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A Jacobi Pseudospectral Method for
Solving the Nonlinear Klein-Gordon
Equation on the Half Line
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Abstract: A Jacobi pseudospectral method is proposed for the nonlinear Klein—Gordon (NLKG) equa-
tion on the half line with rough asymptotic behaviors at infinity. The stability and convergence of the pro-
posed scheme are proved. Numerical results illustrate the efficiency of this approach.
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1 Introduction

As we know, the NLKG equation plays an important role in quantum mechaniest'’. It is of the
form
KV (yit) — AV(y,t) + V(y,t) + V(yst) = F(y,2), yel,te (0,7], !
AV (y,0 =V,(y», yel, (1 '
V(y,0) =V,(y), yel,
where I & R', AV (y,t) = PV (y,t)andV,, V,, F are given functions. AlsoV satisfies some bound-
ary conditions. There are many papers concerning the existence and uniqueness of the smoothness or
weak solution of (1), Numerical studies of this equation in bounded domains are also considered by

(341 But it is more challenging to solve the NLKG equation numerically in unbounded

many authors
domains. Indeed, there are several ways to deal with this kind of problems. The first one is to restrict
the calculations to certain bounded domains and impose some conditions on artificial boundaries. But
this treatment usually destroys the accuracy. The second way is to use spectral approximations associ-
ated with some orthogonal systems in unbounded domains'™®, This kind of method keeps the physical

meanings properly but requires some quadratures over unbounded domains. The third approach is to
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change the origi'nal problems into certain problems in bounded domains. But the coefficients of the
derivatives are degenerating on the boundaries. Recently, GUOY"*) developed the Jacobi spectral
method for numerical solutions of such problems. The main advantages of this treatment are that it
avoids quadratures in unbounded domains and keeps the spectral accuracy. But in actual computa-
tions, the Jacobi pseudospectral method is more preferable since it only needs to evaluate the numerical
solutions at some interpolation nodes. Hence, it saves a lot of work and is easier in dealing with non-
linear problems.

In this paper, we consider the numerical solution of the NKLG equation on the half line
I = (0, + o0) with V satisfying

V(0,t) = 0, ﬁ’l‘m e, V(y,t) =0, te [0,T]. (2)
LetA= (—1,1)and
2

y(x) = In2 — In(1 — 1), r(y)=1-— pa (3
Clearly, z(0) =— 1, z(+ o) =1, and for allx € A, 3—; =1—2>0. PutU(x,t) = V(y(x),

1), Uy(x) =V, (y(x)), U (x) =V, (y(x))and f(x,t) = F(y(x),t). Then the problem (1), (2)
is tranformed into

FU(x,t) — AU(x,t) +U(x,t) + U3 (x,t) = f(x,t), r€ A, t € (0,T],
U0,t) = lim(1 — 2)* 3, U(x,t) = 0, t e [0,T], (4)

r—~1
3, U(x,0) =U,(x), U(x,0) =Uyx), x € 4,
where AU (z,t) = (1 — 2)3.((1 — 2)3,U(x)). In the sequel, we shall propose a Jacobi pseudospec-
tral scheme for (4), and prove the stability and convergence of the proposed scheme. We shall present
some numerical results to illustrate the efficiency of this method. The implementations in this paper
are easy to be generalized to multiple-dimensional problems, and can also be applied to some other

nonlinear differential equations in unbounded domains.

2  The Scheme

Let X(x) be a certain weight function in the usual sense, and N be the set of all nonnegative inte-
gers. The weighted Sobolev space Hy(A) is defined in the usual way and its inner product, semi-norm
and norm are denoted by (u,v),,s |vl,.r and |[[vl|l ., In particular, Li(A) = H3(A),
(u,v)y = (U)o and |7 ||y = [l vl o The space Hj (A) stands for the closure of the set of all
infinitely differentiable functions with compact support in A. When ¥(x) = 1, we omit X in the nota-
tions as usual. If X(x) = 1, then we drop the script X in the above definitions. For any N € N, let
Py be the set of all algebraic polynomials of degree at most N . Let @y= {v|v ELy,v(— 1) = 0},
and ¢ be a generic constant independent of any function and N.

