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Abstract 

This paper develops a model in which investors agree to disagree on the precision of a 

publicly observed signal and are prohibited from short selling. In equilibrium, a very positive 

(negative) signal crowds out low (high) precision investors. The equilibrium asset price is a 

convex function of the signal. The model implies that market confidence increases with the asset 

price and tends to be higher than the average confidence of the investor pool. The testable 

prediction is that skewness increases with intensity of disagreement and cost of short selling. 

Supportive evidence is found. 
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This paper develops a model in which investors agree to disagree on the precision of a 

publicly observed signal and are prohibited from short selling. In equilibrium, a very positive 

(negative) signal crowds out low (high) precision investors. Consequently, the equilibrium asset 

price is a convex function of the signal. The model implies that market confidence increases with 

the asset price and tends to be higher than the average confidence of the investor pool. The 

testable prediction is that skewness increases with intensity of disagreement and cost of short 

selling. Supportive evidence is found. 

The basic idea can be illustrated by the following example. Consider a stock market 

where short sales are not allowed. Investors initially agree on the value of a stock but disagree on 

the precision of a publicly observed signal (for example, an earning announcement): some 

investors think its precision is higher than other investors think. High precision investors will 

adjust their valuation more according to this signal. If the signal is positive, high precision 

investors will value the stock higher than low precision investors. The latter may wish to short 

sell the asset and end up being crowded out of the market if deterred by the cost and risk of short 

selling. So the market actually reacts to the positive signal through the reaction of high precision 

investors. On the other hand, if the signal is negative, high precision investors may be crowded 

out of the market. In this case the market reacts to the negative signal through the reaction of low 

precision investors. Therefore, the market reacts more to a positive signal than to a negative 

signal, resulting in a convex function of price in information: positive and negative price 

movements are asymmetric. 

Central to the model is that investors agree to disagree on the precision of the public 

signal. This assumption is motivated by the observation that sometimes people reacts to the same 

signal to different extent. For example, after earning announcements analysts adjust their 

estimates by different amount, which suggests that analysts disagree on how to interpret this 

public signal. A straightforward way to catch this heterogeneity is to assume that analysts hold 
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different opinions about the precision of this public information. This assumption does not lose 

generality due to the obvious possibility that analysts have heterogeneous prior beliefs. First, 

analysts may disagree in their pre-announcement estimates. But if analysts update their beliefs in 

a Bayesian way, disagreement in prior means cannot explain why they update their estimates by 

different amount. Second, analysts’ confidence in their own pre-announcement beliefs also 

differs. However, modeling heterogeneous prior confidence and modeling heterogeneous 

confidence in a new public signal is equivalent. To say that one is more confident in her prior 

beliefs is equivalent to say that she is less confident in the new signal. If we assume instead that 

investors have heterogeneous confidence in their priors but agree on the precision of the new 

signal, the model leads to the same set of results. A second key assumption is short sale 

constraints, which can be justified by the cost, risk and prohibiting rules of short selling. 

The paper’s contribution is threefold. First, it adds new insights to the heterogeneous 

beliefs and short sale constraints literature. It has long been recognized that in the presence of 

heterogeneous beliefs and short sale constraints, risky assets are held by the most optimistic 

investors (Miller (1977), Harrison and Kreps (1978)). Furthermore, the opportunity to resell the 

asset to somebody else with higher asset valuation in the future can create bubbles (Harrison and 

Kreps (1978), Morris (1996), Scheinkman and Xiong (2003)). Novel in the current paper is that 

the asset price is asymmetric on the up and down sides. This is obtained by assuming that 

investors agree to disagree on the precision of a public signal. 

Second, the model produces testable implications about the skewness of market returns. 

Since the equilibrium price is a convex function of information and a convex function makes a 

distribution skew to the right, ceteris paribus, market returns should be more positively skewed 

when the price function is more convex. In this model, price convexity arises from disagreement 

over information precision and short sale constraints, thus skewness should increase with 

disagreement intensity and short selling cost. We empirically test these predictions and find 
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confirmative evidence. First, skewness increases with trading volume, which is positively 

correlated with disagreement 2 . Second, skewness decreases with stock size, institutional 

ownership and ownership breadth. This is because bigger stocks, stocks of higher institutional 

ownership and broader ownership are easier to short sell3, thus their price functions are less 

convex. 

These predictions about skewness do not contradict the existing evidence on negative 

skewness. First, these predictions indicate that skewness should be more positive for some stocks 

and less so for other stocks. Nothing is said about whether skewness should be positive or 

negative, though. If the sign of skewness is to be determined, numerous other skewness factors 

will have to be exclusively taken into consideration and their relative strength will have to be 

weighted4, which is far beyond the scope of this paper. Second, existing evidence on skewness of 

individual stocks is mixed. Although market indices tend to be negatively skewed, individual 

stock skewness is often positive (Harvey and Siddique (1999, 2000), Chen, Hong and Stein 

(2001)). 

The paper adds to the reviving literature on skewness in two aspects. First, it correlates 

skewness with variables measuring disagreement and short selling cost. It differs from Chen, 

Hong and Stein (2001) in that their paper conditions skewness on lagged information while this 

paper correlates skewness with contemporaneous information. Second, it produces new insight 

into the effect of short sale constraints on skewness. Diamond and Verrecchia (1987), Hong and 

Stein (2003), among others, argue that short sale constraints may be responsible for negative 

                                                 
2 See Varian (1989), Harris and Raviv (1993), Kandel and Pearson (1995), Odean (1998), Chen, Hong and Stein 
(2001), and Hong and Stein (2003) for models with this feature and for empirical evidence. 
3 See D’Avolio (2002) and Duffie, Garleanu, and Pedersen (2002) for discussions on the specialness of stocks. 
4 Proposed skewness factors include “leverage effect” (Black (1976), Christie (1982), Schwert (1989), Bekaert and 
Wu (2000)), “volatility feedback” (Pindyck (1984), Poterba and Summers (1986), French et al. (1987), Campbell 
and Hentschell (1992)), “stochastic bubbles” (Blanchard and Watson (1989)), “short sale constraints” (Diamond and 
Verrecchia (1987), Hong and Stein (2003)), “negative news threshold” (Ekholm and Pasternack (2004)) and “state-
switching” (Veronesi (1999)). 
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skewness because bad news cannot be incorporated into the price quick enough. Chen, Hong and 

Stein (2001) find supportive evidence for their 2003 paper. Surprisingly, we find that short sale 

constraints, when combined with heterogeneous beliefs on the precision of a common signal, can 

have the opposite effect on skewness5. 

Third, the paper proposes a possible reconciliation for the conflict between rationality 

and overconfidence. A growing body of literature assumes that investors are overconfident6. 

Overconfidence is in conflict with the classical economics assumption of rationality. If investors 

are rational, their beliefs should be well calibrated. In this paper, high precision investors become 

more confident in their posterior beliefs than low precision investors through Bayesian updating. 

They demand less risk premium; thus tend to value the asset higher. Consequently, they are less 

likely to be crowded out of the market; the market tends to be overconfident rather than 

underconfident. One way to interpret this reconciliation is that investors make random errors 

about the precision of the new signal, but their average opinion can still be correct. According to 

Muth (1961), these random errors do not contradict rationality 7 . Therefore, the primitive 

assumption of heterogeneous beliefs in information precision is compatible with both rationality 

and overconfidence in financial markets. 

This paper differs from the existing overconfidence literature in there aspects. First, we 

do not assume private information. In stead, we assume agreement to disagree on the precision of 

                                                 
5 Veronesi (1999) and Cao, Coval and Hirshleifer (2002) represents two other recent efforts in explaining skewness. 
Veronesi (1999) explains negative skewness through overreaction to bad news in good times and underreaction to 
good news in bad times. Cao, Coval and Hirshleifer (2002) employs information blockage to examine skewness 
conditional on past price movements, due to “sidelined” investors delaying trading until price movements validate 
their private information.  
6 For a recent review of the literature on cognitive biases and behavioral economics, see Barberis and Thaler (2001) 
and Hirshleifer (2001). 
7 According to Muth (1961), rationality does not require individuals to be exactly correct or identical in their beliefs. 
In Muth (1961), rationality means that “the subjective probability distributions of outcomes tend to be distributed 
about the objective probability distribution of outcomes.” Muth further classifies that “… expectations of a single 
firm may still be subject to greater error than the theory.” Therefore, random errors in individual investor beliefs do 
not contradict rationality. 



