顺式和反式 1, 4-二甲氧基-2-丁烯的合成*

骆玉美 任春艳

提 要 用顺式 2-丁烯-1, 4-二醇与碘甲烷反应合成顺式 1, 4-二甲氧基-2-丁烯以及通过选择性还原 2-丁炔-1, 4-二醇得到反式-2-丁烯烯-1, 4-二醇, 后者与碘甲烷反应得到反-1, 4-二甲氧基-2-丁烯.

关键词 2-丁炔-1, 4-二醇; 选择性合成; 1, 4-二甲氧基-2-丁烯中图法分类号 O 621. 36

0 引言

顺式 2-丁烯和反式 2-丁烯在卡宾与烯烃加成反应的立体化学研究方面有着很重要的价值, 但由于这两种烯烃在常温下是气体, 反应必须在加压状态下进行, 使用时很不方便, 因此想用另一类化合物代替它可以认为顺式和反式 1, 4-二甲氧基-2-丁烯是理想的替代者.

1 实验部分

温度计未经校正 红外光谱用N ico let 5DX FT-IR 测定,KB r 压片 · l HNMR 用 JNM - PM X 60Si 型核磁共振仪测定 · 顺 2-丁烯-1, 4-二醇从 Fluka 公司购买, 其余试剂均为分析 纯或化学纯

1.1 顺式 1,4-二甲氧基-2-丁烯的合成

在反应瓶中加入 100mL 的二甲亚砜和 6.5g 的氢化钠搅拌一会, 冷却至 0.,滴加 10mL 顺式 2-丁烯-1, 4-二醇, 20m in 后, 加入 14mL 的碘甲烷, 使其自然升至室温搅拌 2h 后 加入 100mL 水, 用乙醚萃取反应混合物, 无水硫酸钠干燥. 减压蒸馏, 在 58. 40mmHg 得顺式 1, 4-二甲氧基-2-丁烯 8.2g, 产率 58% 1 H-NMR (CCl4, CDCl3 外标) 3.30(6H, 单峰), 3.80~ 4.15(4H, 两重峰), 5.30~ 5.80(2H, 三重峰) 1R (cm $^{-1}$) 3026, 2985, 2894, 1695, 1435, 703.

^{*} 上海市教育委员会青年基金资助项目(960 F46)

收稿日期: 1998-12-21

第一作者骆玉美, 男, 讲师, 上海师范大学生命与环境科学学院, 上海, 200234

 \rightarrow

1.2 硫酸亚铬溶液的制备

在反应瓶中加入 300g 水合硫酸铬和 2000mL 水,通氮气赶去氧气,搅拌溶解后加入 90g 的锌粉,搅拌 24h 后在氮气氛中放置,待溶液澄清后,吸取清液置于另一反应瓶中备用. 同时将过量锌粉进行抽滤后干燥处理,称其质量可知硫酸亚铬的浓度约为 0.5mol/L.

1.3 反式 2-丁烯-1.4-二醇的合成

在上述制备得到的硫酸亚铬溶液中加入 50g 2-丁炔-1, 4-二醇和 100mL 水的混合液,加完后,在室温下搅拌 2h. 用N aOH 溶液碱化反应混合物 过滤,将滤液在 40 时减压蒸去水,剩余物用乙醇浸取.常压下蒸去乙醇,然后进行减压蒸馏在 140 30mmHg 得反式 2-丁烯-1. 4-二醇 35g,产率 65% H-NMR (CD 3CO CD 3) 3 30 (6H, 单峰) 30, 300

1.4 反式 1.4-二甲氧基-2-丁烯的合成

在反应瓶中加入 2g 氢化钠和 50mL 的四氢呋喃, 搅拌 15m in, 冷却至-20 后加入反式 2-丁烯-1, 4-二醇 3 5g, 继续搅拌 30m in, 然后加入碘甲烷 7 5mL (16 5g), 继续搅拌并在此过程中使其自然升至室温, 反应 3h 后, 加入 5mL 水, 用乙醚萃取反应混合物, 无水硫酸钠干燥 减压蒸馏, 在 54 35mmHg 得反式 1, 4-二甲氧基-2-丁烯 3 2g, 产率 65% 1 H-NMR (CCl₄, CDCl₃ 外标) 3 40 (6H, 单峰), 3 90~ 4 10 (4H, 两重峰), 5 60~ 5 92 (2H, 三重峰) 1R ($2m^{-1}$) 3026, 2987, 2861, 1453, 971.