Let x*?(x) = (1 — x2)°(1 + x)?, and the Jacobi polynomial of degree ! is defined by

(=1
2!

If @, >— 1, then the set of Jacobi polynomials is Li«5 (A)- orthogonal. Let {x;})_,be the set of dis-

A— oA+ JP(x) =

al:((l - I)H—a(l + I)H—ﬂ)’ = 031929"‘.

tinct zeros of the Jacobi polynomial (1 + z)J§'" (x). Assume that they are arranged in the increasing

order. Then there exists a unique set of quadrature weights {w;})_, (cf. [9]) such that for any
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v 6 gzN,
N
J‘A v(x)dx = E v(z;)w;. 5
=0

Further, let Ay = {z;: 1 < j << N}, and define the discrete L*- norm

N
utap P wpr, 1< p< oo,
” v ” N = j=0

ess max |v(x) |, p = oo,
€Ay
In particular, forp = 2, |[vllx= vl 2xs |¥|lww = |l 7|l o=~ and the discrete inner product is

N
denoted by (u,v)y = Eu(:cj)'u(:c,-)wj. Let Iy C([— 1,1)) = 2 5 be the interpolation operator

=0

such that
volz) =vlz)), 0K j< N.
The semi-discrete Jacobi pseudospectral scheme for (4) is to find # €,%y such that
R ulz,t) — IN@u) (x,t) + ulz,t) + *(z,t) = f(z,£), z€ Ay, t€ (0,T],
3 u(x,0) = u(z) = I3 U(2), z € Ay, (6
u(x,0) = u(x) = Iy Ug(2), z € Ay.
For simplicity, let w(zx) = (1 — z)?,w(x) = 1 — z and for any u,v € C'([— 1,1)),

aonuyv) = (@0, u, 3. (0 v))w + v(u,vdy, > %

Taking the discrete inner product on both sides of (6), we find that the scheme (6) is equivalent to

(Pu)+ Q=) u@®)+u* @) ) y+aun’ @), =), )y, Vv EFn:t € 0,T],
(3, u(0),v)n = (Ul sUINy YV v €PN 7
@(0), )y = Wesvdn, YV v €¢Py.

3 Numerical Results

In actual computations, we need to discretize the problem in time ¢. Let v be the mesh size of £,

R, = {t= kr | E=1,2,-, [_z;]}, Q(I,t) = -;—('U(l‘,t-*—‘l") + vlx,t — 1)),

D, v(z,t) = ;12- (w(z,t + 1) — 2v(x,t) + v(x,t — 1)).
To increase the computational stability, we discretize the nonlinear term as
3
Gluz,1) = £ Dzt + Otz st — .
j=0 )

The fully discrete Jacobi pseudospectral scheme for (4) is
Doulz,t) — I(Bu) (z,8) + a(z,t) + Glulz,0)) = flz,t), z € Ay, t € &,
{u(:c,O) = Iy U(x), ulzx,t) = I§U(x) 4 IyU, (2, z € Ay, ®
We next present some numerical results. Let y(z) and z(y) be the same as those in (3). We consider
two typical examples.
Example 1 The exact solution of the original problem is V(y,t) = ysech(ay — bt —c¢), a=1.
8, &= 0.5, ¢ = 4.0. Clearly, it is exponential decay at infinity.

Example 2 The exact solution of the original problem is

com)|
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Viy,t) = %e’”sin(%(l + 2@ + 1.

Clearly, if 7>> 0, thenV(y,2) > ocasy—~+ oo, i.e., the exact solution of the transformed problem
(4) also tends to infinity as x — 1.

We now use the scheme (8) to solve (1) with (2) numerically. To illustrate the accuracy in the
spatial direction, the time step is chosen to be sufficiently small so that the error is dominated by the
spatial disretization errors. Let y; = y(z;), 7, € Ay, u(x,t) be the solution of (8) and v(y,t) =
u(x(y),t). For description of the errors, let

— _ V(y,at) - v(y,,t)
E..(2) = JQ&’L'V(%’” v(y;t) ], Ea(t) = fax T yt)

=

In Figure 1, we plot the errors of Examples 1 and 2 att=1withc=107%, 7= 10 *and different N.
We notice that the scheme (8) converges very fast for smooth solution decaying exponentially at infin-
ity, and achieves the spectral accuracy of exponential order. Moreover, this method provides good nu-
merical results for solutions with weak singularities, but the convergence rate is relatively slower. We
plot in Figure 2 the exact solution and pseudospectral solution obtained with N = 64, 7 = 0.1
(Exapmle 2) in space-time domain [0,20] X [0,2]. We find that the exact solution and the approxi-

mation solution are indistinguished in both cases.

