁷Cs 主辅时标的确定

诸多研究^[11,12,15,18]中都将如下年份确定为¹³⁷Cs 主时标。 采样年份 湖泊沉积物顶层沉积年份对 应于采样年份; 1954 年:土壤中可检测到¹³⁷Cs 最 早的年份是 1954 年,沉积物柱样可检测到¹³⁷Cs 的 最深层与此对应。但因 1954 年沉积层的¹³⁷Cs 值原 本较低加上¹³⁷ Cs 的衰变 确定 1954 年的沉积层时标往往受到限制; 1963 年 :1963 年前后大气¹³⁷ Cs 沉降量最大,沉积物中¹³⁷ Cs 值最大层对应于 1963 年的沉积层。考虑沉积滞后影响时,也有将¹³⁷ Cs 最大值层与 1964 年对应的^[10,17,24]; 1986 年 :受切尔 诺贝利核事故影响的地区,沉积物中可甄别出该年的沉积层。

除¹³⁷Cs 主时标外 局部地区沉积物中可能还存 在若干其它标志层 也可作为辅助定年时标,这样有 助于更细致地比较不同时期的沉积速率。如受非条 约国的地上核试验影响,1971和1974年成为¹³⁷Cs 沉积的又一相对集中时期^[10] 反映在湖泊沉积物研 究中则是在一些区域可甄别出1971^[10]与1975 年^{117]}的沉积层。中国核试验也可成为局部地区 ¹³⁷Cs沉积的重要来源^[30]国外对中国核试验产生的 ¹³⁷Cs对地区土壤¹³⁷Cs 含量的影响也有一些报导,并 认为应对不同历史时期中国邻近地区土壤中的¹³⁷Cs 背景值作出修正^[28,31],我们在滇池沉积物中就辨认 出中国核试验沉降峰值年(1976年)的一个沉积 层^[32]。

但因世界各地测到³⁷ Cs 沉降的起始年份、最大¹³⁷ Cs 沉降的年份并不完全一致 ,最大¹³⁷ Cs 沉降前 后的沉降量变异也比较大 ,²⁰ 世纪 ⁷⁰ 年代的¹³⁷ Cs 沉降有的增加也有的减少 ,且各地的沉降量各不相 同 ,因此 ,确定各地的¹³⁷ Cs 时标应根据当地的具体 情况具体分析。

2.2 ¹³⁷Cs 在沉积物中的沉积滞后

水体中悬浮微粒吸附¹³⁷Cs非常迅速,而悬浮微 粒在中小型湖泊水体中的寄宿时间很短,故¹³⁷Cs随 悬浮微粒到达湖底的时间与大气¹³⁷Cs沉降于水体 表面的时间相差不大,但悬浮微粒在大型深水湖泊 水体中的寄宿时间长,致使¹³⁷Cs沉降于湖泊表面的 时间与¹³⁷Cs进入沉积物蓄积的时间不一致,这便 是¹³⁷Cs进入沉积物中的时间相对于大气¹³⁷Cs沉降 时间的滞后^[8,30]。所以需要用¹³⁷Cs在湖水中寄宿 时间对沉积物¹³⁷Cs时标作校正,即用^T₈(¹³⁷Cs随悬 浮微粒沉降至湖底的半衰时间)加上大气¹³⁷Cs沉降 的标志年份,才能确定沉积物中的合理时标年份。

因湖水中¹³⁷ Cs 被悬浮物强烈吸附,其寄宿时间 与悬浮微粒相同^[14,17],故可由质量平衡原理计算的 悬浮微粒寄宿时间代替¹³⁷ Cs 寄宿时间,算式如 下^[33]:

_。 = ¹⁰⁰ x^H x(^C_p + ¹/K_d) /^S_m (¹) 式中 。为悬浮微粒的寄宿时间(^a) ^H 为湖泊的平 $(^{2})$

均水深(m) f_{p} 为湖水中悬浮微粒的浓度(g/cm³); K_a为¹³⁷Cs在悬浮微粒与水两相中的分配系数(cm³/ g) 对含可牢固吸附¹³⁷Cs的粘土矿物多的湖泊K_a > 10^{2} cm³/g 而对有机质丰富、粘土矿物缺乏的湖泊 K_a 1 cm³/g^[34];S_a为沉积物年均沉积通量(g/ (cm² · a))。

