材料热膨胀系数的光测法

邱 宇 刘伯伟

(天津大学力学系,天津 300072)

摘要本文用云纹干涉原理与图像处理技术相结合, 通过测条纹间距获得热膨胀系数.

关键词 热膨胀系数,光测力学,热变形

热膨胀系数是计算热应力的关键常数,而新材料 不断涌现,手册记载又有限,有必要研究简便、快捷 和经济的测量材料热膨胀系数的方法.

1 原 理

设模型原长为 *l*₀,从某一温度 *T*₀上升到 *T*₁和 *T*₂时,其轴向伸长分别为 *l*₁和 *l*₂.根据物理定律可知

 $l_1 = (T_1 - T_0) l_0, l_2 = (T_2 - T_0) l_0$ (1) 如在模型上复制有光栅,利用云纹干涉法产生条纹⁽¹⁾,则可知

$$l_1 = \frac{N_1}{f_r}, \quad l_2 = \frac{N_2}{f_r}$$
 (2)

式中, N₁, N₂ 分别为在 T₁, T₂ 时的条纹数, f_r 为虚 参考栅频率.因温度场均匀,故条纹间距也均匀,设两 种温度下条纹间距分别为 d_1 和 d_2 , 则

$$d_1 = \frac{l_0}{N_1}, \quad d_2 = \frac{l_0}{N_2}$$
 (3)

设
$$T = T_2 - T_1$$
, 解 (1) ~ (3) 式可得
= $\frac{1}{T \cdot f_r} \left(\frac{1}{d_2} - \frac{1}{d_1} - \frac{1}{98} \right)$ (4)

测取 T、d1及 d2,代入上式即可获得 值.

2 实 验

装置如图 1 所示,为一双光束云纹干涉装置.试件 放在液体中加热,用控温器控制温度在 ±0.1 ℃ 以内. 云纹干涉条纹通过 CCD 输入微机,用像素表示 d_1 , d_2 值,并对像素与实际尺寸的关系进行标定,在 (4) 式 中乘标定系数 K_F .以铝试件为例,图 2 为两个温度下 的条纹图.当 $T_1 = 19 ℃$ 时 $d_1 = 101$, $T_2 = 39.8 ℃$ 时 $d_2 = 66$.代入 (4) 式得 $_{\text{H}} = 23.6 \times 10^{-6} (1/ ℃)$,从 工程材料手册查出铝 (LY12) 的热膨胀系数 $_{\text{H}} = 23.8 \times 10^{-6} (1/ ℃)$,相对误差为 0.8%.

3 结束语

本方法利用光力学实验室的一般设备.不用测试 件的绝对伸长,因此不需要长试件也能达到同样的灵 敏度,并且试件不要固定端,只需平放即可.测量中 温差小,而且与室温接近,恒温非常容易实现.使用

(下转第46页)

(a) $T_1 = 19$ C

(b) $T_2 = 39.8^{\circ}C$

关于"弹性杆热膨胀屈曲特性分析" 一文的讨论

吴敬东 (沈阳化工学院化机系,沈阳 110021)

摘要 本文对''弹性杆热膨胀屈曲特性分析''提出 异议.

关键词 弹性杆,数值计算,讨论

文献 [1] 建立并求解了弹性杆非线性屈曲的基本方程,并给出了算例,笔者认为文 [1] 的数值计算结果不合理, *T*/ *T_{cr}*的值偏差太大.下面根据文 [1] 中的公式和算例的数据,证明文中 *T*/ *T_{cr}*的不合理性.

文 [1] 中公式 (3) 给出

$$N = T EA - \frac{EA}{2l} \left| \begin{array}{c} \frac{dy}{dx} \\ \frac{dy}{dx} \end{array} \right|^{2} dx$$

则可推得

$$\frac{N}{N_{cr}} = \frac{T}{T_{cr}} - \frac{AI}{2^2 I} \int_{0}^{l} \left(\frac{\mathrm{d}y}{\mathrm{d}x} r^2 \mathrm{d}x \right)^{l}$$

式中 T_{cr} 为欧拉临界变温, $T_{cr} = {}^{2} I / A l^{2}$; N_{cr} 为欧 拉临界力, $N_{cr} = {}^{2} EI / l^{2}$. 由上式得

 $\frac{T}{T_{cr}} = \frac{N}{N_{cr}} + \frac{AI}{2^2 I} \int_{0}^{I} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)^2 \mathrm{d}x$

设杆端转角为 ,则

$$\frac{T}{T_{cr}} \leq \frac{N}{N_{cr}} + \frac{AI}{2} I_{l} tg^{2} dx = \frac{N}{N_{cr}} + \frac{AI^{2}}{2} I_{l} g^{2}$$

文 [1] 对 l = 30 d 的圆截面杆进行了数值计算, 从文 [1] 中图 3 的曲线得 $\frac{N}{N_{cr}} \leq 1.0$,将此算例的数据 代入上式得

(上接第45页)

2mW 小功率氦氖激光器即可获得 值.本方法简便, 快捷而且精度较高.

参考文献

1 Bowles D E, Post D. Moire interferometry for thermal expen-

 $\frac{T}{T_{\rm err}} \le 1.0 + \frac{7200}{2} {\rm tg}^2$

对于不同的 值, 对 T/T_{cr} 的限制值是不同, 现将 其列表如下.

	表1											
ļ	17223	0 °	1 °	2 °	3 °	4 °	5°					
	$\frac{T}{T_{cr}} \leq$	1	1.22	1.88	3.00	4.57	6.58					
		6 °	7 °	8 °	9 °	10 °						
	$\frac{T}{T_{cr}} \leq$	9.06	12.00	15.41	19.30	23.68						

而文[1]的计算数值在下表给出.

			表 2			
	0 °	_1 °	2 °	3 °	4 °	5 °
T_{cr}	1	1.23	2.00	3.50	5.88	9.28
	6 °	7 °	8 °	9 °	10 °	
$\frac{T}{T_{cr}}$	13.84	19.66	26.90	35.68	46.14	

从表 1 和表 2 的计算数据相比较可以看出, 文 [1] 的计算结 果只是在 <3 时是合理的, 在 ≥3 时的结果是无意义的, 由此, 对文 [1] 的理论公式及其解法表示怀疑.

参考文献

1 陈建康,王汝鹏. 弹性杆热膨胀屈曲特性分析. 力学与实 践,1994 (3)

(本文于1996年4月26日收到)

sion of composities. *Exp Mech*, 1981 (12): 441~447 2邱宇. 多功能云纹干涉测试系统. 天津大学硕士论文, 1995. 41~42

(1997年3月6日收到第1稿,1997年7月14日收到修改稿)