 5

a public signal. This feature is responsible for all the results of this paper. It differentiates this 

paper from other papers where investors are overconfident in their favored signals (Daniel, 

Hirshleifer and Subrahmanyam (1998, 2001), Odean (1998), Hong and Stein (2003), 

Scheinkman and Xiong (2003)). Second, in this paper we assume short sale constraints together 

with the agreement to disagree on information precision. In contrast, in Daniel, Hirshleifer and 

Subrahmanyam (1998, 2001), Odean (1998), Gervais and Odean (2001), there are no short sale 

constraints. Finally, in our model overconfidence is endogenous. In contrast, most existing 

overconfidence models take overconfidence from the psychology literature and use it as a 

modeling device. 

The term “overconfidence” has slightly different meanings when used by different 

authors. It usually means that one attaches too much precision to currently held beliefs and can 

generally be attributed to too much precision attached to the information used to form the beliefs. 

Sometimes the information is restricted to be private8. In this paper we do not impose this 

restriction9. The signal is publicly observed. This paper adopts the generic definition of too 

precise posterior beliefs. This ingredient of overconfidence is shared by most overconfidence 

models10. It is also in alignment with the definition of overconfidence in the calibration literature, 

from where the term comes11. 

The rest of this paper is organized as follows. Section 1 sets up the model. Section 2 

                                                 
8 See, for instance, Daniel, Hirshleifer and Subrahmanyam (1998, 2001), Odean (1998), and Gervais and Odean 
(2001), Hong and Stein (2003). 
9 We are not the first to notice that overconfidence does not necessarily involve private information. Odean (1998) 
notices that “Traders could, instead, be overconfident about they way they interpret information rather than about 
the information itself.” 
10 For example, in Odean (1998), overconfidence means that “traders (1) hold posterior beliefs that are too precise 
and (2) overweight their own information relative to that of others” (Page 1894, Odean (1998)). We keep the first 
ingredient but relax the second. See the previous footnote about Odean (1998)’s discussion about overconfidence.    

11 In the calibration literature (see, for instance, Lichtenstein et al. (1982) and Yates (1990)), overconfidence refers 
to the phenomenon that people are too certain about their judgment based on given information. The information is 
“public” in the sense that experimental subjects are given the same information and that subjects know that other 
subjects are given the same information.  
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solves the equilibrium. Section 3 explains how the crowding out endogenously generates market 

overconfidence. Section 4 shows that asset prices are convex functions of information. This 

convexity leads to testable predictions about skewness of market returns. Section 5 empirically 

tests these predictions. Confirmative evidence is found. Section 6 briefly summarizes the paper 

and discusses directions for future research. All proofs are presented in the appendix. 

 

1. The Model 

Consider a competitive market with a risky asset and a riskless bond of infinite supply 

and demand at the gross interest rate R. There are three periods, 0, 1, and 2. At time 0, investors 

of exponential utility, ( ) awU w e−= − , enter the market each with a unit endowment of the risky 

asset. At time 1, a signal about the payoff of the risky asset is publicly observed. At time 2 the 

payoff is realized. 

The time 1 signal s equals the asset payoff x plus noiseε : 

 s x ε= + . (1) 

The random variables follow independent normal distributions: 2~ ( , ),x xx N µ σ  

2~ (0, )N εε σ . Investors agree over the distribution of x. But they disagree over the distribution 

ofε . More precisely, they disagree over its variance 2
εσ . For expositional convenience, we use 

precisionτ , which is the reciprocal of variance. ετ  denotes the true precision ofε . 

Assumption 1: Investors disagree over the precision ofε . 

Investors are classified into Lτ  and Hτ  traders accordingly: Lτ  ( Hτ ) traders believe the 

precision is Lτ ( Hτ ), L Hτ τ< . A proportion λ  of investors are Lτ  traders; the rest of them are Hτ  
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traders12. By definition, Lτ  traders associate lower quality to the signal than Hτ  traders do, 

because they think the signal contains more noise. From now on Lτ  ( Hτ ) traders will also be 

referred to as the “low (high) precision investors”. Disagreement over information precision is a 

direct application of “difference of opinions” (Harris and Raviv (1993), Kandel and Pearson 

(1995)) 13  to information precision. One origin of this disagreement is noise. Black (1986) 

forcefully argues that the world we are dealing with is full of noise, thus it is implausible that 

people always agree on how to differentiate information from noise.  

Assumption 2: Short sales of the risky asset are prohibited. 

This assumption serves the purpose of crowding potential short sellers out of the market. 

It is justified by the cost and risk associated with equity short selling. If short selling is allowed 

but incurs higher costs and risk, our results still hold qualitatively. For simplicity, we assume that 

short sales are prohibited14. 

 

2. The Equilibrium 

The equilibrium in a competitive market is composed of a set of price and demand 

functions under which 1) traders maximize their expected utility, and 2) the market clears. 

Because investors’ current decisions depend on future information, backward induction is 

employed. Investors update their beliefs when new information comes, which is summarized in 

lemma 1. 

                                                 
12 If we further assume that (1 )L H ελτ λ τ τ+ − = , i.e., the average belief about information precision is correct, then 
the “average” investor neither overestimates nor underestimates the information precision. This assumption is not 
necessary for selective market participation and convex price function to be derived. Under this further assumption, 

Hτ  investors are actually overconfident and Lτ investors are actually underconfident. Without this assumption, over- 
and under- confidence is relative to the average confidence of the two types of investors. 
13 Kandel and Pearson (1995) provide evidence that investors interpret public announcements differently. 
14 For a discussion on short sale constraints, see Scheinkman and Xiong (2003). Also notice that the expectation of 
asset payoff can be negative if the signal is very negative. To avoid dealing with conditional distributions, we 
assume unlimited liability and allow asset price to go negative. None of our results depends on this simplifying 
assumption. 
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Lemma 1: The posterior mean and precision of type θ ( ,L Hθ = ) traders are: 

 ˆ xθ θτ τ τ= + . (2) 

 ˆ
ˆ ˆ

x
x sθ

θ
θ θ

τ τµ µ
τ τ

= + . (3) 

First notice from equation (2) that the posterior precision of low (high) precision 

investors is also lower (higher). Since posterior precision measures how confident one is in his 

posterior beliefs, low precision traders are less confident than high precision investors after the 

signal is observed. In other words, the confidence in the signal transforms into confidence in 

posterior beliefs. For this reason, Lτ  ( Hτ ) investors will also be referred as “less (more) 

confident investors”. Second notice from equation (3) that when updating their beliefs, Lτ  traders 

put less weight on the signal than Hτ  traders and more weight on their priors. Intuitively, those 

who think the information is of higher quality are more sensitive to the information. 

 

2.A Time 1 

At time 2, the payoff is realized; thus there is no Pareto improving trading. At time 1, the 

decision problem is essentially a static one because there is no more chance for trading. Type 

θ ( ,L Hθ = ) traders’ optimization problem is: 

1, 1, 1 1, 1,( , )J W I U Vθ θ θ θ= . 

Where, 

1, 1,exp( )U aRWθ θ≡ − − , 

1, 1, 1, 1[exp( ( ))]V Max E ay x RPθ θ θ≡ − − . 

The value function at time 1 equals the multiplication of two parts: the risk free part, 

which is the utility if all wealth is invested in the risk-free bond, and the risky part, which is the 

maximum expected utility from investing in the risky asset. For expositional convenience, we 
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first examine the case without short sale constraints. The equilibrium is presented in proposition 

1. 

Proposition 1: In the absence of short sale constraints, the equilibrium at time 1 is: 

 1,
ˆ ˆ ˆ ˆ(1 )

ˆ ˆ( (1 ) )
L L H H

m
L H

aP
R

λτ µ λ τ µ
λτ λ τ
+ − −

=
+ −

, (4) 

 1,
ˆ ˆ ˆ ˆ ˆ(1 ) ( )
ˆ ˆ(1 )

L H L H L
L

L H

by λ τ τ µ µ τ
λτ λ τ

− − +
=

+ −
, (5) 

 1,
ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ(1 )
L H H L H

H
L H

by λτ τ µ µ τ
λτ λ τ

− +
=

+ −
. (6) 

Where 1b
a

= . 

