Nonlinear Ergodic Retraction Theorem for Lipschitzian Semigroups in Uniformly Convex Spaces

Yang Yali Zeng Luchuan

Abstract Let C be a bounded closed convex subset of a p- uniformly convex Banach space E. We prove an existence theorem of nonlinear ergodic retractions for Lipschitzian semigroups of self-mappings on C. Further, we give an application of such a theorem in $L^p(1 spaces.$

Key words Ergodic retraction; Lipschitzian semigroup; fixed point; invariant submean; p-uniformly convex Banach space

1 Introduction

In 1975, Baillon^[2] first established a nonlinear ergodic theorem for nonexpansive mappings: Let C be a bounded closed convex subset of a Hilbert space H and T a nonexpansive mapping of C into itself. Then, for each x in C, the Cesàro means $S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$ converge weakly to some $y \in F(T)$. In this case, setting y = Px for each x in C, we define a nonexpansive retraction P from C onto F(T) such that PT = TP = P and $Px \in \overline{\operatorname{co}}\{T^n x : n \geqslant 0\}$ for each x in C, where $\overline{\operatorname{co}}(A)$ is the closure of the convex hull of A. The analogous results were obtained for nonexpansive semigroups on C by [1, 3, 4, 5, 9]. Recently, Mizoguchi and Takahashi [6] proved an existence theorem of nonlinear ergodic retractions for Lipschitzian semigroups in Hilbert spaces by introducing submeans.

In this paper, let C be a nonempty bounded closed convex subset of a p- uniformly convex Banach space E. Using the method of [6], we show an existence theorem of nonlinear ergodic retractions for Lipschitzian semigroups, which partially extends the corresponding result in [6]

Received: 1997-03-18

First author Yang Yali, male, Professor, Department of Mathematics, Shanghai Teacher's University, Shanghai, 200234

to the p- uniformly convex Banach space setting. Further we give an application of such a theorem in $L^p(1 spaces.$

2 Preliminaries and Lemmas

It is known that the modulus of convexity of a Banach space E is defined as

$$\delta_{\mathcal{B}}(\varepsilon) = \inf\{1 - \|(x+y)/2\| : x, y \in B_{\mathcal{B}} \text{ and } \|x-y\| \geqslant \varepsilon\},$$

where $B_E = \{x \in E: \|x\| \leqslant 1\}$ is the closed unit ball of E. Recall that E is said to have the modulus of convexity of power type $p \geqslant 2$ (and E is said to be p- uniformly convex) if there is a constant d > 0 such that $\delta_E(\varepsilon) \geqslant d \, \varepsilon^p$ for $0 < \varepsilon \leqslant 2$. Note that a Hlibert space H is 2-uniformly convex (indeed $\delta_H(\varepsilon) = 1 - (1 - (\frac{1}{2}\varepsilon)^2)^{\frac{1}{2}} \geqslant \frac{1}{8}\varepsilon^2$) and an L^r space (1 is max <math>(2,p)-uniformly convex.

Lemma 2. $1^{[7]}$ If E is a p-uniformly convex Banach space, then there exists a constant $d_n > 0$ such that

$$\| tx + (1-t)y \|^p \le t \|x\|^p + (1-t) \|y\|^p - d_p W_p(t) \|x-y\|^p$$
 (2.1) for all $x, y \in E$ and $0 \le t \le 1$, where $W_p(t) = t(1-t)^p + t^p(1-t)$.

Lemma 2. $2^{\lceil 7 \rceil}$ If E is an L^p space with 1 , then

$$||tx + (1-t)y||^q \leqslant t ||x||^q + (1-t) ||y||^q - d_p W_q(t) ||x-y||^q$$

for all x,y \in E and 0 \leqslant $t \leqslant$ 1 , where $q = \max(2,p)$, $W_q(t) = t^q(1-t) + t(1-t)^q$ and

$$d_{p} = \begin{cases} (1 + t_{p})^{p-1} & \text{if } 2 (2.2)$$

with t_n being the unique solution of the equation

$$(p-2)t^{p-1}+(p-1)t^{p-2}-1=0, t\in (0,1).$$

Throughout this paper, we assume that S is a semitopological semigroup, i.e., a semigroup with a Hausdorff topology such that for every $s \in S$ the mappings $t \to s \cdot t$ and $t \to t \cdot s$ of S into itself are continuous. Let B(S) denote the Banach space of all bounded real valued functions on S with supremum norm. Let X be a subspace of B(S) containing constants. A real valued function μ on X is called a submean on X if the following conditions are satisfied:

- (1) $\mu(f+g) \leq \mu(f) + \mu(g)$ for every $f,g \in X$;
- (2) $\mu(\alpha f) = \alpha \mu(f)$ for every $f \in X$ and $\alpha \geqslant 0$;
- (3) for $f,g \in X$, $f \leqslant g$ implies $\mu(f) \leqslant \mu(g)$;
- (4) $\mu(c) = c$ for every constant c.