再求出^T。(^{a)[17]}: T_s = 。x^{ln2}

2.3 粘粒校正

由于¹³⁷ C^s 更易为粘粒吸附,当沉积物中某沉积 层砂粒含量增加,该层¹³⁷ C^s 值将下降,即此时该 层¹³⁷ C^s 值下降可能并非是大气¹³⁷ C^s 沉降量降低引 起的。为克服沉积物粒径分布差异的影响,用单位 粘粒所含¹³⁷ C^s 值有助于更准确判定各沉积层的沉 积年代^[10, 12, 35, 36]。

2.4 ¹³⁷Cs 时标的验证

人们常用多种方法验证所定¹³⁷ C^s 时标的正确 性,其中比较成熟和较多使用的是同时采用¹³⁷ C^s 及²¹⁰ P^b 计年法进行相互印证^[13,26,27,27],或与纹 理计年方法对比^[15],或用实测输沙资料相互对 照^{7,27,38]}。除直接验证外,还可通过由此计算的沉 积率的合理性来间接验证。

3 借助^{¹³⁷Cs时标估算沉积物沉积速率}

3.1 以实际厚度描述的沉积速率

沉积物沉积速率可用沉积物年均沉积厚度描述。由^{137Cs}时标位置估算各时段沉积物平均沉积 厚度 ^s₄(^{cm}/^a)为:

 $S_a = H / T = H / (T_2 - T_1)$ (3) 式中 T_1, T_2 分别为时段的起始与终止年份; H 为与 $T_1 ~ T_2$ 间隔对应的实际厚度(cm)。

3.2 考虑压实效应的沉积物沉积速率

现代沉积物为松散堆积,沉积物微粒间有空隙, 空隙多被水充填^[19]。受上覆水体和沉积物自重的 压实作用 湖泊下层沉积物的容重大于上层,我们研 究的滇池沉积物中,这种压实效应明显可见^[32],使 得同样体积的上下层样品实际质量不同,或沉积柱 样下层比上层相同质量物质的厚度减少,即若两个 年份实际入湖泥沙量相同,年份在前的泥沙沉积厚 度将小于年份在后的泥沙沉积厚度 对淤泥、淤泥质 粉细砂等压缩率较大的沉积物,更要特别注意压实 作用对沉积厚度的影响^[33],因此,仅由实际厚度描 述的沉积速率与实际情况有偏差。

解决此问题有2种办法:一是对现场几何厚度

进行校正^[11,19,39]即消除压实致密作用,恢复沉积物的原孔隙度,用原始厚度来描述沉积速率,使不同沉积年代的沉积厚度有可比性;二是用年均沉积通量表示。

3.2.1 对现场几何厚度的校正

对同一柱样的沉积物,未经压实的上层孔隙度 和压实后的下层孔隙度可由上下层样品直接测定, 再以压实前(上层)或压实后(下层)的沉积物作基 准,根据压缩前后沉积物质量不变,用下式求出沉积 物未经压实或压实后的沉积厚度^h。、^h(cm)。

 $h_{1} = h_{0} \times (1 - 0) / (1 - 1)$ (4)

其中:

 $_{0} = 1 - m / (V \times d)$ (5)

式中 。、1分别为压实前后的孔隙度(%) >> 为新 鲜沉积物的体积(^{cm³}) => 为相应体积沉积物的干 重(g) => 为沉积物的干密度(g^{/cm³})。

3.2.2 以质量描述的沉积速率

为克服压实引起沉积厚度的变化 国内外学者 常用累加质量深度(cumulative mass depth)表示深 度位置^[12,15]。获此值的具体方法为采集沉积柱样, 按一定间隔分割柱样样品,并烘干分层样品、称重, 定义分层样品质量与采样器横截面积的比值为质量 深度(mass depth);将某一位置至柱样表层间所有 样品的质量深度累加获该位置的累加质量深度,其 物理意义为沉积通量,即某一深度位置单位面积上 的沉积物质量:

 $M = B_{i} \times h_{i} \overline{m} \quad h_{i} = H \quad (6)$ 则 $T_{i} \sim T_{2}$ 时段(a) 沉积物年均沉积通量 S_{i} (g/cm²·a)为:

S₁ = M / T = M /(T₂ - T₁) (7) 式中 M 为与 T₁ ~T₂间隔(厚度 H(cm))对应的 单位面积上的沉积物质量(g/cm²),也称质量深度; B₁为第 i层沉积物容重(g/cm³), h₁为第 i层沉积物 厚度(cm)。

