# 碟形弹簧特性曲线非线性有限元计算

## 苏 军 吴建国

(江苏理工大学材力教研室,镇江 212013)

摘要 本文利用有限单元法,在改进加载方法的前提 下,详细计算了多种碟形弹簧的非线性特性曲线,得到 了与精确解和实验值符合得非常好的精度很高的结 果

关键词 碟形弹簧,非线性有限元

碟形弹簧是一种结构简单、尺寸紧凑、弹簧载荷-变形特性曲线可任意设计、应用广泛的一种弹簧,可以 认为是一个圆锥形的薄壳结构 其主要尺寸有内径 *D*<sub>1</sub>,外径*D*<sub>0</sub>,锥高*H*,厚度*t*一般在一端受载,另一端 支于某一支承面上 其主要结构和尺寸见图 1. 一般常



图 1 用范围为 H /t= 1 5~ 2 5, m = D ₀/D i= 1~ 4

碟形弹簧的计算一般人常采用传统近似计算法 A mentaszlo 公式 它是假定矩形剖面不变形,而只是 绕某一点作刚性翻转而得到的 碟形弹簧的精确解是 利用圆锥薄壳的一块微元之平衡,建立微分方程并对 其进行数值积分而得出的 这两种方法的详细推导和 计算参见文献[1],[2].

应用有限单元法(FEM)计算碟形弹簧, 虽已有人 算过<sup>[3,4]</sup>, 但都不太理想 有的非线性曲线计算不完全, 有的应力曲线未给出 过去总认为用现有的非线性程 序不能计算出碟形弹簧的全部特性曲线<sup>[3]</sup>. 笔者在计 算之初亦总是报出"载荷步大于增量步"之错误, 使计 算亦如文[3]一样只能进行几小步. 后来, 我们改进了 加载方法, 使得对于各种碟形弹簧都能顺利计算出全 部载荷特性曲线, 不仅给出了完整的非线性载荷-位移 特性曲线图, 还给出了应力曲线, 得到了相当精确的结 果

我们采用了两种单元进行计算 其一是二维轴对 称单元,其二是三维块单元 由于结构和载荷都是轴对 称的,因而采用轴对称单元是显而易见的.至于三



维单元, 主要是为了作结果对比 每种单元又都作了多 种粗细不同的网格划分, 以寻求最佳网格剖分. 实际采 用的有限元计算网格如图 2 和图 3 载荷条件为上表面 最内圈上的压力, 其合力为 *P*. 位移约束条件为下表面 竖直方向的位移约束 而对碟形弹簧在径向的位移则 未作任何约束, 这一点有别于*A*-*L* 公式中翻转中心的 假定, 较之更接近实际情况 对三维单元还有 θ方向 的斜约束(图中未画出).

计算采用通用非线性有限元程序 AD NA 进行 所有计算的二维 三维单元均采用非线性单元,有限元 方程为完全的拉格朗日非线性方程,而材料为线弹性 的弹簧钢 由于几何形状很规则,编制了网格自动生成 程序 计算中只需输入内径 D 、外径D 、厚度 t 和锥高 H (或锥角 ω),就能自动生成节点坐标 单元信息、载荷 条件、位移约束条件等全部数据,自动记入数据文件并 直接进入有限元计算,计算后亦能根据计算结果自动 绘出载荷-变形特性曲线和应力图等,使得计算显得非 常方便、简捷、实用

对于文[2]中给出的精确解的几种碟簧(外径 100,内径 50,厚 2,锥高分别为 0 & 2 4 4 0,以上尺寸 单位为mm,E= 2 06 10<sup>5</sup>M Pa,  $\mu= 0$  3),用二维轴对

## 第19卷 (1997年) 第4期

7

称元计算的结果与A - L 公式的计算结果、精确解三种 比较见表 1. 方法计算的压平点( $\lambda = H$ )时的载荷值  $P_H$  (单位: N)

|                                        |                | FF   | М     | A L  |       |
|----------------------------------------|----------------|------|-------|------|-------|
|                                        | <u></u><br>着确解 | 计算值  | 误 差   | 计算值  | 误 差   |
| $D_i = 50, D_o = 100, t = 2, H = 2, 4$ | 2339           | 2332 | 0 3%  | 2504 | 7.05% |
| $D_i = 50, D_o = 100, t = 2, H = 4, 0$ | 3854           | 3796 | 1. 5% | 4173 | 8 27% |
| $D_i = 45, D_o = 100, t = 2, H = 2.4$  | 2244           | 2230 | 0 62% | 2378 | 6 0%  |
| $D = 55, D_0 = 100, t = 2, H = 4, 0$   | 2474           | 2474 | 0 0%  | 2672 | 8 0%  |
| $D_i = 50, D_o = 100, t = 2, H = 0.8$  | 785            | 784  | 0 13% | 835  | 6 37% |

表1

由表 1 可见,有限元计算值与精确解的误差极小, 大多为百分之零点几,最大者亦仅为 1.5%,而A - L 公 式的计算值则普遍高于精确解,其误差达 6%~8%以 上