2 结果与讨论

2 1 反式 2-丁烯-1, 4-二醇的合成

对于顺式和反式 1, 4-二甲氧基-2-丁烯合成, 可以通过 2-丁炔-1, 4-二醇先与碘甲烷反应生成 1, 4-二甲氧基-2-丁炔, 再还原的方法来实现

$$\begin{array}{c|c}
 & \text{H} & \text{CH 2O CH 3} \\
\hline
 & \text{NH}_3(1) & \text{H}_3\text{CO CH 2} & \text{H}
\end{array}$$

或用顺式和反式 2-丁烯-1, 4-二醇与碘甲烷反应来合成.

对于前一种合成路线, 文献有类似化合物的合成^[1], 但在实验中发现 2-丁炔-1, 4-二醇 先与碘甲烷反应生成 1, 4-二甲氧基-2-丁炔这一步很容易实现, 主要是下一步的选择性还原 很难实现, 反应不完全, 产物分离比较困难.

对于后乙酯路线,在实验过程中尝试了用反丁烯二酸二乙酯还原来合成相应的醇^[2],但没有成功;后来尝试用反丁烯二酸还原也没有得到^[3].

最后, 采用了 2-丁炔-1, 4-二醇与硫酸亚铬^[4]进行反应来合成反式 2-丁烯-1, 4-二醇^[5], 并对文献的方法作了一些改进, 获得了较满意的结果.

HOCH 2C CCH 2OH
$$\frac{C_1SO_4}{H_{2O}}$$
 $\stackrel{\text{H}}{\longrightarrow}$ $\stackrel{\text{CH}_2OH}{\longrightarrow}$

 \geq

$$\frac{2CH_3I}{N_{aH}/THF} \qquad H_3COCH_2 \qquad H$$

顺式和反式 1.4-二甲氧基-2-丁烯合成

用顺式和反式 2-丁烯-1, 4-二醇与碘甲烷反应可以得到较好的产率的产物,不同的溶 剂在反应时各有优缺点,用二甲亚砜作溶剂时后处理较为烦琐, 但碱的溶解性较好: 用四氢 呋喃时碱的溶解性较差, 但后处理比较简单.

结 论

用顺式 2-丁烯-1,4-二醇与碘甲烷反应合成顺式 1,4-二甲氧基-2-丁烯以及通过选择性 还原 2-丁炔-1, 4-二醇得到反式-2-丁烯-1, 4-二醇, 后者与碘甲烷反应可以得到反式-1, 4-二 甲氧基-2-丁烯

文 献

- 1 Everhardus R H, Peterse A, Vermeer P, Brandsma L, Arens J F Preparation of 1, 3-dienyl ethers and thioethers by alkali am ider induced elim ination of alcohol or thiol from 1, 4-bis-erhers and -thioethers derivred from 2-butene-1, 4-dio1 Recl Trav. Chim. Pays-Bas 1974 93: 90
- 2 Jorgenson M J. Selective reduction with A lumium Hydride Tetrahedron Lett 1962, 559
- 3 Bhaskar Kanth J V. Mariappan Periassam y Selective Reduction of Carboxylic Acids into Alcohols Using NaBH4J Org Chem 1991, 56: 5964
- 4 Castro C E The Role of Halide in the Reduction of Carbonium lons by Chromium. J Am Chem Soc 1961, 83: 3262
- 5 Castro C E, Stephens R D. The Redution of Multiple Bonds by Low-valent transition Metal ions J Am Chem Soc 1964, 86: 4358

Synthesis of C is and Trans 1, 4-D in ethoxy-2-butene

Luo Yumei Ren Chunvan (College of L ife & Evrimental Science)

Abstract Synthesis of cis and trans 1, 4-dimethoxy-2-butene is reported in this paper Cis-1, 4-dimethoxy-2-butene could be obtained from cis-2-butene-1, 4-diol and io dom ethyane; Trans-1, 4-D in ethoxy-2-butene is synthesized in two steps: firstly, trans-2-butene-1, 4 diol was made from selective reduction of 2-butyne-1, 4-diol with cromous sulfate, subsequently, trans-2-butene-1, 4 diol was treated with iodomethane to produce trans-1, 4-dim ethoxy-2-butene

Key words 2-Butyne-1, 4-diol; Selectively synthesis Cis and trans 1, 4-dimethoxy-2butene