Proposition 1 says that in the absence of short sale constraints, the equilibrium price is a 

weighted average of the opinions of both types of traders and optimal asset demands are 

determined by difference of opinions. This is consistent with the result in Varian (1989). Notice 

that 1,Ly  and 1,Hy  in (5) and (6) could be negative, if the difference of opinions is big enough. 

Under short sale constraints this could not happen. Proposition 2 examines the equilibrium under 

short sale constraints. 

Proposition 2: Under short sale constraints, the equilibrium at time 1 is: 

1. If condition (a): 
2ˆˆ ˆ

1
H

H L
aσµ µ

λ
− >

−
 holds, only Hτ  traders hold the risky asset. Lτ  

traders sell all their risky assets. The equilibrium price is 
2

1,
ˆ1 ˆ( )

1
H

H H
aP

R
σµ
λ

= −
−

. 

2. If condition (b): 
2ˆˆ ˆ L

L H
aσµ µ
λ

− >  holds, only Lτ  traders hold the risky asset. Hτ  traders 

sell all their risky assets. The equilibrium price is 
2

1,
ˆ1 ˆ( )L

L L
aP

R
σµ
λ

= − . 

3. If conditions (a) and (b) do not hold, the equilibrium in proposition 1 is still valid. 



 10

Conditions (a) and (b) can be rewritten as: 

Condition (a′):  11
ˆ

(1 )( )
h L

x
H L x

as s τµ
λ τ τ τ

> = +
− −

 

Condition (b′):  1 1
ˆ

( )
l H

x
H L x

as s τµ
λ τ τ τ

< = −
−

 

The two critical values, ls  and hs , together divide the real line into three parts: A) ls s≤ , 

Hτ  traders crowded out; B) l hs s s< < , nobody crowded out; C) hs s≥ , Lτ  traders crowded out. 

The equilibrium price functions in these 3 cases are 1,LP , 1,mP  and 1,HP , respectively. 

 

2.B Time 0 

At time 0 there are three cases to consider, depending on whether people know the 

coming of information at time 1 and whether trader types are known at time 0. If the information 

is foreseen, investors may or may not know their own types at time 0, depending on whether 

people have a judgment of the information quality in advance. Trader types are probably 

unknown for information of completely new types, such as a new technology, and probably 

known for information that can be repeatedly observed, such as economic and accounting data 

releases. 

If information is not foreseen, no trade can be foreseen, and thus investors are 

homogenous at time 0. In this case no trade will happen and the equilibrium price is 

2

0 2
x xaP

R
µ σ−

= . If information is foreseen but types are unknown at time 0, investors are still 

homogenous. Each individual will be a Lτ  trader with probability λ  and a Hτ  trader with 

probability 1-λ . The value function is: 

0 0 0 0 0( , )J W I U V= , 

2
0 0exp( )U aR W≡ − − , 
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0 0 1, 1, 0 1 0[( (1 ) ) exp( ( ))]L HV Max E V V aRy P RPλ λ≡ + − − − . 

If types are known at time 0, each type of trader maximizes their next period’s expected 

utility. The value function of type θ  ( ,L Hθ = ) trader is: 

0, 0, 0 0, 0,( , )J W I U Vθ θ θ θ= , 

2
0, 0,exp( )U aR Wθ θ≡ − − , 

0, 0, 1, 0, 1 0[ exp( ( ))]V Max E V aRy P RPθ θ θ θ≡ − − . 

Both 1,V θ  and 1P  in the value functions are stochastic functions of future information. 

There are two sources of randomness: x and ε . They are mixed in the single signal 1s  and 

investors cannot differentiate them. Furthermore 1,V θ  and 1P  are nonlinear in the signal. There 

are kinks on these two functions as established in proposition 2. Therefore we do not have a 

closed form solution for the equilibrium. Numerical method is needed to solve for the 

equilibrium. Because all our results are derived from time 1 equilibrium, whether information is 

foreseen and whether types are known in advance does not change our results, as will be made 

clear shortly. 

 

3. Endogenous Market Confidence 

Proposition 2 establishes a “crowding out” mechanism. When the signal is bigger than 

the critical value sh, Lτ  traders are crowded out. When the signal is smaller than the critical value 

sl, Hτ  traders are crowded out. If on average Lτ  traders are more likely to be crowded out than 

Hτ  traders, the market tend to be more confident than the “average” investor. 

Proposition 3: 1). Market confidence increases with the signal. 2). The probability of Lτ  

and Hτ  traders being crowded out decreases with their proportion in the aggregate investor 
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population, λ  and 1- λ , respectively. 3). If 
ˆ ˆ

1
L Hτ τ
λ λ
<

−
, especially, if 0.5λ = , Lτ  traders are 

more likely to be crowded out. 

Claim 1) implies higher market confidence in a bull market than in a bear market. 

Intuitively, this is because a positive signal simultaneously increases the asset price and crowds 

out less confident traders, while a negative signal simultaneously decreases the asset price and 

crowds out more confident traders. It is interesting to compare this implication with the existing 

overconfidence dynamics based on biased self-attribution, such as in Daniel, Hirshleifer and 

Subrahmanyam (1998) and Gervais and Odean (2001). According to biased self-attribution, 

investors take too much credit for their successes and less than enough blames for their failures. 

This leads them to become overconfident. This dynamics of overconfidence implies that 

investors are most overconfident early in their careers because for experienced investors self-

assessment becomes more realistic (Gervais and Odean (2001)). It is clear that in biased self-

attribution confidence fluctuates with “successes” and failures, while in our model market 

confidence moves with price moves up or down. Nonetheless, biased self-attribution may also 

imply higher market confidence in bull markets because market participants in bull markets are 

more likely to consider themselves as “successful”. 

Claim 2) implies a majority effect. It is easier for the majority group to crowd out the 

minority group than vice versa. For the majority group to crowd out the minority group, each 

member in the majority group needs to bear a smaller share of the gross risk than vice versa. 

Ceteris paribus, the majority group has a bigger chance of staying in the market. This result is 

very intuitive. The belief shared by more people is more likely to be reflected in the market. 

Claim 3) suggests that more confident investors are more likely to stay in the market. 

When a new signal comes, investors adjust their estimation of both the mean and the variance of 

future payoff. The effect of the new signal on the means is symmetric in the sense that after 
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positive signals high precision investors have higher mean while after negative signals low 

precision investors have higher mean. But the effect on the variances is asymmetric. High 

precision investors always have smaller posterior variance, regardless of the sign of the signal. 

Therefore, they always demand less risk premium. Their average asset valuation tends to be 

higher; thus are less likely to be crowded out. Consequently, on average market confidence is 

higher than the confidence of the “average” investors, because less confident investors are more 

likely to stay out of the market. Mathematically, the distance between sl and xµ  is longer than 

that between sh and xµ  when 1
2

λ = . 

The asymmetric crowding out in proposition 3 is derived from the equilibrium at time 1. 

It does not depend on the assumption that there are no more chances for trading, nor does it 

depend on previous states. What drives the result is the less risk premium demanded by more 

confident traders. In cases of further chances for trading, hedge demand is present and no 

analytical solution exists. The result is still valid qualitatively because hedge demand does not 

change the relative risk premium of the two types of traders. An alternative interpretation for this 

result is that investors have heterogeneous risk tolerance. Less risk averse investors are more 

likely to stay in the market. In other words, more confidence is observationally equivalent to 

more risk tolerance. But this alternative interpretation cannot explain the other main results of 

this paper, namely price convexity and the variation of skewness with disagreement intensity of 

short selling cost. 

 

4. Price Convexity and Skewness 

Crowding out of less confident investors by a very positive signal and more confident 

investors by a very negative signal implies that price is a convex function of the signal. 