沉积物年均沉积通量 s_{a} ($g/cm^{2} \cdot a$) 与年均沉 积厚度 s_{a} (cm/a)² 种沉积速率之间的换算由孔隙 度与沉积物干密度决定,两者之间的关系为^[19]:

 $S_{m} = S_{d} \times (1 - 0) \times d$ (8)

4 计算沉积物总量

作为流域的侵蚀基准面,湖泊汇集来自流域的 泥沙时,受地形、湖盆形态、水动力(如河流入湖射 流、风驱湖浪和出湖排流)及物源供给条件等因素 的影响,湖区沉积量的分布存在时空差异,要准确估 算湖泊沉积总量,需对湖泊划分不同的沉积区域。 为避免采样与测试工作量太大,分区不宜过细,可根 据流域地貌,湖盆形态及湖水动力等对湖区进行分 区,并尽可能使一个沉积区域的深度一致及采样点 与所分湖区相对应。再由 GIS 测量各区域的湖底面 积,结合湖区各采样点的沉积速率,计算各湖区及全 湖的沉积总量^[32]。

5¹³⁷Cs 沉积后在沉积物中的再迁移

湖泊沉积物中¹³⁷ Cs 记录的沉积信息的可靠性 受¹³⁷ Cs 沉积后的再分布影响。沉积物中¹³⁷ Cs 的再 分布由再迁移引起,发生¹³⁷ Cs 再迁移的可能原因 有^[10,15,30]。 生物或波浪等机械扰动; ¹³⁷ Cs 沉积 后因解吸并通过孔隙水扩散位移; 附着于悬浮微 粒上的¹³⁷ Cs 随微粒重力下移。再迁移扩大了¹³⁷ Cs 在沉积物中的分布深度,降低了各层位的¹³⁷ Cs强度, 加宽¹³⁷ Cs 峰值区域;¹³⁷ Cs 向下层扩展(即¹³⁷ Cs 下 渗)使¹³⁷ Cs 蓄积于比原沉积层位更深的位置,特别 是 1954 年沉积层向下扩展使该层原本就较低的 ¹³⁷ Cs强度进一步降低,更增加了确定 1954 年¹³⁷ Cs 时标的困难^[10] 甚至导致沉积物最深层时标失效。

要减少因¹³⁷Cs 再迁移引起的计年误差,首先是选择采样点时应考虑湖泊的地理位置、流域地貌形态、湖盆形态、水文要素及沉积物物质来源等因素, 采集基本处于自然状态、表面未受扰动、逐年形成的 沉积物柱样,以消除机械扰动的影响。其次是计 算¹³⁷Cs下渗深度,在这方面的探讨有如下结果。

David^[30]提出¹³⁷Cs 沉积后因解吸并经由扩散下 渗的深度 ^{z'}(^{cm})的计算公式为:

$$Z^* = (4D_e \times t)^{1/2}$$
 (9)

式中 P_a 为¹³⁷C^a 在孔隙水中的扩散系数(cm^2/a),是 孔隙度 和分布系数 K_a 的函数 P_a 0.056 cm^2/a , 是自主要¹³⁷C^a 沉降以来的时间(a)。

W alling¹¹² 假定沉积物与陆地参考剖面¹³⁷ Cs 下 渗速率相同,用未受扰动的陆地土壤剖面(参考剖 面)中¹³⁷ Cs 的年均下渗深度来代替沉积物中的¹³⁷ Cs 年均下渗深度则剔除¹³⁷ Cs 下渗因素后沉积物的沉 积通量 $S_{a,b}(g/(cm^2 \cdot a))$ 为:

$$S_{mn} = (M / T) - V_{n}$$
(10)

$$V_{p} = M_{ref} / (T - 1954)$$
 (11)

式中 ^v, 为参考剖面¹³⁷ Cs 年均下渗质量 深度 (g/(cm² · a)), 当采样剖面上下干容重一致时, 该 值即为¹³⁷Cs年均下渗深度(^{cm}/a),^M_{ref}为参考剖面 中¹³⁷Cs分布的累加质量深度(g/cm²)。