Let μ be a submean on X and $f \in X$. Then according to time and circumstances, we use $\mu_t(f(t))$ instead of $\mu(f)$.

Lemma 2. $3^{[7]}$ Suppose that E is a p-uniformly convex Banach space, C is a bounded closed convex subset of E, and $\{x_t \colon t \in S\}$ is a bounded family of elements of E. Suppose also that for each $x \in C$, the function f on S defined by $f(t) = \|x_t - x\|^p$, $t \in S$, belongs to X. Set $r(x) = \mu_t \|x_t - x\|^p$, $x \in C$ and $r = \inf\{r(x) \colon x \in C\}$. Then there exists a unique point z in C such

that r(z) = r.

For $s \in S$ and $f \in B(S)$, we define $r_s f(t) = f(ts)$ for all $t \in S$. Let X be a subspace of B(S) containing constants which is r_s -invariant, i. e., $r_s(X) \subset X$ for each $s \in S$. Then a submean μ on X is right invariant if $\mu(f) = \mu(r_s f)$ for all $s \in S$, $f \in X$.

Let C be a nonempty closed convex subset of the Banach space E. Then a family $\mathscr{P}=\{T_s\colon s\in S\}$ of mappings of C into itself is said to be a Lipschitzian semigroup on C if it satisfies the following:

- (1) $T_{st}x = T_sT_tx$, for all $s,t \in S$ and $x \in C$;
- (2) for each $x \in C$, the mapping $s \to T_s x$ is continuous on S;
- (3) for each $t \in S$, T_t is a Lipschitzian mapping of C into itself, i. e., there is $k_t \ge 0$ such that $||T_t x T_t y|| \le k_t ||x y||$ for all $x, y \in C$. Let $F(\mathscr{P})$ denote the set of common fixed points of T_s , $s \in S$, i. e.,

$$F(\mathscr{P}) = \{x \in C: T_s x = x \text{ for all } s \in S\}.$$

Lemma 2. 4^[8] Let C be a nonempty closed convex subset of a p- uniformly convex Banach space E and let $\mathscr{P} = \{T_s : s \in S\}$ be a Lipschitzian semigroup on C with $\inf_s \sup_t k_{ts}^p \leqslant d_p$. Then $F(\mathscr{P})$ is closed and convex.

3 The main result

Theorem 3.1 Let C be a nonempty bounded closed convex subset of a p-uniformly convex Banach space E with $0 < d_p < (1+2^{p-1})^{-\frac{1}{2}}$ and let X be a r_s -invariant subspace of B(S) containing constants which has a right invariant submean μ . Let $\mathscr{P} = \{T_t \colon t \in S\}$ be a Lipschitzian semigroup on C with $\inf_s \sup_t k_{ts}^p \leqslant d_p$ and $F(\mathscr{P}) \neq \varnothing$. If for every x, y in C, the function f on S defined by $f(t) = \|T_t x - y\|^p$ for all $t \in S$ and the function g on S defined by $g(t) = k_t^p$ for all $t \in S$, belong to X, then the following are equivalent:

- (1) $\bigcap_{s \in S} \overline{\operatorname{co}} \{ T_{ts} x : t \in S \} \cap F(\mathscr{P}) \neq \emptyset$ for each $x \in C$;
- (2) There is a uniformly continuous ergodic retraction P of C onto $F(\mathscr{P})$ such that $PT_s = T_s P = P$ for every $s \in S$ and $Px \in \overline{\operatorname{co}}\{T_s x : t \in S\}$ for every x in C.

Proof For simplicity, d, is denoted by c.

