参考文献

- 1 李德葆等 动态应变/应力场分析的模态法 振动与冲 击, 1992, (4): 15~ 21
- 2 李德葆等. 实验应变模态分析原理和方法 清华大学 学报(自然科学版), 1990, 11 (4): 105~112
- 3 涂小岳 汽车零部件疲劳耐久性试验室内动态模拟研究 [硕士论文] 西安公路交通大学, 1995
- 4 Steve Bogert Integration of Fatifue Technology with Modal Analysis SA E paper 933068

(1996年7月23日收到第1稿 1996年12月23收到修改稿)

塔桅起重机桅杆的应力测试分析

冯 垣

(天津理工学院北辰院区机械系,天津 300400)

摘要 本文对 40 t 塔式起重机改装成 400 t 塔起重 机的桅杆进行应力测试及分析.

关键词 塔桅起重机,桅杆,应力

引 言

塔桅起重机是安装大型超限设备的实用设备之一,由塔式起重机与桅杆组成,它的优点是提高塔式起 重机的起重量 如原 40 t 塔式起重机改装后起重量可 达 400 t,用以吊装大型超限设备且吊装后移动就位方 便,减轻了劳动强度

现就以 40 t 塔式起重机改造成 400 t 塔桅起重机 (如图 1) 的桅杆应力测试做一分析. 加载实验现场布 置如图 2 所示 加载方法根据大件设备起吊时, 桅杆俯 仰绳与水平面间的夹角 θ 值的变化情况分为 θ = 20 $; \theta$ = 40 $; \theta$ = 50 \subseteq 种加载状态, 如图 3 所示 各加载状态 下的加载值见表 1 所示

项目	1	2	3	4	5	6	7
加荷状态		20 °		4	0°	50	0°
设计起重能力(t)		157		29	94	35	50
加荷值 (t)	120	160	175	220	295	350	406
加荷值与起 重能力比(%)	75	100	110	75	100	100	115

1 测点布置

测试截面共取 I- I, II- II, III- III, 3 个截面, 各 截面的位置及测点编号如图 4 所示

图 1 40 t 塔吊改装示意图

1 俯仰索; 2 机杆; 3 起重索; 4 平台; 5 水平拉紧钢丝
绳; 6 基础箱; 7 箱形梁; 8 加固节; 9 引出索; 10 台
车; 11 拉杆; 12 Π形梁; 13 前箱形梁; 14 后箱形梁;
Ⅰ II III Ⅳ 缆风绳

第19卷(1997年)第4期

式中, E_A 为钢材弹性模量, μ 为电测读数, c 为导线电 阻值的修正率, $c = \frac{2r}{R}$, r 为一根导线的阻值, 其值随导 线长度而异, 对于 I - I 截面 $r = 3.5 \Omega$, 对于 II - II 截 面 $r = 2.45 \Omega$, 对于 III- III 截面 $r = 1.75 \Omega$, R 为电阻 片阻值, 其值为 120 Ω

表 2 中所列计算值是各测点在加载状态下根据桅 杆受力如图 5 所示的情况,由几何特征分别计算 I- I, II- II, III- III 截面的截面积、惯性矩、抗弯截面模 量、轴向力及桅杆在轴向载荷、横向载荷(自重)作用 下产生的弯矩和桅杆顶受弯矩作用而产生的附加弯矩 进行迭加,计算出弯矩 $M_{1-1}, M_{11-11}, M_{111-111}$,再根据公 式 $c=\frac{N_{-}}{A}+\frac{M_{-+}}{I_x}$ 计算各测点应力值

