

斜杆的动力稳定性研究

孙 强

蔡四维

(安徽建筑工业学院,合肥 230022) (合肥工业大学,合肥 230009)

本文探讨斜杆的动力稳定性问题. 摘要 关键词 斜杆,动力稳定性

对于杆件常会受竖向动力荷载作用,如动力机械厂 房、桥台、桥墩、公路桥桁架等.有必要研究杆在动力荷载 作用下,杆的动力稳定性及参数共振问题,使结构能够正 常作用,杆的动力解为无穷多解,即力学上的分叉、混沌 现象[1],如何保证杆的动力解是稳定的,是一个急需解决 的课题.

1 数学模型及动力方程

斜杆在竖向谐振力作用下,将产生横向弯曲,设杆 两端为铰接.其数学模型如图 1.

图 1 杆的数学模型

 $EJ^4 \frac{\partial^4 V}{\partial x^4} + \frac{N_0 + N_t \cos t}{\sin \theta} \frac{\partial^2 V}{\partial x^2} +$

 $\partial^2 v$

由动力平衡条件得斜杆动力微分方程为

式中 EI 为杆抗弯刚度, N_0 、 N_t 为谐振力幅值, 为激振圆 频率, 为杆之倾角, c 为阻尼系数, m 为杆单位长度的 质量. L 为杆长.

取杆横向位移

$$V(x, t) = f_n(t) \sin \frac{n \cdot x}{L} \quad (n = 1, 2, 3, ...) \quad (2)$$

满足两端铰支杆的边界条件,将(2)代入(1)并令

$$= \frac{n^2}{L^2} \sqrt{\frac{EI}{m}}, \quad n = n \sqrt{1 - \frac{N_0}{n \sin n}}$$
$$= \frac{c}{2m}, \quad n = \frac{n^2}{L^2} \frac{2EI}{L^2}$$
$$\mu_n = \frac{N_t}{2\sin \left(n - \frac{N_0}{\sin n}\right)}$$

则(1)式简化为

$$f_{n}(t) + 2 f_{n}(t) + 2 f_{n}(t) + 2^{2}_{n}(1 - \mu_{n} \cos t) f_{n}(t) = 0$$
(3)

取(3)式有周期 2T = 4 的周期解

$$f_n(t) = \sum_{n=1,3,5,\dots} \left(a_n \sin \frac{n-t}{2} \le b_n \cos \frac{n-t}{2} \right)$$
 (4)

代入(3)得关于 a_n 、 b_n 线性齐次方程组,其周期2T的非 零周期解存在条件为:(n对1.2.3...都成立,以下省略 下标 n₀)

$$C \frac{\partial V}{\partial t} + m \frac{\partial^2 V}{\partial t^2} = 0 \qquad (1)$$

$$\begin{vmatrix} 2(1 + \mu) - \frac{2}{4} & - & -\mu^2 & 0 & \dots \\ 2(1 - \mu) - \frac{2}{4} & 0 & -\mu^2 & \dots \\ -\mu^2 & 0 & 2 - \frac{9-2}{4} & -3 & \dots \\ 0 & -\mu^2 & 3 & 2 - \frac{9-2}{4} & \dots \end{vmatrix} = 0 \qquad (5)$$

第19卷(1997年)第5期

可以证明无穷行列式是收敛的,如保留两阶得如图

$$= 2 \left[\left(\begin{array}{c} 2 & -2 \end{array} \right)^{2} \pm \sqrt{4 \left(\begin{array}{c} 2 & -2 \end{array} \right)^{2} + \mu^{2} \left(\begin{array}{c} 4 \end{array} \right)^{1/2}} \right]^{1/2}$$
(6)

$$f_n(t) = \frac{b_0}{2} + \sum_{n=2,4,6,\dots} \left(a_n \sin \frac{n-t}{2} + b_n \cos \frac{n-t}{2} \right)$$
(7)

类似地取(3)式有周期 T 的周期解

(8) 式也是收敛的,如保留三阶得

$$= I^{-2}(1 - \mu^{2}) - 2^{-2} \pm \sqrt{4^{-4} - 4^{-2} - 2(1 - \mu^{4}) + \mu^{4}} J$$
(9)

由(6)、(9)式可确定杆动力不稳定区域边界.

当激振参数 μ 0 时,如忽略阻尼 ,则周期 2 *T* 的 解成对地位于 = $\frac{2}{n}$ (*n* = 1,3,5,...)的附近,而周期 *T* 的解成对地位于 = $\frac{2}{n}$ (*n* = 2,4,6,...)的附近,即按不 同的 n 值可得第一,第二,...等动力不稳定区域,而 n= 1 位于=2 附近的不稳定区域是最危险的,是实际工程 中最需关注的区域,称为主要动力不稳定区域⁽¹⁾.

2 算 例

某圆形直杆直径 250 mm,杆长 12 m, $E = 3.0 \times 10^7$ kN/m², m = 159.44 N/m,取 n = 1, = 16.95, = 66864 kN,取不同倾角 和激振力幅值,其结果见表 1.