Mathematically, when hs s> , 1, 1,H mP P> ; when ls s< , 1, 1,L mP P> . Graphically, the price function 
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is steeper when the signal exceeds the upper critical value and flatter when the signal is lower 

than the lower critical value (figure 1). The kinks on the price function come from the 

assumption that the asset payoff will be realized in the next period thus there are no more 

chances for trading. For assets such as common stocks, people have more chances to trade and 

will hedge against future price movements. The hedge motivation will smooth the kinks on the 

price function, making it a smooth convex curve. 

 

Price convexity has immediate implications. First, expectation of the price is higher than 

the price at the expectation of the signal. Therefore, if it is known at time 0 that a signal is going 

to be observed at time 1 and people are going to interpret it differently, the time 0 expectation of 

time 1 price is higher than the time 1 price at the expectation of the signal. The higher 

expectation for price from convexity raises the equilibrium price at time 0 even without the 

actual coming of the information15. This also implies that the equilibrium price is higher when 

                                                 
15 This is consistent with the old Wall Street saying “buy on rumors”. 

s 

p 

sl sh

Fig. 1: Price Convex in Signal 
When the signal is positive (negative) enough, only high (low) precision investors participate in the 

market. The market’s reaction to signals depends on who is in the market. 

xµ  
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the information is foreseen than when it is not foreseen. In other words, unanticipated news has a 

greater impact on equilibrium price than anticipated news. 

Second, a convex price function tend to make returns skew to the right. To get the 

intuition of this result, suppose that the signal is symmetrically distributed, so that a positive 

signal is equally probable with a negative signal of the same size, and that there are no other 

factors affecting the skewness of market returns. The positive signal increases the asset price 

more than the negative signal decreases the asset price. This asymmetry reflected in market 

returns–the percentage of price changes–is that the positive return is bigger than negative return 

in absolute value. Correspondingly, the right tail for the distribution of market returns is long and 

thin, while the left tail is fat and short. If we calculate the skewness of such a distribution, it 

should be positive. Furthermore, when the price function is more convex, the right tail is longer 

and thinner while the left tail is fatter and shorter, so the skewness should be more positive. 

The above argument connects price convexity to skewness for the highly simplified case 

where the distribution of the signal is symmetric and there are no other factors affecting the 

skewness of market returns. Both assumptions could be violated. Fir the first assumption, 

Ekholm and Pasternack (2004) argue that the distribution of new information might be 

negatively skewed; while Chen, Hong and Stein (2001) suggests that signals could be positively 

skewed due to discretionary behavior of managers. For the second assumption, numerous 

hypotheses have been proposed to explain the observed negative skewness of market indices. 

The “leverage effect” (Black (1976), Christie (1982), Bekaert and Wu (2000)) and “volatility 

feedback” (Pindyck (1984), French et al. (1987), Campbell and Hentschell (1992)) explain 

negative skewness through asymmetric volatility; the “stochastic bubble” hypothesis (Blanchard 

and Watson (1989)) explains negative skewness though popping of bubbles; “short sale 

constraints” (Diamond and Verrecchia (1987), Hong and Stein (2003)) explains negative 

skewness through the revelation of bad news hidden by short sale constraints. 
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Despite the existence of all these skewness factors, the connection between price 

convexity and skewness is still valid. In particular, the property that a more convex price 

function leads to more positively skewed returns is still valid. This property does not depend on 

the symmetry of the signals, nor does it depend on the absence of other skewness factors. If the 

signal is asymmetric, or other skewness factors such as leverage effect exist, the overall 

skewness is affected, but the relative skewness due to the degree of price convexity is not. 

More importantly, this property leads to testable predictions for our model. In our model, 

price convexity is derived from disagreement over information quality and short sale constraints. 

The price function is more convex when disagreement is more intense, or when short sale 

constraints are more binding. Therefore, skewness should increases with intensity of 

disagreement and effectiveness of short sale constraints. Factors other than disagreement and 

short sale constraints, which nonetheless interact with the crowding out mechanism to make 

price convexity more observable, should also be positively correlated with skewness. 

Existing studies provide fruitful results on measures of disagreement. Volume is 

generally considered as a good proxy for disagreement. Varian (1989), Harris and Raviv (1993), 

Kandel and Pearson (1995), Odean (1998), and Hong and Stein (2003) all imply that trading 

volume is a measure of disagreement. However, the positive correlation between volume and 

disagreement may be blurred by other factors. For instance, Xu (2004a) find that volume is 

heavier after price decreases than after price increases and label this as “asymmetric volume”. 

Thus heavier volume can be due to negative previous price movements rather than more 

disagreement. To control for this possible “asymmetric volume” effect, lagged returns should be 

controlled for.  

Hypothesis 1: Skewness increases with trading volume. 

Volatility may also interact with skewness though multiple effects. First of all, it is well 

known that volatility and volume are positively correlated (Karpoff (1987)). Through this 
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positive correlation volatility is also positively correlated with disagreement. But this positive 

correlation also suffers from the “asymmetric volatility” effect, which is used to explain negative 

skewness in “leverage effect”. Inclusion of lagged returns should also be able to control for this 

effect. When a long time window, such as one year or a half year, is used to calculate skewness, 

contemporaneous returns should also be controlled. Second, in the volatility feedback model of 

Campbell and Hentschel (1992), higher volatility is associated with more negative skewness. 

Existence of such correlations suggests that we should include volatility in our empirical analysis. 

Existing studies also produced fruitful results on effectiveness of short sale constraints. 

D’Avolio (2002) finds that bigger stocks and stocks with higher institutional ownership are 

easier to short sell. According to our model, such stocks should have more negatively skewed 

returns. A third closely related factor, ownership breadth, should also be negatively correlated 

with short sale cost because a stock owned by more investors is easy to borrow due to the 

following considerations. First, the “searching” cost (Duffie, Garleanu, and Pedersen (2002)) 

when locating a lender is lower. Second, broader ownership potentially implies more competition 

on the lender side and this competition tends to squeeze the asking price of lenders. Furthermore, 

broader ownership also implies more diversified and continuously distributed opinions. The 

crowding out of some investors may leave investors of “adjacent” opinions in the market. Price 

is thus less significantly influenced than in the case where there are jumps in opinions because 

not many people are looking at the stock. Ceteris paribus, stocks of broader ownership should 

exhibit less convex price function and less positive skewness.  

Hypothesis 2: Skewness decreases with stock size, institutional ownership, and 

ownership breadth. 

The three factors, size, institutional ownership, and ownership breadth, are not 

independent. Bigger stocks are more likely to be owned by institutional investors; bigger stocks 

also tend to have more investors thus broader ownership; larger institutional ownership is at least 
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plausible to be associated with broader ownership 16 . The correlations among these three 

variables bring forward the possibility that institutional ownership and ownership breadth serve 

as the channel through which size is linked to skewness. That is, the effect of size on skewness 

may be indirectly obtained from its correlation with institutional ownership and ownership 

breadth, both of which are directly correlated with short sale cost and thus have direct effects on 

skewness. If this is true, inclusion of institutional ownership and ownership breadth should 

reduce the explanatory power of size on skewness. 

Hypothesis 3: Inclusion of institutional ownership and ownership breadth reduces the 

negative correlation between skewness and size. 

This hypothesis provides a possible explanation for the phenomenon identified by Harvey 

and Siddique (2000) and Chen, Hong and Stein (2001). Both papers find that bigger stocks tend 

to be more negatively skewed, but the reason is not clear yet. After finding this negative 

correlation, Chen, Hong and Stein (2001) propose a hypothesis of discretionary information 

disclosure by firm managers, i.e., good news is released right away but bad news dribbles out 

slowly, which causes positive skewness in firm level returns. If it is easier for managers of small 

firms to temporarily hide bad news, returns of small firms are more positively skewed. 

Effectively, this explanation assumes that information for small stocks is more positively skewed. 

Whether this is true is unclear yet, but opposite arguments exist. For example, Ekholm and 

Pasternack (2004), in their “negative threshold hypothesis”, argue that new information is 

negatively skewed. 

It is interesting to consider a stronger version of hypothesis 3. If size obtains all its 

correlation with skewness from institutional ownership and ownership breadth, inclusion of these 

two variables should reduce the correlation to zero. If this is true, it lends stronger support to our 

                                                 
16 Chen, Hong and Stein (2002) find that the correlation between stock size and ownership breadth is 0.691. The 
correlation between ownership breadth and institutional ownership is especially true if one uses institutional stock 
holding data to measure ownership breadth, which is the case in our empirical study that follows. 