22内力

II- II 截面的内力值列于表 3 内, 其中实测内力 用图象法求得

38 2

-	2
777	4

_				I-I					II-II							III-III			
e	3	测点	编号	211	212	213	214	401	402	403	404	405	406	407	408	261	262	461	462
	(t)	计算值	(MPa)	-8.5	-17.3	-8.5	+3.0	-15.5	-16.5	-16.5	-15.5	-10.0	-9.0	-9.0	-10.0	-12.3	-12.0	-12.3	-12.0
	120	实测值	(MPa)	-7.6	-22.9	-5.5	+2.2	-19.4	-17.2	-18.3	-20.5	-5.4	-5.4	-5.4	-6.5	-13.5	-50.2	-20.4	-33.3
		计算值为	实测值 %	111.8	75.6	154.5	136.4	79.9	95.9	90.2	75.6	185.2	166.7	166.7	153.8	91.0	23.9	60.3	36.0
	(t)	计算值	(MPa)	-11.4	-23.1	-11.4	+0.4	-20.6	-25.0	-25.0	-20.6	-13.5	-12.1	-12.1	-13.5	-15.2	-14.7	-15.2	-14.7
ଞ୍ଚ	160	实测值	(MPa)													-8.5	-36.6	-10.6	-25.3
		计算值为	实测值 %													178.7	40.2	143.4	58.1
	(t)	计算值	(MPa)	-12.3	-25.3	-12.3	+0.6	-22.5	-24.1	-24.1	-23.1	-14.7	-13.1	-13.1	-14.7	-16.6	-16.2	-16.6	-16.2
	175	实测值	(MPa)	-7.6	-20.7	-6.6	+4.4	-26.3	-21.6	-27.0	-25.5	-7.5	-5.4	-7.4	-8.1	-15.3	-50.0	-20.8	-41.0
		计算值为	实测值 %	161.8	122.1	187.0	13.6	85.7	111.6	89.3	90.6	196.0	243.2	177.0	181.5	108.2	32.3	79.8	39.5
_	(t)	计算值	(MPa)	-15.0	-34.8	-15.0	+4.8	-35.1	-38.5	-38.5	-35.1	-17.1	-13.8	-13.8	-17.1	-20.1	-20.9	-20.1	-20.9
	220	实测值	(MPa)	-8.7	-25.2	-9.9	+8.7	-45.3	-24.2	-44.2	-27.0	-4.3	-2.8	-4.3	-7.5	-26.8	-97.9	-28.2	-54.7
40°		计算值	为实值 %	171.9	138.1	151.5	55.2	77.4	159.1	87.1	129.9	396.5	628.1	320.9	228.0	75.0	21.3	71.3	38.2
	(t)	计算值	(MPa)	-20.1	-43.8	-20.1	+6.6	-47.4	-52.1	-52.1	-47.4	-22.0	-17.2	-17.2	-22.0	-25.0	-28.0	-25.0	-28.3
	295	实测值	(Mpa)	-14.9	-47.6	-15.1	+5.1	-61.5	-53.9	-45.5	-26.2	+5.4	-6.1	-12.5	-12.5	-34.0	-108.8	-15.9	-61.7
		计算值为	实测值 %	34.9	92.0	133.1	107.6	77.1	96.7	114.5	180.9		281.9	137.6	176	73.5	25.7	157.2	54.9
	(t)	计算值	(MPa)	-23.4	-58.0	-23.4	+11.2	-58.7	-65.8	-65.8	-58.7	-20.9	-13.8	-13.8	-20.9	-31.4	34.5	34.5	31.4
	350	实测值	(MPa)	-16.4	-54.5	-9.9	+18.5	-71.2	-64.7	-72.3	-60.2	0	=1.1	-5.4	- i0.8	-48.0	-118.6	-26.6	-73.5
50°		计算值为	实测值 %	142.8	106.5	236.6	60.4	82.4	101.6	91.0	9 <u>9</u> 5		126.5	255.6	193.5	65.3	29.0	118.0	46.9
	(t)	计算值	(MPa)	-27.1	-67.1	-27.1	+12.8	-66.4	-74.0	-74.0	-66 4	-25.2	-17.5	-17.5	25.2	-36.4	-40.7	-36.4	-40.7
	406	实测值	(MPa)	-19.6	-65.4	-16.4	+17.4	-90.7	-75.0	-90.7	77.6	3.9	+2.2	4.3	-8.6	-45.6	-138.2	+70.0	-77.9
		计算值为	实测值 %	138.5	102.6	165.5	73.8	73.3	98.7	81.6	85.6	645.8	1		292.9	79.7	29.4	52.2	

图 5 桅杆受力图 缆风拉力; 2S: 卷扬机拉力; Q: 吊重; Q1: 每根桅杆 自重; Q3: A -A 桅杆顶板自重

3 试验结果分析

(1) 轴向力N 的实测值与计算值基本接 近, 两者相差在 4 5% ~ + 13% 的范围内

(2) 在弯矩作用平面内, 主弯矩的实测值普 遍大于计算值,这是由于桅杆在制作和安装上 存在较大的初偏心,表3中加荷状态下Mx的 计算值未考虑初偏心 由下式可大体求得 II-II 截面上由制作安装产生的初偏心的大小