$N_0(kN)$	$N_t(\mathbf{kN})$			μ	1	2	3	4		
				= 30 °						
100	150	14.1904	0.7095	0.3201	32.3481	23.5899	13.6984	13.1070		
100	200	14.1904	0.7095	0.4267	33. 6985	21.6170	13.9833	11.4830		
100	300	14.1904	0.7095	0.6401	37.9582	12.7302	14.1035	6.0726		
100	400	14.1904	0.7095	0.8535	38. 5251	10.8948	14.1440	/		
				= 45 °						
100	200	15.0511	0.7526	0.2683	33. 5746	25.9994	/	/		
100	300	15.0511	0.7526	0.4024	35.4236	23.4177	14.7986	12.5894		
100	400	15.0511	0.7526	0.5366	37.1396	20.5882	14.9181	9.8894		
100	500	15.0511	0.7526	0.6707	38.7631	17.3389	14.9671	4.7940		
				= 60 °						
100	300	15.4171	0.7708	0.3131	35.0446	25.7656	14.8015	14.3922		
100	400	15.4171	0.7708	0.4175	36. 4885	23.6766	15.1804	12.6370		
100	500	15.4171	0.7708	0.5218	37.8540	21.4258	15.2724	10.5027		
100	600	15.4171	0.7708	0.6262	39.1629	18.9277	15.3175	7.2061		
				= 90 °						
100	300	15.6312	0.7816	0.2638	34.8005	27.0892	/	/		
100	400	15.6312	0.7816	0.3517	36.0836	25.3549	15.6545	14.3927		
100	500	15.6312	0.7816	0.4396	37.2941	23.5382	15.4177	12.4120		
100	600	15.6312	0.7816	0.5276	38.4548	21.5901	15.4877	10.5028		

表 1 不同倾角时杆的振动频率

2

图 2

0. 8810

1. 1327

1. 2586

29. 8565

29. 8565

29. 8565

0. 03

0. 05

0. 07

0. 09

0. 10

表1中 1, 2为 (6) 的解, 3, 4为 (9) 的 解,以 为纵坐标, N,为横坐标可绘出不同倾角下杆 的动力不稳定区域如图 2 中的阴影区.由图 2 知,随 杆倾角 的增大,杆的动力不稳定区域将随之减小, 表明随 的增大,杆的动力稳定性随之加强.

4 对杆动力稳定性的影响

为分析方便,本文采用粘滞阻尼,仍以上例,其 计算结果见表 2.

表 2 中 1, 2 为不计阻尼的频率, 1, 2 为计 入阻尼的频率, 、 3 分别为不计入阻尼时杆不稳定 区域幅宽.

=	1	2	M_{1}	2							
0. 3776	29. 8565	19. 3852	29. 7901	18. 4284	10. 4713						
0. 6293	29. 8565	19. 3852	29. 6708	19. 5066	10. 4713						

19. 3852

19. 3852

19. 3852

不同阳尼力下杆的振动频率

29 4879

29. 2366

29. 0827

由表 2 知,杆动力不稳定区域幅宽 ^{*}随阻尼增大 而相应减小,表明阻尼对杆动力稳定性起加强作用. 必须指出,实际工程中阻尼形式较复杂,并非简单的 粘滞阻尼,应用时最好由现场实测或用等效粘滞阻尼 代替.

参考文献

19. 6275

19. 6861

19. 9010

10. 4713

10. 4713

10. 4713

1 武际可, 苏先樾. 弹性系统的稳定性. 北京: 科学出版 社, 1994

(1996年8月15日收到第1稿,1997年2月28日收到修改稿)

11. 3617

10. 2424

9. 8604

9. 4505

9. 1817

关于细长压杆稳定性问题的讨论

陈家骏

(常州建筑职工大学,常州 213015)

摘要 本文在利用挠曲线近似微分方程分析细长压杆 稳定性问题时,对传统的边界条件进行了修正,重新解 释了以往认为临界挠度无法确定的原因.

关键词 细长压杆,临界力,临界挠度,不定值,边界 条件

长期以来,人们普遍认为在挠曲线近似微分方程 基础上可以导出细长压杆临界力计算的精确公式即欧 拉公式,而将临界挠度为不定值的原因归结为原精确微 第 19 卷(1997 年) 第 5 期 分方程被线性化后所引起的.情况果真如此吗?笔者愿 意谈谈自己的看法.

首先必须明确,我们所讨论的压杆是理想化了的 "中心受压的均质直杆",在这样的力学模型中,由于不 存在使压杆产生弯曲变形的初始因素,因此只在轴向压 力作用下就不可能发生实际情况中的压弯现象^[1].但 其直线状态的平衡是否稳定与轴向压力的大小密切相 关.为了判别压杆在直线状态平衡的稳定性,必须给压 杆施加干扰,使其偏离直线位置而呈弯曲状态,然后撤

65