计算的碟簧四角点处(I, II, III, IV 点, 见图 1)的 切向应力值与精确解和A-L 公式的计算结果比较见 表 2

50



图 4

三维单元的计算结果与二维轴对称单元基本相 (4), 其误差略大于二维单元 对上述的二种碟簧, 其计 算的压平点载荷值 *P*<sup>H</sup> 结果对比如表 3

|                                        | 计算  |       | Оī     |        | Oi I   |        | 0ī I I |       | OīV    |         |  |
|----------------------------------------|-----|-------|--------|--------|--------|--------|--------|-------|--------|---------|--|
| <b>弹簧参数</b>                            | 方法  | 计算    | 直误差    | 计算     | 值误差    | É      | 计算值    | 误差    | 计算值    | 直误差     |  |
| $D_{i}=50, D_{o}=100$                  | 精确解 | - 126 | 59     | 468    | 6      |        | 617. 3 |       | - 109  | 1       |  |
|                                        | FEM | - 132 | 20 4%  | 472    | 8 0 89 | %      | 590 2  | 4.4%  | - 108  | 2 0 82% |  |
| H=24, t=20                             | ΑL  | - 132 | 20 4%  | 404    | 13%    | ,<br>D | 719.4  | 16 5% | - 142  | 7 30 8% |  |
| $D_i = 50, D_o = 100$                  | 精确解 | - 254 | 9      | 335.   | 3      |        | 1310   |       | 103 -  | 4       |  |
|                                        | FEM | - 264 | 2 3 6% | 5 349. | 4 4 29 | %      | 1256   | 4.1%  | 106    | 1 2 6%  |  |
| H = 4 0, t = 2 0                       | AL  | - 271 | 0 6 3% | 5 165  | 50 8   | %      | 1520   | 16%   | 82 2   | 20 5    |  |
| 表3                                     |     |       |        |        |        |        |        |       |        |         |  |
|                                        |     |       | 二约     | 二维单元   |        | 三维单元   |        | A L 法 |        |         |  |
|                                        | 参数  |       | 精确解    | 计算值    | 误差     | 计      | ·算值    | 误差    | 计算值    | 误差      |  |
| $D_i = 50, D_o = 100, t = 2, H = 2, 4$ |     | 2339  | 2332   | 0 3%   | 2      | 2418   | 3 4%   | 2504  | 7. 05% |         |  |
| $D_i = 50, D_0 = 100, t = 2, H = 4, 0$ |     | 3854  | 3796   | 1. 5%  | 3      | 3942   | 2 3%   | 4173  | 8 27%  |         |  |

表 2

(下转第40页)

力学与实践

$$et_{7} = \frac{13.4 + 13 + 11.9 + 10.8 + 13.5}{5} = 12.5 \text{ cm}$$

所以桅杆初偏心率[1]

$$\epsilon = \frac{M}{N} \cdot \frac{A}{W_x} = 12.5 \times \frac{615}{2.48 \times 10^4} = 0.31$$

说明由加工引起的初偏心对应力有影响

(3)根据桅杆截面形式,长细比,偏心方向和偏心率,由钢结构设计规范TJ17-74 查得桅杆在弯矩作用
平面内稳定系数 9 = 0 41,于是桅杆(桅杆材料为 16 M n 钢)稳定许用应力值为<sup>(1)</sup>

$$\frac{\sigma_y}{K_y} = \mathcal{Q}[\sigma] = 92 \text{ 6 M Pa}$$

而在主变形作用面内, 桅杆最大受压纤维处的应 力<sup>[1]</sup>为

$$\sigma = \frac{N}{A} + \frac{M_x}{W_x} = - 89.6 \text{ M Pa}$$

(上接第 50 页)

现将计算结果与这实验值进行对比 对文[5]中 提供的Amen做的5种碟簧实验曲线中的第5种,在 图5中补画了有限的计算值 由图可见,图中有限元 曲线与实验曲线非常接近,几乎重合;而A-1 曲线则 明显高于实验曲线 由此可见,有限元计算结果不仅 与精确解符合很好,与实验情况亦符合很好.



 $(D_i = 146, D_0 = 285, 7, t = 4, H = 5, 9)$ 

由上述计算结果可以看出,在碟形弹簧的计算方 法中,传统的A-L 公式是一种近似计算法,有一定的 误 则 🕫 92 6M Pa, 说明桅杆是稳定安全的

(4)桅杆截面在测试过程中出现平面外弯矩M, 和扇性正应力 (x),主要原因可能与基础箱沉降不等有 关,其数值不大,可概括在桅杆的总安全度内

(5) III-III 截面实测应力值与计算值相差较大桅 杆接近底座部分应力状态可能较复杂,有待进一步测 试分析.

#### 参考文献

 西安冶金建筑学院,重庆建筑工程学院,哈尔滨建筑工 程学院,合肥工业大学、钢结构 北京:中国建筑工业出 版社,1982 155~159

> (1996年12月9日收到第1稿 1997年2月16日收到修改稿)

差, 在要求不高时, 可以选用A·L 公式计算 文[2]介 绍的精确解, 由于计算过程复杂, 在实际设计中采用的 很少. 而有限元法的计算结果不仅与精确解符合很 好, 而且与实验值也符合得很好, 具有很高的精度 除 此之外, 再配以有限元网自动剖分与显示, 数据文件自 动形成, 载荷-变形曲线及应力曲线图的自动计算与显 示, 构成了碟簧的计算机辅助设计系统的完整的分析 计算部分. 使碟簧的设计准确, 快速, 简捷, 方便

### 参考文献

- 1 Almen J O, Laszlo A. The uniform-section disk spring. Trans A SM E, 1936, 58 (5): 305 ~ 314
- 2 Hubner W. Deformationen und spannungen bei tellerfedern Konstruktion, 1982, 34(10): 387~ 392
- 3 Curti G, Appendino D. Vergleich von berchnungsverfahren fur tellerfeder D raht, 1982, 33 (1): 38~40
- 4 W agner W, W etzel M. Berechnung von tllerfedern mit hilfer der methode der finiten elemente Konstruktion, 1987, 39(4): 147~ 150
- 5 Curti G, Orlando M 著 侯锡九译 碟形弹簧的新计 算法 弹簧工程, 1985, 3: 10 ~ 15

(1996年4月15日收到第1稿, 1996年12月31日收到修改稿)

#### 力学与实践

仸

40