苏琼等^[40]则建立了校正¹³⁷C^s在水体沉积物中 纵向迁移的数学模型。

6 存在的一些其它问题

(1)样品的合理分截厚度多少为宜。为了精确 确定沉积物的沉积年份,分截沉积物柱样时,分截厚 度应尽量与年沉积厚度一致,较理想的是每一分层 样品代表一年。然而,这不仅受实际年沉积厚度未 知的限制 更受设备、测试时需要的样品量、工作量 及费用等限制 通常很难达到。尽管如此,在保持计 年精度要求与工作量之间平衡的前提下,还是应尽 可能使分截厚度薄一些以提高计年精度。有学者提 出,湖泊沉积速率^{3~5 mm/a}时,分截厚度以^{0.5}~ ^{1 cm}为宜^[19]。

(2) 陆地输移时间对¹³⁷ C^B 在沉积物中沉积滞 后的影响有多大。¹³⁷ C^B 在沉积物中的沉积时间滞后 于大气¹³⁷ C^B 沉降时间一是¹³⁷ C^B 在水体中寄宿所致, 二是流域侵蚀土壤从陆地输移至湖泊亦需要时 间⁴¹ 因此,用¹³⁷ C^B 计年时还应注意侵蚀来源滞后 问题。万国江^[16,17] 以流域侵蚀与湖泊沉积间的示 踪模型探讨了此问题,并用以评估湖泊沉积物中 ¹³⁷ C^B的主要来源是大气沉降还是流域侵蚀,可以作 为进一步探讨此问题的参照。

(³)¹³⁷ Cs 沉积后的再扩散迁移是否发生。沉 积后再迁移改变了初始¹³⁷ Cs 沉积形成的活度分布, 并改变时标所在初始深度位置,如果发生下渗,且各 深度(对应不同年代)的下渗深度不同,更会使计年 复杂化,高估沉积物沉积速率。因此,对沉积物中 的¹³⁷ Cs 下渗(机械扰动造成的除外)是否发生及发 生的原因和机理究竟是什么应做出正确判断。

正如上文提及,¹³⁷ Cs 再迁移的可能原因有机械 扰动,但只要湖水足够深,生物扰动又有限,该原因 便可不计,剩下的原因便是解吸后通过孔隙水扩散 和随微粒重力下移。

¹³⁷ C^a 被粘土强烈吸附且基本不可置换^[10] 沉积 物中¹³⁷ C^a 吸附动力学及离子交换实验表明 绝大部 分¹³⁷ C^a 处于固定态^[20]。然而,当^{Na+}、^{K+}、^{H+}等竞 争离子增加时,¹³⁷ C^a 的吸附会减少^[10,42],^{pavig^{43]}指 出,¹³⁷ C^a 通过孔隙水迁移在粘土沉积物中较低,而 在碳酸盐沉积物中较高,¹³⁷ C^a 在碳酸盐沉积物中迁 移的机理是,有机质降解释放出的 C^o₂ 引起吸附于} 碳酸盐上的¹³⁷Cs 解吸进入孔隙水并沿浓度梯度扩 散^[41]。所以,¹³⁷Cs 的化学性质决定了¹³⁷Cs 的解吸 并通过孔隙水扩散确实会发生^[6]。但在多数情况 下的扩散非常有限^{10,45]}。

¹³⁷Cs 主要吸附于粘粒上^[10] 因而若存在附着在 颗粒上的¹³⁷Cs 随颗粒物向沉积物下层迁移 则应出 现沉积物下部颗粒比上部细的现象 但我们对滇池 沉积物颗粒分析发现沉积物上下层的颗粒分布无显 著差异(图¹) 而有的研究则认为滇池沉积物粒度 自下而上略微变细^[46];且与陆地不同 沉积物颗粒 间的孔隙多被水占据 ,水的浮力对颗粒重力下移也 起抵消作用。这是否意味着沉积物中¹³⁷Cs 随颗粒 重力下移可以忽略 ,还需进一步探讨。

¹³⁷Cs 在湖泊沉积物中的下渗与在陆地上的下 渗是否可比亦需确认。因为陆地非沉积点土壤深层 的¹³⁷Cs 只能源于下渗,而陆地沉积点与水底沉积物 中即使不发生下渗,由于迭加堆积,深层也会存在 ¹³⁷Cs 所以,在无法区分沉积物中深层的¹³⁷Cs 是沉 积迭加的结果还是沉积迭加与下渗共同作用的结果 的情况下,是否可用¹³⁷Cs 在陆地上的下渗速率代替 在沉积物中的下渗速率,还有待进一步证实。