 $(2)\Rightarrow(1)$

Let $x \in C$. Then, it is obvious that $Px \in F(\mathscr{P})$. Since

$$Px = PT_{s}x \in \overline{\operatorname{co}}\{T_{t}T_{s}x : t \in S\} = \overline{\operatorname{co}}\{T_{ts}x : t \in S\}$$

for each $s \in S$, we have $Px \in \bigcap_{s \in S} \overline{\operatorname{co}} \{T_{ts}x : t \in S\}$.

 $(1)\Rightarrow(2)$

Let $x \in C$. Then by virtue of Lemma 2.3, there is a unique element z in $F(\mathscr{P})$ such that $\mu_t \parallel T_t x - z \parallel^p = \min\{\mu_t \parallel T_t x - y \parallel^p : y \in F(\mathscr{P})\}.$

Zeng and Yang^[8] have proved that

$$\mu_{t}(k_{t}^{p})\leqslant\inf_{s}\sup_{t}k_{ts}^{p}$$
 , $\sup_{s}\inf_{t}k_{ts}\leqslant\sqrt[p]{c}$, $\bigcap_{s\in\mathcal{S}}\overline{\operatorname{co}}\{T_{ts}x:t\in\mathcal{S}\}\bigcap F(\mathscr{P})=\{z\}$,

and

$$\inf_{s} \sup_{t} \| T_{ts}x - f \|^{p} \leqslant c \cdot \mu_{t} \| T_{t}x - f \|^{p} \leqslant c^{2} \cdot \inf_{t} \| T_{ts}x - f \|^{p}$$
for every $s \in S$, $f \in F(\mathscr{P})$ and $x \in C$.

Setting Px = z for each $x \in C$, we have, for each $s \in S$,

$$\mu_{t} \parallel T_{t}x - PT_{s}x \parallel^{r} = \mu_{t} \parallel T_{t}x - PT_{s}x \parallel^{r} = \mu_{t} \parallel T_{t}T_{s}x - PT_{s}x \parallel^{r} \leq \mu_{t} \parallel T_{t}T_{s}x - Px \parallel^{r} = \mu_{t} \parallel T_{t}x - Px \parallel^{r} = \mu_{t} \parallel T_{t}x - Px \parallel^{r}.$$

From the uniqueness of Px it follows that $PT_sx = Px$ for every $s \in S$. It is clear that $T_sP = P$. Finally we show that P is uniformly continuous. Let $w \in F(\mathscr{P})$ and $0 < \lambda < 1$. Then we have, for each $s,t \in S$,

$$\|T_{t,x} - ((1-\lambda)z + \lambda w)\|^{p} \leqslant \lambda \|T_{t,x} - w\|^{p} + (1-\lambda) \|T_{t,x} - z\|^{p} - c \cdot W_{p}(\lambda) \cdot \|w - z\|^{p} \leqslant \sup_{a} \|T_{a,x} - z\|^{p} + \lambda (\|T_{t,x} - w\|^{p} - \|T_{t,x} - z\|^{p}) - c \cdot W_{p}(\lambda) \cdot \|w - z\|^{p}$$

and hence

$$\inf_{t} \| T_{t,x} - ((1-\lambda)z + \lambda w) \|^{p} \leqslant \sup_{t} \| T_{t,x} - z \|^{p} + \lambda \inf_{t} (\| T_{t,x} - w \|^{p} - \| T_{t,x} - z \|^{p}) - c \cdot W_{p}(\lambda) \cdot \| w - z \|^{p}.$$

From (*), we also have

$$\mu_{t} \parallel T_{t}x - ((1-\lambda)z + \lambda w) \parallel^{r} \leq c \cdot \inf \parallel T_{ts}x - ((1-\lambda)z + \lambda w) \parallel^{r}$$

and

$$\inf_{s} \sup_{t} \| T_{ts}x - z \|^{p} \leqslant c\mu_{t} \| T_{t}x - z \|^{p}.$$