第19卷(1997年)第4期

2

表 3

θ	内力	N(t)	M _{x-x} (tm)	M _{y-y} (t m)	σ _w (M Pa)	$rac{\sigma_{\omega}}{\sigma_{cp}}$ (%)
	_计算值 ≰实测值	78 48 77. 40 101	9.53 19.9 48	0 0. 796	0 69	3 40
8	, 计算值 实测值	114, 48 101, 50 113	13.86 27.0 51.5	0 1. 194	1. 32	4.95
	, 计算值 实测值	138 84 125 111	31. 12 45. 9 68	0 0 796	0 44	1.16
ą	〔计算值 [实测值	186 17 195 95 8	44. 12 65. 1 68	0 19. 9	6 27	11. 1
	〔计算值 [实测值 [1] %	216 56 219 99	- 64.46 94 68.5	0 9. 154	0 44	0 61
ş	〔计算值 4.实测值 8%	251. 17 264 95. 5	70.31 120.5 58.5	0 1. 393	0 10	0 11

$$= \frac{(M_{x-x})_{\mathfrak{M}} - (M_{x-x})_{\mathfrak{H}}}{N_{\mathfrak{M}}}$$
(1)

各加载状态下 e 值的计算列于表 4 内 将其中误差较大的 e 值删去, 取其余 5 个值的平均值

表 4											
		20 °		4	0°	50 °					
加荷状态	120(t)	160(t)	175(t)	220(t)	295(t)	350(t)) 406(t)				
e(cm)	13.4		13.0	11. 9	10.8	13.5	19.0				

© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$et_{7} = \frac{13.4 + 13 + 11.9 + 10.8 + 13.5}{5} = 12.5 \text{ cm}$$

所以桅杆初偏心率[1]

$$\epsilon = \frac{M}{N} \cdot \frac{A}{W_x} = 12.5 \times \frac{615}{2.48 \times 10^4} = 0.31$$

说明由加工引起的初偏心对应力有影响

(3)根据桅杆截面形式,长细比,偏心方向和偏心率,由钢结构设计规范TJ17-74 查得桅杆在弯矩作用
平面内稳定系数 9 = 0 41,于是桅杆(桅杆材料为 16 M n 钢)稳定许用应力值为^[1]

$$\frac{\sigma_{y}}{K_{y}} = \mathcal{Q}[\sigma] = 92 \text{ 6 M Pa}$$

而在主变形作用面内, 桅杆最大受压纤维处的应 力^[1]为

$$\sigma = \frac{N}{A} + \frac{M_x}{W_x} = - 89.6 \text{ M Pa}$$

(上接第 50 页)

现将计算结果与这实验值进行对比 对文[5]中 提供的Amen做的5种碟簧实验曲线中的第5种,在 图5中补画了有限的计算值 由图可见,图中有限元 曲线与实验曲线非常接近,几乎重合;而A-1 曲线则 明显高于实验曲线 由此可见,有限元计算结果不仅 与精确解符合很好,与实验情况亦符合很好.

 $(D_i = 146, D_0 = 285, 7, t = 4, H = 5, 9)$

由上述计算结果可以看出,在碟形弹簧的计算方 法中,传统的A-L 公式是一种近似计算法,有一定的 误 则 🕫 92 6 M Pa, 说明桅杆是稳定安全的

(4)桅杆截面在测试过程中出现平面外弯矩M, 和扇性正应力 G, 主要原因可能与基础箱沉降不等有 关, 其数值不大, 可概括在桅杆的总安全度内

(5) III-III 截面实测应力值与计算值相差较大桅 杆接近底座部分应力状态可能较复杂,有待进一步测 试分析

参考文献

 西安冶金建筑学院,重庆建筑工程学院,哈尔滨建筑工 程学院,合肥工业大学、钢结构 北京:中国建筑工业出 版社,1982 155~159

(1996年12月9日收到第1稿1997年2月16日收到修改稿)

差, 在要求不高时, 可以选用A·L 公式计算 文[2]介 绍的精确解, 由于计算过程复杂, 在实际设计中采用的 很少. 而有限元法的计算结果不仅与精确解符合很 好, 而且与实验值也符合得很好, 具有很高的精度 除 此之外, 再配以有限元网自动剖分与显示, 数据文件自 动形成, 载荷-变形曲线及应力曲线图的自动计算与显 示, 构成了碟簧的计算机辅助设计系统的完整的分析 计算部分. 使碟簧的设计准确, 快速, 简捷, 方便

参考文献

- 1 Almen J O, Laszlo A. The uniform-section disk spring Trans A SM E, 1936, 58(5): 305 ~ 314
- 2 Hubner W. Deformationen und spannungen bei tellerfedern Konstruktion, 1982, 34(10): 387~ 392
- 3 Curti G, Appendino D. Vergleich von berchnungsverfahren fur tellerfeder D raht, 1982, 33 (1): 38~40
- 4 W agner W, W etzel M. Berechnung von tllerfedern mit hilfer der methode der finiten elemente Konstruktion, 1987, 39(4): 147~ 150
- 5 Curti G, Orlando M 著 侯锡九译 碟形弹簧的新计 算法 弹簧工程, 1985, 3: 10 ~ 15

(1996年4月15日收到第1稿, 1996年12月31日收到修改稿)

40