此外,在许多研究^[11,14,15,17,30,22]中,不考虑¹³⁷Cs 下渗得到的沉积率与用其他方法(如纹理计年、 ^{210 pb}、实际观测)得到的结果相同或相近,也许表明 湖泊沉积物中¹³⁷Cs的扩散迁移即使发生也不会很 大,尤其因未改变峰值的相对位置^[6-6,14],故不考 虑¹³⁷Cs下渗仍可准确测算沉积物平均沉积通量。

7 结 语

在沉积物沉积速率研究中^{1,37}Cs¹计年法有独特</sub> 优势,但也存在一些限制因素和有待解决的问题,有 些问题是滞后、扩散等客观因素造成的,也有些问题 产生于采样与测量等主观因素,判断以砂粒为主的 沉积物的沉积速率时^{1,37}Cs¹时标也可能出现较大偏 差。然而 多数问题会随着研究的深入而得到解决, 这将使¹³⁷Cs在估算土壤侵蚀与沉积物沉积方面的 潜力获更充分的发挥。又由于湖泊沉积物还是流域 环境污染物的重要宿体,记载了很多环境污染变化 的信息,因此,可在计算泥沙沉积量的基础上,进一 步开展湖泊内源污染负荷的研究,如估算附着于泥 沙沉积物上的营养元素及重金属的沉积通量及负荷 总量;人们还借助¹³⁷Cs¹计年来建立地球化学循环模 型,并据此辨识区域及全球环境变化⁴⁷¹。

湖区	粘粒	粉粒	砂粒	F 0.05 值
湖西	0.80	2.61	12.62	F(12,5)=4.68
湖心	1.03	3.61	1.98	F(6,6)=4.28
湖东	2.62	1.88	1.44	F(10,3)=8.79

图 1 滇池各湖区柱样粒度分布图

COLES IN DIANCIN LAKE

参考文献(References):

[1] Ravera O. Sediments [A]. In : Accumulation of Fission Products from Fall-outin Lake Bidta (Lake Maggiore) [C]. Vienna : Int. Atom ic Energy Agency , 1961.31-37.

Fig.1 Particle distribution of sediment cores in Dianchi Lake

- [2] Nelson JL, Perkin SR W, Neilsen JM, et al. Reaction of radionuclides from Hanford reactors with Columbia River sediments [A]. In : Disposal of Radioactive W aste in Seas, Oceans, and Surface w at ers [C]. Vienna : International Atom ic Energy Agency, 1966. 139-161.
- [3] Schreiber B, Pelati L T, Mezzadri M G, et al. Gross beta radioactivity in sediments of the North Adriatic Sea : A possibility of evaluating the sedimentation rate [J]. Archives of Oceanography Limndogy, 1968, 16, 45-62.
- [4] Pickering R J. Distribution of radionuclides in bottom sediment at th Clinch River, eastern Tennessee [A]. In : United States of America, Departmentofihe Interior. Geological Survey : Professional Paper [C]. Washington DC 1969.433.
- [5] Ravera O, PremazziG. A method to study the history of any persistent pollution in a lake by the concentration of ¹³⁷ Cs from falout [A]. In : Radioecology Applied to the Protection of Man and His Environment[C]. EUR 4800 1971.703-719.
- [6] KrishnaswamiS, LalD, Mattin JM, et al. Geochronology of lake sedim ents[J]. Earth and Planearytary Science Letters, 1971,11: 407-414.
- [7] Pennington W , Cambray R S , Fisher E M . Observations on lake sediments using fallout ¹³⁷Cs as a tracer[J]. Nature , 1973 , 242 : 324-326.
- [8] Ritchie JC, McHenry JR, GillA C. Dating recentres evolved m ents[J]. Limnology and Oceanography, 1973 18 254-263.
- [9] Ritchie J C , McHenry J R. Fallout Cs-137 : A toolin conservation research [J]. Journal of Soil and Water Conservation , 1975 ,30 : 283-286.
- [10] Ritchie J C , McHenry J R . Application of radioactive fallout cesium -137 for measuring soil erosion and sediment accumulation rates and patterns : A review [J]. Journal of Environmental Quality , 1990 , 19 :215-233.
- [11] Ritchie J C , McHenry J R . A comparison of three methods for measuring recent rates of sediment accumulation [J]. Water Resources Bulletin , 1985 21(1) :99-103.
- [12] Walling D E, He Q. Use offallout¹³⁷ Cs in investigations of overbank sediment deposition on river flood plains [J]. Catena, 1997 29 263-282.
- [13] Wang Yonghong, Shen Huanting. The study methods of sedimentation rates in the estuarine and coastalenvironments[J]. Marine Geology & Quaternary Geology, 2002,22(2):115-120.[王永 红 沈焕庭·河口海岸环境沉积速率研究方法[J]·海洋地质 与第四纪地质,2002,22(2):115-120.]
- [14] Wan Guojiang, SantschiP, Farrenkothen K, et al. Distribution and dating of ¹³⁷Csfor recent sedim ents in Lake Greifen (Switzerland)[J]. Acta Scientiae Circum stantiae 1985 5(3) :360-365. [万国江 /SantschiP, Farrenkothen K,等.瑞士 Greifen 湖新近 沉积物中的¹³⁷Cs 分布及其计年[J].环境科学学报,1985 5 (3) :360-365.]
- [15] Wan Guojiang, Santschi P H, Sturm M, et al. A comparative study on recent sedimentation rates of Lake Graifen, Switzerland using varve counting and radionuclide dating[J]. Geochimica,