 19

model, by showing that the size effect on skewness is obtained exclusively through the two 

proxies for short sale constraints. 

Hypothesis 3′: Skewness is not correlated with size after controlling for institutional 

ownership and ownership breadth. 

 

5. Empirical Evidence 

5.A Data 

We have two data sources: the Center for Research in Security Prices (CRSP) at the 

University of Chicago and the CDA/Spectrum Institutional 13(f) Common Stock Holdings 

database. CRSP contains daily stock returns, prices, trading volume and shares outstanding for 

individual stocks from 07/03/1962 to 12/31/2003. We include all NYSE stocks except 

observations with missing values or negative prices. We follow tradition by excluding ADRs, 

REITs, close-end funds and other exotica and focus on ordinary common shares, to which our 

model is more applicable. We exclude NASDAQ stocks because the dealership structure of 

NASDAQ makes its trading volume, one of our key analysis variables, incomparable to that of 

NYSE. We exclude AMEX stocks because AMEX includes mainly small stocks for which 

volume is a noisier measure of disagreement than that of big stocks17. 

From CRSP data, we calculate annual returns, volatility, skewness, volume, and size. 

First, we calculate daily log returns, from which we calculate annual volatility and skewness 

using one year’s daily data. One year is selected as a compromise between accuracy and degree 

of freedom. High order moments such as skewness need more observations to achieve accurate 

estimations. For stocks with less than 40 valid observations in a year, we exclude that year from 

the calculation. This exclusion guarantees all skewness coefficients are calculated at least from 

                                                 
17 We redo our analysis using both NYSE and AMEX stocks. The result is qualitatively the same. All explanatory 
variables still have the same predicted signs. The single most noticeable difference is that the parameter estimates of 
volume is positive but insignificant, confirming our choice of NYSE stocks only.  
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40 observations. It also helps reduce IPO anomalies. Log returns are used instead of simple 

returns because simple returns are obviously more positively skewed. Second, we calculate daily 

turnover (TO) as the ratio of daily volume to shares outstanding and detrend the turnover series 

using a moving average of 20 trading days 18 . Annual turnover is calculated as the mean 

detrended daily turnover times 250, which is approximately the number of trading days in one 

year. We also use 250 to annualize return and volatility. Third, we calculate annual average 

market capitalization, the product of daily price and shares outstanding, as a measure of stock 

size. We use annual average instead of market capitalization on a selected day because skewness 

is measured over the same period. Average capitalization smoothes out random errors due to date 

selection and allows us to achieve more accuracy. 

Our second data source, the Spectrum 13(f) database, contains quarterly institutional 

stock holdings of 13(f) institutions 1980-2003. We use the institutional 13(f) database because of 

its broader coverage than the CDA/spectrum S12 database19. For each stock in the 13(f) database, 

we calculate two variables: institutional ownership (IO) and ownership breadth (OB). 

Institutional ownership is the percentage of total shares outstanding owned by 13(f) institutions. 

Ownership breadth is the percentage of total institutions holding a positive20 position of the stock. 

Total institutions are all institutions that report any positions in that quarter. Ownership breadth 

thus defined is actually “institutional ownership breadth”, and is a little mislabeled. Without 

ownership data on all investors, this is the best measure of ownership breadth we can have. 

Table 1 presents some summary statistics of the variables we use in the analysis. Because 

volatilities, capitalization, and institutional ownership are nonnegative, we take natural 
                                                 
18 Sometimes logarithm volume is used because volume cannot be negative and tends to be positively skewed. In our 
case, annual average of daily volume is used; thus this transformation is not necessary. A visual check finds no 
obvious skewness in turnover. 
19 The 13(f) database covers entire investment companies, including banks, insurance companies, parents of mutual 
funds, pension funds, university endowments, and numerous other types of professional investment advisors, while 
the S12 database covers only individual mutual funds. 
20 One exception is that positions with less than 10,000 shares or $200,000 value are not required to report. 



 21

logarithms for these variables. A visual check confirms that the logarithm transformation makes 

their distributions more symmetric. We present both original variables and the transformed 

variables to facilitate comparison. Because we use lagged returns of up to 3 periods as control 

variables, our sample starts from 1965. The availability of 13(f) data naturally defines two sub 

samples, 1965-1979 and 1980-2003. We present descriptive statistics for the whole sample and 

the two sub samples. For the 13(f) data, we have fewer observations because not all stocks in the 

CRSP database have institutional holding records in the 13(f) database. 

Among the most noticeable in table 1 is the positive average skewness of individual stock 

returns. This is consistent with the previous finding that individual stock returns are often 

positively skewed. The high standard deviation of skewness indicates that this positiveness is not 

robust, though. Volatility is slightly higher in the second sub sample (1980-2203) than in the first 

sub sample (1965-1979). This is consistent with the finding of Campbell, Lettau, Malkiel and Xu 

(2001) that firm level variance displays a significantly positive trend between 1962 and 1997. 

Turnover is also higher in the second sub period, which could possibly be attributed to factors 

such as innovations in trading technology and wider participation of equity markets. The average 

institutional ownership is 1.8%. The average ownership breadth is 11.5%. 

Motivated by existing evidence on the correlation between size, institutional ownership 

and ownership breadth, we cross tabulate (table 2) skewness, institutional ownership and 

ownership breadth with market capitalization. Consistent with earlier findings of Harvey and 

Siddique (2000), Chen, Hong and Stein (2001, 2002), and D’Avolio (2002), table 2 shows that 

skewness decreases with stock and that institutional ownership and ownership breadth increase 

with stock size. 

The correlations among these variables reported in table 3 cast light on the quality of our 

proxies. All correlations are significant at the 5% or higher levels, except between skewness and 

turnover, and between turnover and lagged returns beyond 1 period. Consistent with table 2, size 
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is highly positively correlated with institutional ownership and ownership breadth. The 

correlations are 0.893 and 0.533, respectively. 

Table 3 also brings forward intriguing results. First, although skewness is positively 

correlated with volume and volume is positively correlated with volatility, as expected, the 

correlation between skewness and volatility is negative. Second, the correlation between 

skewness and volume is very small and statistically insignificant. The correlation coefficient is 

only 0.006 with a p value of 0.19. We have expected turnover to be a good proxy for 

disagreement and it should exhibit a significantly positive correlation with skewness. These 

intriguing correlations suggest the existence of potential counteracting factors that cannot be 

identified by simple correlations. Several possibilities exist. First of all, the asymmetric volatility 

effect may counteract the possible positive co-movements of volatility and skewness. Higher 

volatility resulting from bad lagged returns leads to negative skewness, resulting in negative 

correlation between skewness and volatility. This is confirmed by the significantly negative 

correlation of volatility with current and lagged returns. The correlation coefficients up to lagged 

3 years are -0.274, -0.321, -0.217 and -0.143, respectively. The negative correlation between 

volatility and return is due to the long time window selected (one year); thus the asymmetric 

volatility effect creeps into contemporaneous returns21. These highly negative and significant 

correlations suggest a strong asymmetric volatility effect. Second, an “asymmetric volume” 

effect may be at work, reducing the correlation between skewness and volume. This is confirmed 

by the negative correlation between turnover and return. The correlation coefficient is -0.029. 

This correlation is highly significant. Finally, the “bull market effect” on trading volume may 

also in play. This effect states that volume is heavier in a bull market than in a bear market 

(Karpoff (1987)). This effect suggests a positive correlation between volume and 

contemporaneous returns. All these effects suggest that in our empirical analysis, returns and 
                                                 
21 Black (1976) reports asymmetric volatility in weekly data. 
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lagged returns should be controlled for. 

The asymmetric volatility and volume effects are confirmed by the partial correlations in 

table 4. To facilitate comparison, the raw correlations are also reported. After controlling for 

returns and lagged returns, volatility and volume become significantly positively correlated with 

skewness. Before the control, they are negatively correlated or uncorrelated with skewness, 

respectively. 