Then, we obtain

$$c^{-1}\mu_{t} \parallel T_{t}x - ((1-\lambda)z + \lambda w) \parallel^{p} - \lambda \inf_{t} (\parallel T_{ts}x - w \parallel^{p} - \parallel T_{ts}x - z \parallel^{p}) \leqslant \sup_{t} \parallel T_{ts}x - z \parallel^{p} - c \cdot W_{p}(\lambda) \cdot \parallel w - z \parallel^{p}$$

and hence

$$c^{-1}\mu_{t} \| T_{t}x - z \|^{p} - \lambda \sup_{s} \inf_{t} (\| T_{ts}x - w \|^{p} - \| T_{ts}x - w \|^{p}) \leqslant$$

$$c^{-1}\mu_{t} \| T_{t}x - ((1 - \lambda)z + \lambda w) \|^{p} - \lambda \sup_{s} \inf_{t} (\| T_{ts}x - w \|^{p} - \| T_{ts}x - z \|^{p}) \leqslant$$

$$\inf_{s} \sup_{t} \| T_{ts}x - z \|^{p} - c \cdot W_{p}(\lambda) \cdot \| w - z \|^{p} \leqslant$$

$$c\mu_{t} \| T_{t}x - z \|^{p} - c \cdot W_{p}(\lambda) \cdot \| w - z \|^{p}.$$

Note that $0 < c < \sqrt{\frac{1}{1+2^{p-1}}}$ implies $c-c^{-1} < 0$. Hence we have

$$-\lambda \sup_{s} \inf_{t} (\| T_{ts}x - w \|^{r} - \| T_{ts}x - z \|^{r}) < -c \cdot W_{r}(\lambda) \cdot \| w - z \|^{r},$$

$$\sup_{s} \inf_{t} (\| T_{ts}x - w \|^{r} - \| T_{ts}x - z \|^{r}) > c \cdot \left[(1 - \lambda)^{r} + (1 - \lambda)\lambda^{r-1} \right] \cdot \| w - z \|^{r}.$$

Now, letting $\lambda \rightarrow 0$, we obtain

$$\sup_{s}\inf\left(\parallel T_{ts}x-w\parallel^{r}-\parallel T_{ts}x-z\parallel^{r}\right)\geqslant c\cdot\parallel w-z\parallel^{r}.$$

Therefore, for $y \in C$, we have

$$\sup\inf\left(\parallel T_{t,x}x-Py\parallel^{r}-\parallel T_{t,x}x-Px\parallel^{r}\right)\geqslant c\cdot\parallel Px-Py\parallel^{r}.$$

Let $\varepsilon > 0$. Then there exists $s_1 \in S$ such that

$$\inf_{r} (\parallel T_{ts_{i}}x - Py \parallel^{p} - \parallel T_{ts_{i}}x - Px \parallel^{p}) > c \cdot \parallel Px - Py \parallel^{p} - \epsilon. \tag{**}$$

For such an $s_i \in S$, we also have

$$\sup\inf_{t}(\parallel T_{ts}T_{s_{1}}y-Px\parallel^{p}-\parallel T_{ts}T_{s_{1}}y-PT_{s_{1}}y\parallel^{p})\geqslant c\cdot\parallel PT_{s_{1}}y-Px\parallel^{p},$$

and hence there exists $s_2 \in S$ such that

$$\inf_{t}(\|T_{ts_2}T_{s_1}y-Px\|^p-\|T_{ts_2}T_{s_1}y-PT_{s_1}y\|^p)>c\cdot\|PT_{s_1}y-Px\|^p-\epsilon.$$

Then, from $PT_{s_1}y = Py$, we have

$$\inf(\|T_{ts_2s_1}y - Px\|^p - \|T_{ts_2s_1}y - Py\|^p) > c \cdot \|Px - Py\|^p - \varepsilon.$$

On the other hand, it follows from (* *) that

$$\inf(\parallel T_{ts_2s_1}x - Py \parallel^p - \parallel T_{ts_2s_1}x - Px \parallel^p) > c \cdot \parallel Px - Py \parallel^p - \varepsilon.$$