1986 (3) 259-270 · [万国江, Santschi P H, Stum M,等·放 射性核素和纹理计年对比研究瑞士格莱芬湖近代沉积速率 [J]·地球化学, 1986 (3) 259-270 ·]

- [16] Wan Guojiang, Santschi P H. Prediction of radionucli de inventory for sedim ent in Lake Greifen (Switzerland)[J]. Scientia Geographica Sinica, 1987,7(4);358-363.[万国江, Santschi P H.瑞士 Greifen 湖沉积物中放射性核素累计预测研究[J]. 地理科学,1987,7(4);358-363.]
- [17] Wan Guojiang, Lin Wenzhu, Huang Ronggui, et al. Sedimentation dating and enosion tracing of ¹³⁷Cs for sediment in Hongfeng Lake[J]. Chinese Science Bulletin, 1990, 35(19): 1487-1490. [万国江,林文祝,黄荣贵,等·红枫湖沉积物¹³⁷Cs 垂直剖面 的计年特征及侵蚀示踪[J]·科学通报,1990,35(19): 1487-1490.]
- [18] Zhang Shurong, Xu Cuihua, Zhong Zhizhao, et al. Determination of sedimentation rate and dating of sediment in Ethai Lake with ²¹⁰ Pb and ¹³⁷ Cs dating methods[J]. Radiation Protection, 1993, 13(6), 453-457, 465.[张淑蓉,徐翠华,钟志兆,等•用 ²¹⁰ Pb和¹³⁷ Cs法测定洱海沉积物的年代和沉积速率[J].辐射 防护,1993, 13(6), 453-457, 465.]
- [19] W an Guojiang.²²⁰ Pb dating for recent sedim entation[J]. Quaternary Sciences,1997,17(3):230-239.[万国江.现代沉积 的²¹⁰ Pb 计年[J].第四纪研究,1997,17(3) 230-239.]
- [20] Bai Zhanguo, Wan Xi, Wan Guojiang, et al. Geochemical speciation of ⁷Be, ¹³⁷Cs, ²²⁶Ra and ²²⁸Ra in soils of the Karst region, Southwestern China and their ecosion trace[J]. Acta Scientiae Circum stantiae 1997 17(4):407-411.[白占国,万職,万国 江,等.岩溶山区表土中⁷Be, ¹³⁷Cs, ²²⁶Ra 和²²⁸Ra 的地球化学 相分配及其侵蚀示踪意义[J].环境科学学报 1997 17(4): 407-411.]
- [21] Xu Jingyi, W an Guojiang, W ang Changsheng, et al. Vertical distribution of ²³⁰ Pb and ¹³⁷Cs and their dating in recent sediments of Lugu Lake and Ethai Lake, Yunnan Province[J].Journal of Lake Sciences, 1999, 11(2):110-116.[徐经意,万国江, 王长生,等.云南省泸沽湖、洱海现代沉积物中²¹⁰ Pb、³³⁷Cs的 垂直分布及其计年[J].湖泊科学, 1999, 11(2):110-116.]
- [22] Pan Shaoming, Zhu Dakui, LiYan, etal. Cs4 37 Profile in Sediments in Estuaries and Its Application in Sedimentology[J]. Acta Sedimentologica Sinica, 1997, 15(4), 67-71.[潘少明 朱大 至 李炎,等,河口港湾沉积物中的¹³⁷Cs 剖面及其沉积学意 义[J]. 沉积学报, 1997, 15(4), 67-71.]
- [23] McHenry J R , Ritchie J C , Gill A C . Accumulation offalloutcesium 4137 in soils and sediments in selected watershed a[J] . Water Resources Research , 1973 , 9(3) 676-686.
- [24] Kachanoski R G , Jong E de. Predicting the tem poral relationship between soil caesium -137 and erosion rate[J]. Journal of Environm ental Quality ,1984 13 301-304.
- [25] Aarkrog A , Botter-Jensen , Jang L , et al. Environmental radioactivity in Denmark in 1990 and 1991 [R]. Roskilde , Denmark : Riso National Laboratory 1992.
- [26] Longmore M E , O Leary B M , Rose C W , et al. Mapping soilerosion and accumulation with the failout is otope cassium -137 [J].