Skewness is negatively correlated with size, institutional ownership and ownership 

breadth, as expected. Also noticeable is the positive correlations between size and institutional 

ownership and ownership breadth. These are the largest correlations in table 3 and remind us that 

institutional ownership and ownership breadth could be responsible for the correlation between 

skewness and size. Partial correlation analysis in table 4 lends support to this conjecture. After 

controlling for institutional ownership and ownership breadth, the correlation between size and 

skewness become insignificantly positive, keeping in mind that before the controlling it is 

significantly negative. 

Finally, the correlation between skewness and contemporaneous returns is significantly 

positive, while those between skewness and lagged returns are significantly negative. While the 

negative correlations can potentially be attributed to asymmetrically volatility, the positive 

correlation is intriguing. One possible origin is the limited number of observations used to 

calculate the means and skewness, which can numerically lead to a positive correlation between 

the first and the third order moments. Intuitively, if in a particular year a stock has several big 

daily returns, these big returns raise both the mean return and skewness of that year. If a big 

enough sample is used so the estimation of the mean and skewness are both very accurate, this 

possibility does not exist. Unfortunately, this is not our case. In our sample, at most 260 

observations are used. The standard error of the skewness coefficients calculated by this number 

of observations is at least 0.15, theoretically. From table 1 the standard deviation is much bigger. 
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This correlation between return and skewness provides another justification for the average 

return to be included to avoid the possible “omitted variable bias”. If not included, higher 

skewness due to higher return may be incorrectly attributed to other variables correlated with 

return, such as size, institutional ownership and ownership breadth (see table 3). 

 

5.B Disagreement Effect: Trading Volume 

Table 5 reports some of the regression results. We add regressors step by step to separate 

out the interactions. Columns 1-3 regress skewness on size, turnover and volatility, without 

controlling for current and lagged returns. Size has the expected negative sign, and it is highly 

significant. Turnover has the expected positive sign, but only becomes significant after we add 

volatility into the regression. Volatility has negative coefficient estimations in all 3 regressions, 

which are all highly significant. 

Motivated by the partial correlation results in table 4, in regression 4 current and lagged 

returns are included to control for the asymmetric volatility and volume effects. The difference is 

strikingly clear. Both turnover and volatility now have significantly positive coefficients. The 

estimated turnover and volatility coefficients are 0.0057 and 0.054, respectively. The t values are 

5.1 and 3.9, respectively. These are significant at any usually used significance levels. The 

change in the size coefficient is barely noticeable, indicating that the size effect on skewness is 

not due to difference in returns. Lagged returns have the expected negative signs that are highly 

significant. Current return is also significant, but has a positive sign. From our earlier discussion, 

this is not surprising. To confirm the necessity of including the contemporaneous return, 

regression 5 omits contemporaneous return. As a result, the coefficients on volatility, volume and 

lagged returns all significantly decrease, although the volume coefficient is still positive and 

significant. This comparison indicates that lagged returns are not sufficient to catch the 
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asymmetric volatility and volume effects22. 

The result in regression (4) is robust across sub samples (regressions 6-7). All the 

estimations still have the predicted sign. The only difference is that for the 80-03 sub period, the 

coefficient of volatility is not significant, while that of the 65-79 period is highly significant. 

This can possibly be explained by the higher volatility in the later period, which can lead to 

stronger asymmetric volatility effect. Modifying regression (7) by increasing lagged returns to 5 

periods (unreported) raises the coefficient of volatility to 0.059 (t=3.07), without noticeably 

changing other estimates. 

The above regressions strongly support our model’s prediction that skewness increases 

with disagreement. The weaker correlation between skewness and volatility, compared with that 

between skewness and volume, lends further support to the model by showing that proxies 

strongly correlated with disagreement have a stronger effect on skewness. The above evidence 

also supports the short sale constraints effect. Consistent with part of hypothesis (3), we find that 

size is strongly and negatively correlated with skewness. We turn to ownership data to further 

investigate the origin of the size effect. 

  

5.C Short Sale Constraints Effect: Size or Ownership 

Regressions (8)-(10) add institutional ownership and ownership breadth into the 

regression. In all 3 regressions, institutional ownership and ownership breadth have the predicted 

negative coefficients that are highly significant. In regressions (8) and (10), where institutional 

ownership is included, the intercept changes from significantly positive to negative. Noticeably, 

                                                 
22 We also tried running the regression without volatility. All coefficients remain approximately the same. The 
coefficient of volume is slightly bigger while those of size, current and lagged returns are slightly smaller. These 
changes are consistent with the correlations of volatility with these variables. The big t values for contemporaneous 
returns may seem troublesome. It is because the sample size is big thus the standard error is small. We carried out a 
Belsley, Kuh, and Welsch (1980) test for multicollinearity. All condition numbers are smaller than 2, indicating the 
absence of multicollinearity. 
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the turnover coefficient increases from 0.0062 to 0.0081-0.0084, a 33% increase. This is due to 

the positive correlation of turnover with IO and OB, so when the ownership variables are absent, 

turnover catches part of their negative effects on skewness. 

The most striking change is found in the coefficient of size. Adding ownership breadth 

alone increases the size coefficient significantly, but it is still negative. Adding institutional 

ownership alone makes it significantly positive. When both are added, the size coefficient 

becomes insignificant! The disappearing of the size effect on skewness is consistent with the 

insignificant partial correlation between skewness and size after controlling for institutional 

ownership and ownership breadth. Put together, these several pieces of evidence suggest that the 

effect of size on skewness originates from the correlation of size with institutional ownership and 

ownership breadth. Because institutional ownership and ownership breadth proxy for 

effectiveness of short sale constraints and depth of the investor pool, size effect on skewness 

actually represents the effect of short sale constraints and investor pool depth on price convexity. 

To check for robustness, we further split the 1980-2003 sub sample into two sub-sub 

samples of equal length, 1980-1991 and 1992-2003, each with 12 years of coverage (regressions 

11 and 12). The pattern remains unchanged in both sub-sub samples. The size coefficient is 

positive in both sub samples. And it is even significant for the 1980-1991 sub period. 

Why size should have a positive coefficient is not clear to us; but since it is only 

significant for one sub sample, it could be due to reasons idiosyncratic to that time period. One 

possible origin is an “errors-in-variables” problem. Precisely, it arises from an “overestimation” 

bias. Ownership breadth as defined is actually “institutional ownership breadth” that does not 

include investors that do not meet the 13(f) criterion, including individual investors and small 

institutional investors with less than $100 million under control. This is not a big problem if 

institutional ownership breadth is approximately proportional to the true ownership breadth, 

defined as the percentage of investors holding a positive position of a stock as a percentage of all 
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potential investors, in which case institutional ownership breadth is approximately a linear 

transformation of the true ownership breadth. Unfortunately, this is unlikely to be true. If 

individual investors tend to own more small stocks than big stocks, ownership breadth of big 

stocks is relatively overestimated. Because ownership breadth has a negative effect on skewness, 

the overestimation exaggerates its negative effect on skewness, and the exaggeration increases 

with stock size. The size coefficient increases to compensate for this exaggeration. The larger 

size coefficient in the 1980s suggests that during that time period the overestimation is bigger. In 

the 1990s, there are more institutional investors, and they extend their coverage to smaller stocks 

that they previously do not invest in. Consequently, the overestimation problem becomes less 

severe and the size coefficient becomes smaller. 

Table 6 supports this conjecture by comparing the two sub samples over which we have 

ownership data: 1980-1991 and 1991-2003. During the first period there are on average 735 

institutions reported in our database each year. In the second period, the number more than 

doubled to 1519.8. The table has 3 panels that compare number of institutions, institutional 

ownership and ownership breadth for stocks divided into 10 deciles based on market 

capitalization. First, columns 1-3 compare the average number of institutions owning a stock. 

Although the number of owners increases for all stocks, that of smaller stocks increases faster. 