Combining these two inequalities, we get

$$2c \cdot \|Px - Fy\|^p - 2\varepsilon <$$

$$\inf_{t} (\| T_{ts_{2}s_{1}}y - Px \|^{p} - \| T_{ts_{2}s_{1}}y - Py \|^{p}) + \inf_{t} (\| T_{ts_{2}s_{1}}x - Py \|^{p} - \| T_{ts_{2}s_{1}}x - Px \|^{p}) \leq \inf_{t} (\| T_{ts_{2}s_{1}}x - Py \|^{p} - \| T_{ts_{2}s_{1}}y - Py \|^{p} + \| T_{ts_{2}s_{1}}y - Px \|^{p} - \| T_{ts_{2}s_{1}}x - Px \|^{p}) \leq \inf_{t} (\| T_{ts_{2}s_{1}}x - Py \|^{p} - \| T_{ts_{2}s_{1}}x - Py \|^{p}) + \inf_{t} (\| T_{ts_{2}s_{1}}x - Py \|^{p} - \| T_{ts_{2}s_{1}}x - Py \|^{p}) + \inf_{t} (\| T_{ts_{2}s_{1}}x - Px \|^{p}) \leq 2p \cdot (\dim C)^{p-1} \cdot \| \| T_{ts_{2}s_{1}}x - Px \|^{p} - \| T_{ts_{2}s_{1}}x \| \leq 2p \cdot (\dim C)^{p-1} \cdot \inf_{t} \| T_{ts_{2}s_{1}}\| y - x \| \leq 2p \cdot (\dim C)^{p-1} \cdot (\sup_{s} \inf_{t} t_{ts}) \cdot \| x - y \| \leq 2p \cdot (\dim C)^{p-1} \cdot \sqrt[p]{c} \cdot \| x - y \|.$$

Since $\varepsilon > 0$ is arbitrary, this implies

$$||Px - Py||^p \leqslant p \cdot (\operatorname{diam} C)^{p-1} \cdot c^{\frac{1}{p}-1} \cdot ||x - y||.$$

So, it follows that P is uniformly continuous.

Corollary 3. 1 Let C be a nonempty bounded closed convex subset of an L^p space with 1 and let <math>X be a r_s -invariant subspace of B(S) containing constants which has a right invariant submean μ . Let $\mathscr{P} = \{T_s\colon s\in S\}$ be a Lipschitzian semigroup on C with $\inf_s\sup_t k_{ts}^2 \leqslant p-1$ and $F(\mathscr{P})\neq\varnothing$. If for every x, y in C, the function f on S defined by $f(t)=\|T_tx-y\|^2$ for all $t\in S$ and the function g on S defined by $g(t)=k_t^2$ for all $t\in S$, belong to X, then the statements (1) and (2) in Theorem 3. 1 are equivalent.

Remark 3.1 Obviously, for an L^p space with 2 we can also obtain the corollary of Theorem 3.1.

References

- 1 Brezis H, Browder F E. Remarks on nonlinear ergodic theory. Adv Math, 1977, 25; 165~177
- 2 Baillon J B. Un theoreme de type ergodique pour les contractions non lineaires dan un espace de Hilbert. C R Hebd Seanc Acad Sci Paris. 1975, Ser. A-B 280:1511~1514
- 3 Baillon J B. Quelques proprietes de convergence asymptotique des semigroups non lineaires. C R Hebd Seanc Acad Sci Paris. 1976, Ser. Λ-B 283:75~78
- 4 Baillon J B, Brezis H. Une remarque sur le comportement asymptotique des semigroups non lineaires. Houston Math J, 1976,2:5~7
- 5 Hirano N, Takahashi W. Nonlinear ergodic theorems for nonexpansive mappings in Hilbert spaces. Kodai Math J, 1979,2:11~25
- 6 Mizoguchi N, Takahashi W. On the existence of fixed points and ergodic retractions for Lipschitzian semigroups in Hilbert spaces. Nonlinear Analysis, 1990,14:69~80
- 7 Tan K K, Xu H K. Fixed point theorems for Lipschitzian semigroups in Banach spaces. Nonlinear Analysis, 1993,20:395~404
- 8 Zeng Luchuan, Yang Yali. Fixed point theorem for Lipschitzian and topological semigroups in uniformly convex Banach spaces. Journal of Shanghai Teachers University (Natrual Sciences), 1997,26(1):16~22
- 9 Zeng Luchuan. On the existence of fixed points and nonlinear ergodic retractions for Lipschitzian semigroups without convexity. Nonlinear Analysis, 1995,24:1347~1359

一致凸空间中 Lipschitz 半群的 非线性遍历收缩定理

杨亚立 曾六川 (数学系)

提 要 设 C 是 p 一致凸 Banach 空间 E 的一个非空有界闭凸子集. 在证明了 C 上自映象的 Lipschitz 半群的一个非线性遍历收缩定理的基础上,进一步给出了如此定理在 L^p 空间 (1 中的应用.

关键词 遍历收缩; Lipschitz 半群; 不动点; 不变次平均; p 一致凸 Banach 空间中图法分类号 O177.91