Australian Journal of Soil Research , 1983 , 21(4) :373-385.

- [27] Owens P N , W alling D E , He Q. The behaviour of bom b-derived caesium -137 fallout in catchment soils[J]. Journal of Environment Radioactivity 1996 32 167-191.
- [28] Cham ard P, Velasco R H, Belli M, et al. Caesium -137 and strontium -90 distribution in a sollprofile[J]. Science of the Total Environment 1993 136 (251-258.)
- [29] Wan Guojiang , Appleby PG. Progresson fall outradic nuclides as tracers in environ-ecological system af J]. Advances in Earth Science 2000 15(2) 172-177.[万国江, Appleby PG.环境生态 系统散落核素示踪研究新进展[J].地球科学进展 2000 15 (2) 172-177.]
- [30] David N E, Klump J V, Robbins J A, et al. Sedimentation rates, residence times and radionuclide inventories in Lake Baikalfrom ¹³⁷Cs and ²¹⁰Pb in sediment cores[J]. Nature, 1991, 350 601-604.
- [31] Hirose K. Annual deposition of Sr-90, CS-137 and Pu-234,240 from the 1961-1980 unclear explosions: A simple modie[J]. Journal of the Meteomological Society of Japan, 1987, 65:259-277.
- [32] Zhang Yan , Peng Buzhuo , Chen Je , etal. Evaluating am cuntof sediment accumulation of Dianchi Lake using ³³⁷Cs dating[J]. Acta Geographica Sinica ,2005 ,60(1) :71-78. [张燕,彭补拙, 陈捷 等·借助³³⁷Cs 估算滇池沉积量[J].地理学报,2005 ,60 (1) :71-78.]
- [33] Stiller M , Imboden D M . ²¹⁰ Pb in Lake Kinneretwaters and sediments : Residence times and fluxes [A]. In : Sly PG ed. Sediment and W ater Interactions [C]. New York : Springer-Verlag , 1986.501-511.
- [34] David R B ,Hess C T , Norton S A , et al. Cs-137 and Pb-210 dating of sediments from softwater lakes in New England (U.S. A.) Scandinavia , a failure of Cs-137 dating[J]. Chemical Geology 1984 ,44 151-181.
- [35] Simpson H J, Olsen C R, Trier R M, et al. Man-made radionuclide sedimentation in the Hudson River Estuary [J]. Science, 1976 194(4 261) 179-183.
- [36] He Q , W alling D E. Interpreting particle size effects in the adscrption of ¹³⁷ Cs and unsupported ²¹⁰ Pb by m in eralsoils and sedim ents[J]. Journal of Environment Radioactivity, 1996, 30 : 117-137.
- [37] Dominik J, Manginik , Muller G. Determination officeent deposition rates in Lake Constance with radioisotopic methods [J]. Sedimentology ,1981 ,28 653-677.
- [38] Bloesch J, Evans R D. Lead-210 dating of sediments compared

with accumulation rate estimated by natural markers and measured with sediment traps[J]. Hydrobiologica , 1982 ,92 :579-586.