Deciles 2 and 3 stocks get the largest increases, 150% and 159%, while deciles 8 and 9 stocks get 

the smallest increases, 63% and 54%. The average increase is 84%. Second, columns 4-6 present 

enlightening evidence about institutional ownership. Although we have more institutions in the 

second period, the average institutional ownership decreases from 11.4% to 10.3%, which 

suggests that institutions diversify their holdings to smaller stocks that they previously do not 

hold. Consistent with the overall image, the smaller 5 deciles’ institutional ownership increases 

by 12%, 26%, 28%, 16% and 4%, respectively, while that of the larger 5 deciles decreases by 5%, 

13%, 19%, 24%, and 18%. Finally, columns 7-9 show relatively more direct evidence. The 
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average breadth of ownership increases by 49%. Interestingly, the increases in ownership breadth 

monotonically decrease from 94% of decile 1 to 22% of decile 10. All 3 comparisons 

consistently suggest that smaller stocks receive more attention from institutional investors in the 

second period. As a result, the overestimation problem becomes less severe and the size 

coefficient becomes smaller. 

The estimated volatility coefficient is also noticeably different between the 80s and 90s. 

It is significantly positive in the 1980s and significantly negative in the 1990s. This can be 

explained by higher volatility in the second period. The average volatilities for the two periods 

are 0.378 and 0.413, respectively. Therefore, the asymmetric volatility effect is likely to be 

stronger in the second period. If we compare the two periods 65-79 and 80-03 in regressions (6) 

and (7), volatility is also more significant in the lower volatility 65-79 period. 

 

6. Summary 

This paper develops a model in which investors initially agree on asset payoff but agree 

to disagree about the precision of a publicly observed signal. Investors are prohibited from short 

selling. In equilibrium, a very positive signal crowds out low precision investors and a very 

negative signal crowds out high precision investors. The equilibrium asset price is a convex 

function of the signal, due to the heterogeneous sensitivity of high and low precision investors to 

the signal. The model implies that market confidence increases with asset price. It also implies 

that the average market confidence tends to be higher than the average confidence of the investor 

pool, because more confident investors are more likely to participate in the market than less 

confident investors. This is because they demand less risk premium thus value the asset higher. 

The testable prediction is that skewness increases with intensity of disagreement and cost of 

short selling. Empirical tests find confirmative evidence. Specifically, individual stock returns 

are more positively skewed for stocks of smaller capitalization, heavier trading volume, lower 
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institutional ownership and narrower ownership breadth. After controlling for institutional 

ownership and ownership breadth, the effect of size on skewness disappears, suggesting that 

stock size works on skewness through the channel of the ownership variables, which proxies for 

short selling costs. 

The paper has three major contributions. First, it identifies that heterogeneous investor 

confidence and short sale constraints imply convexity of asset prices in information, giving rise 

to asymmetric price changes on the up and down sides. Second, it predicts how skewness of 

individual stock returns should correlate with trading volume, stock size, institutional ownership 

and ownership breadth. Confirmative evidence is found. Finally, it proposes a possible 

reconciliation for the conflict between overconfidence and rationality. 

These findings are robust to maintained assumptions. We have assumed that initially 

investors are equally confident in their priors but have different confidence in the new 

information. Investors may differ in their prior confidence as well. But as long as the confidence 

in the prior and the confidence in the new signal are sufficiently independent, all our results are 

still qualitatively valid. Specifically, asset prices are still convex in the signal due to the different 

sensitivity and short sale constraints and more confident investors are still more likely to 

participate. What happens in reality is that those who think they know more about the market are 

more likely to participate in the market, no matter whether this belief comes from more confident 

prior or higher precision attached to new information. We have also assumed that investors share 

a common prior on the expectation of asset payoff. Investors could also disagree over the 

expectation of asset payoff23. Relaxing this assumption does not change the result of our model, 

as long as the beliefs over the expectation and the confidence in new information are sufficiently 

independent. 

In addition to the findings, the paper also brings forward many unanswered questions. 
                                                 
23 Varian (1989) models disagreement on the mean of asset returns. 
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We leave them for future research. First of all, this paper cannot answer why market indices are 

generally negatively skewed. This is particularly intriguing when taking into consideration that 

individual stocks are often positively skewed. To fully answer this question, a multiple asset 

framework is called for. Second, the determination of investor and market confidence is only 

partially answered in this paper. In the simple model presented, investor confidence in their prior 

beliefs and in the new signal is exogenously given. The distribution of beliefs is also 

exogenously given. Market confidence is then determined by who stay in the market. But what if 

the quality of the signals is determined endogenously? What other factors may influence the over 

all quality of the signals? What factors may influence the distribution of beliefs? What welfare 

effect dos it imply? For example, if the overall quality of information is higher, investor and 

market confidence also tend to be higher. This simple observation can potentially explain the 

higher risk of emerging financial markets. Third, the implications of investor and market 

confidence reach more than discussed in this paper. Confidence can be immediately linked to the 

sensitivity to new information. Straightforward implications of this property include that market 

confidence can influence volatility and volume and that heterogeneous investor confidence can 

influence investment decisions24. Finally, and on more general level, this paper calls for more 

attention to beliefs on higher order moments. The existing literature examining the beliefs of 

economic agents has largely focused on the first order moment. Higher order moments have 

largely been overlooked. This paper demonstrates that heterogeneous beliefs about the second 

order moments, when joint with market frictions such as short sale constraint, lead to interesting 

implications. 

                                                 
24 Xu (2004a, b) is pursuing research in these directions and finds some confirmative results. 
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Appendix: Proof of propositions. 

 

A. Proof of Proposition 1. 

Because x is normally distributed, 
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Substituting this price into the demand functions gives the equilibrium demands. 

 

B. Proof of Proposition 2. 

Condition (a) follows from 1,Ly <0. In this case Lτ  traders wish to hold a short position on 

the risky asset but the best thing they can do is to sell out. Condition (b) follows from 1,Hy <0. In 

this case Hτ  traders wish to hold a short position but the best thing they can do is to sell out. If 

none of these two conditions hold, the short sale constraint does not bind and the equilibrium in 

proposition 1 is still valid. 

 

C. Proof of Proposition 3. 

Claim 1) follows from the fact that less confident traders are crowded out when the signal 

is positive enough and more confident traders are crowded out when the signal is negative 
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Table 1: Summary Statistics 
 
Period 1965-2003 1965-1979 1980-2003 
No. of Obs. 48701 17867 30834 (24904) 
  Mean Std. Mean Std. Mean Std. 
Skewness 0.253 1.156 0.318 0.821 0.216 1.310
Capitalization (Billions) 2.261 10.259 0.516 1.848 3.273 12.707
Log Capitalization 12.805 1.824 11.912 1.466 13.322 1.812
Turnover (Raw) (%) 64.057 66.996 33.283 34.289 81.889 74.441
Turnover (Detrended) (%) 0.226 4.445 0.099 2.482 0.299 5.256
Return (%) 0.070 0.522 0.073 0.414 0.069 0.575
Volatility (Std.) (%) 0.376 0.237 0.345 0.158 0.394 0.271
Volatility (Log Std.) -1.099 0.462 -1.151 0.408 -1.069 0.488
Institutional Ownership     0.108 0.451
Institutional Ownership (Log)     -2.764 1.117
Ownership Breadth         0.115 0.224

 
Skewness is calculated using one year’s daily returns for each stock. If a stock has less than 40 valid 
observations in a given year, skewness is not calculated. Capitalization is the mean of share price multiplied by 
shares outstanding in a given year. Returns, turnover, and volatility are annualized. Institutional Ownership (IO) 
is the percentage of shares owned by institutional investors. Ownership Breadth (OB) is the percentage of 
institutions owning the stock in the 13(f) data base. Natural logs are taken on capitalization, volatility and IO. 
For the sub period 1980~2003, Skewness, (Log) Capitalization, Return, Turnover, and (Log) volatility have 
32961 observations. (Log) IO and ownership breadth have 26714 observations. 
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Table 2: Skewness, Institutional Ownership, and Ownership Breadth with Market 
Capitalization 
 

Period 1965-2003 1965-1979 1980-2003 1980-2003 1980-2003 
 Skewness Skewness Skewness IO OB 