4 The Stability and Convergence of the Proposed Scheme

This section is for the main theoretical results of this paper. We shall show the stability and con-
vergence of the scheme (6). To do this, we first list some useful lemmas.

Lemma 1 Foranyv €,@y ,and1 < p << oo,

ol < e ol <APNTF ol )
where ¢ (p) and d(p) are positive constants depending only on p.

The validity of the first statement is ensured by a similar argument that can be found in the proof
of Lemma 4.11 in [10], and the second result follows from an inverse inequality in [11].

In numerical analysis of the Jacobi pseudospectral method, we need to consider some orthogonal
projections. For description of the approximation results, we introduce the Hilbert space H., s(A) as
appears in [7]. For anyr € N,

H:, ,(A) = {v | v is measurable and Noll wa< oo}

where
=

ol s ={ D I Q= 22

k=0

1
gt L+ ol

Similarly, we define the spaces H5 4(A), HE, . (A) and their norms by replacing @ with @ in the above

definitions. For any real » > 0, the space Hi, 4(A) is defined by space interpolation. Forr =1,
H, . (D) ={v|adve HHDad [v],0.= 137 | —1rus <ok

We also define the Hilbert space HL(A) as

H(A) = {v | vis measurable on Aand [joll e~ =l vlli+ el 2)7 < o).
Further, let JHX(A) ={v]|vE Hl(A) and v(— 1) = 0}. For any u,v € HiA),
& (u,v) = (03, u,d,(wv)) + v(u,v).
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The orthogonal projection Pk :oHL(A) =Py is a mapping such that for any v € (HL(A),
aZ(O }xl“U—“U#’):O,V ?eoghl . (10)

Lemma 2 Letv > % Then for any u,v € HL(A),

a,'(u,u) = min(1l,v — %) el fwes @) el w~ ol e~
Proof Integrating by parts yields that

Sa.us 3.(aw)) = (Auty Au)y — lf ad w2 (x) =
2]

loullz = G Hull? + (= D> faulz— 5l

Hence a,(u,4) Z min(1,v — %) | ] 2. -. The second result is clear. O

Following the same lines as those in the proof of Theorems 3. 3 and 3. 4 in [13], we can get the H

following results.
Lemma 3 For anyv € HL(A) N H,, ,(A) andr =1,

| oPhvv — vl 1ue KN o]l anae an
Moreover, for any v € HL(A) N HY(A) N HY(A) and d > 1,
loPrvoll o <cCllvllivdm. + vl (12)

By Theorem 4. 8 of [9], we have that
Lemma 4 Foranyv € H5 ,(A)andr =1,
Uy —v)la+ N Inv—v] <N |v].z..
We now analyze the stability of scheme (6). To this end, suppose that the data u,, u, and f are

disturbed by #,, %, and f, respectively, which induce the error of « , denoted by . Assume that all

functions are valued at t. Letv > l, q(V) = min(l,v — %) and

2
EGtrt) = qO | &0t | G + 5 15 1w + 192 11,

p(lzo!l:l’?at) =qW Il l:o I Lu,~N T % Il l:o I tn+ I 171 ” ~+ J.o ” 7(5) Il %ds,
where | v || juw = (ll@Zd, v |4 + || vl %)%. Then we have the following stability result.

Theorem 1 Letv > %, u be the solution of (6), and « be its error induced by #,, z, and F.

Then forall 0 <t LT,
E(u,t) < pug,uy, 1)

where M (v,u) is given in the proof below.