- [39] Xu Hongkun, Lin Changsong.A moth of for correcting compaction of sediment[J]. Earth Science Frontiers, 2000, 7(2):366.[许 红昆,林畅松・沉积物压实的一种校正方法[J]・地学前缘, 2000, 7(2):366.]
- [40] Su Qiong, Song Haiqing. A mathematical model for correcting deep transfer of ¹³⁷ Cs in the watery recent sediment[J]. Report on Technology of Chinese Nuclear 1995, (2) 1-12.[苏琼,宋 海青.校正¹³⁷ Cs 在水体沉积物中纵向迁移的数学模型[J]. 中国核科技报告 1995, (2) 1-12.]
- [41] Huang Naiming, Song Haiging, Nu Guangqiu, et al. Variations of specific activity of radiacouclides in marine sediments with depth at GNPS site and evaluation of sedimentation velocity[J]. Radiation Protection Bulletin, 1999, 19(2):9-12.[黄乃明,宋 海青,牛广秋,等·大亚湾海底泥中放射性核素比活度随深度 的变化及底泥沉积速率的估算[J]·辐射防护通讯, 1999, 19 (2):9-12.]
- [42] Xu Yinliang, Chen Kaixuan, Chen Chuangun, etal. Behavior of ¹³⁷Cs in the water-adsorbent system s[J]. Acta Agriculturae Nucleatae Sinica, 2000,14(4):234-240.[徐寅良,陈凯旋,陈传 群 等.¹³⁷Cs 在水—吸附剂体系中的行为[J].核农学报, 2000,14(4):234-240.]
- [43] Davis R B , Hess C T , Norton SA , etal. ¹³⁷ Cs and ²¹⁰ Eb dating of sediments from softwater lakes in New England (U.S.A.) and Scandinavia , a failure of ¹³⁷ Cs dating[J]. Chemical Geology , 1984 , 44 151-181.
- [45] Tamura T. Selective sorption reaction of caesium with mineral soils[J]. Nuclear Safety 1964 5 262-268.
- [46] Nanjing Institute of Geography and Lim nology , Chinese Academy of Sciences. Environments and Sedimentation of Fault Lakes, Yunnan Province[M]. Beijing: Science Press, 1989.291. [中 国科学院南京地理与湖泊研究所.云南断陷湖泊环境与沉积 [M].北京:科学出版社 1989.291.]
- [47] McIntyre S C. Reservoir sedimentation rates linked to long-term changes in agricultural land use[J]. Water Resources Bulletin , 1993 (29) 487-495.

AN OVERVIEW ON THE EVALUATION OF SEDIM ENT ACCUM ULATION RATE OF LAKE BY ¹³⁷ Cs DATING

ZHANG Yan , PAN Shao-ming , PENG Bu-zhuo

(Department of Urban and Resources Sciences Nanjing University Nanjing 210093 China)

Abstract The vertical distribution of 137Cs in sediment profiles is present in accordance with the record of ¹³⁷Cs falloutvariations in the atmosphere. Therefore ¹³⁷Cs can be used to infer a geochronology for sediment profiles and sediment accumulation rates can be estimated by measuring vertical distribution of ¹³⁷ Cs in sediment profiles. But som e factors must be taken into account for dating horizon in sediment profiles m ore accurate and precise. The time lag between the time of atmospheric deposition of 1^{37} Cs and the time of deposition of 1^{37} Cs to sediment profiles should be calculated. For some sediment profiles ¹³⁷ Cs concentration per unit of clay should be explained. In order to prove the accurate of ¹³⁷Cs dating sediment accumulation rates estimated by ¹³⁷Cs dating should also be compared with that measured at same site by other methods such as standard sediment survey method 210 Pb dating sedimentary lamination pollen and so on. Then with several depositional horizons marked by ¹³⁷Cs the depth (cm) or the mass (g/cm²) of sediment for different time periods can be calculated. And it can be made to compare sedimentaccumulation rate in depth (sedimentaccumulation rate) and in mass (sedimentflux) for differenttime periods. Because of compaction effect on sediment the sediment flux can well and truly reflect sedimentation rate. Based on the sediment flux and the area of lake bed measured by GIS the annual gross accumulation of sediment can be calculated and internal load of pollutants in the lake sediment lake evolution and environment changes of the lake basin can be studied further. Therefore 137Cs dating has been extensively used for evaluation of sediment accum ulation rate of lake estuary and ocean. However, there are still some problem s under resolve. Firstly how thickness of sampling should be divided up to meet both the needs of ¹³⁷Cs dating precision and the propriety of measurement work. Secondly attention should be paid to the lag time between ¹³⁷ Cs deposition in atmosphere and in sedimentrelates to the transport time from soilloss in field to lake. Thirdly it should be also carefully taken into accountwhether diffusion and infiltration movement of 137Cs in sediment profiles occurred and what their mechanism s are.

Keywords : 137 Cs dating : Sediment accumulation rate : Lag time : Infiltration