No. of Obs. 48701 17867 30834 24904 24904 
           
 Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

Smallest 0.353 1.243 0.462 0.919 0.285 1.402 0.011 0.221 0.006 0.170
2 0.427 1.230 0.475 0.828 0.397 1.422 0.022 0.331 0.010 0.203
3 0.376 1.266 0.477 0.914 0.313 1.441 0.033 0.390 0.013 0.222
4 0.308 1.255 0.421 0.923 0.237 1.420 0.043 0.432 0.015 0.222
5 0.264 1.246 0.351 0.868 0.210 1.432 0.057 0.453 0.019 0.219
6 0.235 1.185 0.314 0.857 0.186 1.346 0.075 0.480 0.024 0.215
7 0.207 1.184 0.249 0.824 0.181 1.361 0.098 0.509 0.030 0.202
8 0.166 1.075 0.211 0.711 0.138 1.244 0.132 0.547 0.038 0.198
9 0.126 0.950 0.171 0.557 0.099 1.124 0.189 0.558 0.056 0.178

Largest 0.086 0.851 0.137 0.488 0.055 1.009 0.351 0.547 0.131 0.153
 
IO is institutional ownership, percentage of shares owned by institutional investor. OB is ownership breadth, 
percentage of institutions owning the stock in the 13(f) data base. Each year, stocks are grouped into 10 deciles 
according to annual average market capitalization. Mean and standard deviations for skewness, IO, and OB are 
calculated for each of the sub samples for the time periods indicated. 
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Table 3: Pearson Correlation 
 
 Cap TO Std. Ret Ret(-1) Ret(-2) Ret(-3) Log IO OB 
Skew -0.113 0.006 -0.011 0.316 -0.018 -0.033 -0.011 -0.101 -0.124
Cap  0.019 -0.366 0.123 0.204 0.196 0.182 0.893 0.533
TO   0.070 -0.028 0.015 0.002 0.003 0.021 0.056
Std.    -0.274 -0.321 -0.217 -0.143 -0.366 -0.124
Ret     0.126 -0.014 0.043 0.142 0.078
Ret(-1)      0.095 -0.071 0.196 0.085
Ret(-2)       0.070 0.200 0.093
Ret(-3)        0.188 0.075
Log IO         0.556

 
See note under table 1 for descriptions of variables. Correlations between skewness, Log Cap, return, lagged 
returns (Ret(-1), Ret(-2), Ret(-3)), Log Std., Turnover are calculated using data from 1965, totally 48701 
observations. Correlations with IO (Institutional Ownership) and OB (Ownership Breadth) are calculated using 
data from 1980, totally 24904 observations. All correlations are significant at 5% or higher level except 
between skewness and turnover, between turnover and lagged returns beyond 1 period. 
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Table 4: Pearson Partial Correlation with Skewness 
 
Correlation Variable  Partial Variables Partial Correlation Correlation 
Log  Std. Ret, Ret(-1), Ret (-2), Ret (-3) 0.060 (<0.0001) -0.011 (0.012) 
Turnover Same as above 0.017 (0.0002) 0.006 (0.19) 
Log Cap Log IO, Breadth 0.001 (0.86) -0.101 (<0.0001) 

 
Partial correlations are calculated using the same samples to calculate correlations. See note under table 3 for 
detailed information. In parentheses are p values testing the null hypothesis of zero correlation. 
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Table 5: Determination of Skewness 
Reg. ID 1 2 3 4 5 6 7 8 9 10 11 12 
Period 65-03 65-03 65-03 65-03 65-03 65-79 80-03 80-03 80-03 80-03 80-91 92-03 
Intercept 1.196 1.186 1.194 1.341 1.116 1.239 1.373 -1.072 1.157 -0.334 -0.904 -0.746
 (23.55) (23.36) (23.53) (27.28) (21.41) (23.74) (21.73) (-4.91) (15.40) (-1.37) (-2.63) (-1.86)

Log Cap. -0.078 -0.063 -0.079 -0.084 -0.0723 -0.060 -0.091 0.051 -0.063 0.019 0.072 0.027
 (-21.63) (-20.09) (-21.69) (-23.77) (-19.34) (-12.56) (-19.28) (3.86) (-10.72) (1.34) (3.45) (1.27)

Turnover  0.0016 0.0024 0.0057 0.003 0.0059 0.0062 0.0081 0.0081 0.0084 0.0095 0.0081
  (1.4) (2.07) (5.20) (2.31) (2.52) (4.66) (4.80) (4.80) (4.97) (3.27) (3.84)

Log Std. -0.115  -0.117 0.054 -0.140 0.173 0.014 0.023 0.019 0.024 0.258 -0.110
 (-8.37)  (-8.51) (3.93) (-9.83) (9.41) (0.75) (1.05) (0.88) (1.11) (7.81) (-3.71)

Ret    0.82 0.74 0.84 0.88 0.90 0.89 0.90 0.87
    (78.73) (42.15) (62.99) (55.45) (56.98) (55.91) (37.49) (40.71)

Ret(-1)    -0.14 -0.052 -0.11 -0.15 -0.19 -0.15 -0.18 -0.15 -0.20
    (-9.88) (-3.55) (-6.01) (-8.04) (-9.36) (-7.45) (-8.40) (-4.45) (-7.22)

Ret(-2)    -0.044 -0.066 -0.028 -0.053 -0.060 -0.035 -0.047 -0.017 -0.067
    (-3.11) (-4.36) (-1.46) (-2.80) (-2.81) (-1.64) (-2.21) (-0.48) (-2.43)

Ret(-3)    -0.044 -0.057 -0.010 -0.060 -0.079 -0.063 -0.071 -0.032 -0.089
    (-3.18) (-3.90) (-0.56) (-3.22) (-3.74) (-2.96) (-3.34) (-0.96) (-3.25)

Log IO        -0.2289  -0.15 -0.18 -0.20
        (-11.83)  (-6.44) (-6.05) (-5.05)

OB         -0.55 -0.37 -0.22 -0.36
         (-12.07) (-6.87) (-2.49) (-5.06)

No. of Obs. 48701 48701 48701 48071 48701 17867 30834 24904 24904 24904 10906 13998
Adj. R2 0.029 0.0276 0.029 0.1395 0.030 0.1357 0.1394 0.1471 0.1473 0.1487 0.1375 0.1483

 
The dependent variable is skewness calculated using one year’s daily observations. Log Cap is logarithm market capitalization. Turnover is average daily 
turnover in a given year detrended using 20 days MA. Log Std. is logarithm standard deviation of returns. Ret, Ret(-1), Ret(-2), Ret(-3) are returns of the 
current year the 3 previous years. Log IO is logarithm institutional ownership (percentage of shares held by 13(f) institutional investors. OB is ownership 
breadth, defined as the number of institutions holding the stock as a percentage of all 13(f) institutions filing with SEC that quarter. Annual log IO and 
OB are the mean of the four quarters. All regressions include time dummies (unreported) for each year. In parentheses are t values. 
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Table 6: Institutional Ownership: 80-91 and 92-03 
 
  No. of Institutions Institutional Ownership Ownership Breadth 
  80-91 92-03 ratio 80-91 92-03 ratio 80-91 92-03 ratio

All 84.5 155.3 1.84 0.114 0.103 0.91 0.353 0.527 1.49
Smallest 8.3 17.7 2.14 0.010 0.012 1.12 0.143 0.277 1.94

2 15.1 37.6 2.50 0.019 0.024 1.26 0.221 0.418 1.89
3 21.4 55.5 2.59 0.028 0.036 1.28 0.267 0.495 1.85
4 30.0 70.7 2.36 0.040 0.046 1.16 0.319 0.531 1.66
5 41.9 89.2 2.13 0.056 0.058 1.04 0.347 0.543 1.56
6 57.4 112.0 1.95 0.077 0.074 0.95 0.382 0.561 1.47
7 78.8 138.1 1.75 0.105 0.092 0.87 0.417 0.584 1.40
8 110.3 179.7 1.63 0.148 0.120 0.81 0.445 0.621 1.40
9 162.2 249.3 1.54 0.220 0.167 0.76 0.473 0.618 1.31

Largest 290.5 482.7 1.66 0.392 0.323 0.82 0.485 0.590 1.22
          
Average No. of institutions each year: 735 (80-91) 1519.8 (92-03) 

 
This table compares the two sub samples: 1980-1991 and 1992-2003. Columns 1-3 show that the second 
period has larger number of institutional investors, spreading over all stock size deciles. Columns 4-6 show 
that institutional ownership of smaller stocks increases while that of bigger stocks decreases. Columns 7-9 
show that ownership breadth of smaller increases faster than that of bigger stocks. 
 