Proof By (7), we have that

{(afa + A = vu+t &+ Gpvdn + @) = Fodws ¥V vE€Py ,t € (0,T], :

qu(0) = u;, u(0) = u,,

where G, = 3u*u + 3uu?. Taking ¢ = 29,z in (13), we get from (5) and Lemma 2 that

13)

SO Ll o+ T N2 1t + H22 180 < W1, (10
where W () = (1 — W (%, 230)x + (Gy, 20y + (F,232) . Clearly,

12,00 ] < il tow + 5 1@ 05+ 18Cul2n + lultond a6 I,
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21— G, d il < 5 Nelk+2a—» ol
We get from the above inequalities and (14) that
LEGO <MGw EGo + 170 | (15

where M (v,u) = 1 + 2(1 — ) + 18 max,c,c (| |% v + 2|4 ~). This implies the desired result.
Theorem 2 Let U and « be the solutions of (4) and (6), respectively. Assume that for r,s,,s; ==
0, s == landd > 1, U € H*(0,T;,HL(A) N HIt (A N L=, TsHLF(A) N HY(A)), f €
L*(0,T; Hy,, (A)), U, € Hgt*(A) andU, € H5%'(A). Thenforall 0 < LT,
EW —u,t) M*(N ¥ + N 4+ N % 4 N )
where M " is a positive constant depending only on v and the norms of U in the mentioned spaces.
Proof To obtain a better error estimate, compare the numerical solution with «* =,%4, U . By
the exactness (5) and the definition (10), we have that
a,n@®,v) =a,(u",v) =a,(U,v), Y v€Fy .
So by (4),
@lu” + (A —vu +udv)y + an@ ,v) + 26,('0) = (frdny, Y vE€oFn 5 (16)

=1
where

Gl('v) = (agszU) - (atzu. 9'U)N’ Gz('v) = (US"U) - (u*s"v)N’
G@)=Q—-—w»U,v) — A =)@ ,v)y, G @ =(,v)y— ()
Further let #* = « — «*. Then by (7) and (16),

(B2u"+A—u" + @ P+G; o)y + an@® yv)= 26,(1}), YV v €Fy, 0t T (1T
where G = 3(«" )" + 3u" («*)?. In addition, -
u"(0) = INU, —PAU,, 3" (0) = IZWU, — &) U,.
Taking ¢ = 23, #*in (17) and comparing (17) with (13), we derive an error estimation similar to
(15). But u, %, %y, % and || % || w.~ are now replaced by «*, z*, 2" (0), du*(0)and || «* || w.n »
respectively. Thus it remains to estimate |G; (3" )| (1 <<j<<4), 2" (O || joevs> 12" CO) || 1on
and || 3« (0) || . Let € be a suitably small positive constant. By (5) and (11),

IG@a ) <e llaa %+ SN[ 3V | 2. s
- - — 2
G, @) <e~ llau |4+ 2N | U@ | 4.

Let K = [%] Then by (5), (9), (11), Lemma 1 and Lemma 4, we get that ford > 1,
|Gz(all~" ) | = | (U39a¢;¢~ )_({u'F }39at;¢. )N|= | (US—(OPKIU)BDat;" ) | + | ((OPKIU)S_uﬁsyaﬂ;* )Nl
< (U = GPLUR || + | GPLUDY — Ivcu™? | 6 |l d2e” |l v
S (U2 + 1oPU N>+ 2" [ DNTNUW® || 1o, 1327 Ty
<e laa" I3+ MO N |U® || 2o s

where M(U) = max ((|U@) || }4am.. + U@ | 3)?). Next, by (5) and Lemma 4,

o<t<T
G@uD < I If = fll Naw lw<e llau 1%+ N f2..

Moreover, by (5), Lemma 3 and Lemma 4,
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O e v= a0 e 2Ty Us—U st | 8,Un Uo — U || + [ Py U—U, || ,..
< CN*SZ " UO " JZ+2;G;~-

Using LLemma 1, Lemma 3 and Lemma 4, we obtain that
Mam o) fften<cllu (O [l 4 < eN* [ I Uy —oPhU, [ < eN77% (U [ £ 105,
Finally we get from (5), Lemma 3 and Lemma 4 that
3wl v < 1 I Uy —oPWUL I < eNT2 (UL, 4100, -

A combination of the above estimates leads to the desired result. 0
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