SOME “ANZAHL” THEOREMS FOR GROUPS
OF PRIME-POWER ORDERS

BY L0O-KENG Hua (3% @pE) AND Hsio-ru TUAN (BYB4).

In the theory of p-groups, or groups whose orders are powers of
a prime p, there are a number of the so-called “Anzahl” theorems
which relate to the number of sub-groups with a certain property. We
shall define 2 group & of order p" as of rank §, if the highest order of
the elements of @ is equal to p»3. By means of this notion the “Anzahl’”
theorem due to Miller can be restated as follows:

If ® is a group of order pYp=3,n=38) of rank =1, then the
number of sub-groups of order p™(1 < m < n») of rank 0 is congruent
to zero, mod p.

The main object of the present paper is to establish the follow-
ing theorem:

If G is a group of order p"p==3,n=5) of rank =2, then the
number of sub-groups of order p™(2 < m < n— 1) of rank 0 is con-
gruent to zero, mod p?, and the number of sub-groups of order
p™(8 < m < n) of rank 1 is congruent to zero, mod p.

In the proof of this theorem we employ mathematical induction
over n in two ways, according to whether @ does not contain or actually
contains a sub-group of index p of rank 1. In the first case, we establish
the theorem by a direct application of the enumeration principle due to
P. Hall.(}) In the second case, we shall make use of the followmg
theorem which seems to have some interests in itself.

| L

(1) Proc. London Math. Soc. (2) 36 (1933), 20-95.
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If @ is a group of order p*(p=3,n=5) of rank 2, then & has
one and only one sub-group of index p of rank 2.(2)

In the following pages, we shall always denote by » an odd prime
number.

§1. Throughout this section, & always denotes a group of rank
2. It contains a (normal) sub-group M, of index p of rank 1. It is
known that IR, is of the form(3)

* . n-3 n—34+8
(1 M = { Ay d.}, AF =1, 4’ =1, (AhA)=A4

whey_e 67 1or0, for n24 “Eyidently R T

aLrp

(:’1 1a 1A2az)p = 4

Let B be any element of & but not in M,, then @ = {M;, B}.
Since B? belongs to M; and the p-th power of each element of P, be-
longs to the central of M, , we have then

A? B® = B® 4%,

Let
B1A;B = A1' A3°.
Then
B Al B = ar'?
and
Y Af=B"* Af B? = Aig: P i
Therefore |

(2) The proofs of Miller’s and Kulakoff’s “Anzahl” theorems as given by
Hall (loc, cit.) by the apphcatxon of his enumeration principle both depend essentially
on an analogous result, namelf,If 3 is a group of order p™p=3, n=3) of rank 1, then
& has one and only one sub—group of index p of rank 1. )

(%) See, for example, H Zassenhaus Lehrbu.ch der Gruppentheorie 1 (1937),

114.
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a7 =1 (mod p™3).
Consequently, for n=5,
a1 =1 (mod p™¥).

[]
Thus the commutator (A,, B) of order = p*, and can be written as

@) ' (4, B) = A" A,

Consequently we have
®) Bl gy = al?™m
and
@) @l B =1.

Since B? belongs to M,, by (1) and (4), we have, for n=5
®) | (4s, B) = AP,

Using mathematical induction, we can easily obtain

(BA)y =B as Al 2 40 ere>0),

where

cle)=4e(e —1) (modp)
and d (e) is a certain integer depending on e, since

(4, B) = AY'7" 42 er=e (mod p).

In particular, for p = e, we have
(BA,” = B> AP AP 2 o8

The right hand side belongs to M, , and therefore
. f

® C . BAY =B AP
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Further

(B Aoy = B? A2 (A4, B) P P71 =

B?,
Sinee-B is any element which belongs to ®, but not to M, , we can easily
abtain that

@) (BA: AL)P) = BP* 437°

LEMMA. For p=3 and n =5, in a group @ of order p* of rank 2:
__(i)_ There is_one_and only one sub-group of*ndex p of renk—2;—
(ii) There is no sub-group of index p of rank = 3;
(iii) The number of sub-groups of index p of rank 1 is con-
gruent to zero, mod p; and
_ (iv) The number of cyclic sub-groups of order p™3=m=<n — 2)
is P2,
Proof. There exists an element B of @, not in M,;, of order
=p% In fact, if B is an element of order »™ (2 < m= n — 2) belonging

to @, but not to M, , then ‘

prm-lq b p3 prma
B'? = A1 42 and B =
157
ta

Let B=B A; " * 'Thus, by (6)

—p!l-ﬂa

B™ = p* 4; =1,

Wehave @ = { M, B} = { A1, A3, B}. More precisely,

" "Vx AL) ) 2
B A Ay, 0y, 0w <pv?% 0Kv. <D,

give p* different elements of @. We shall prove that

®  B*al"al o<u<oy, o, W< o<

.»\ frytygge s heis . . e BN

form a group M, of mdex P of rank 2 By (1) (3) and (6), (8)
evxdently form a group whfch cdntam.& i element A% ‘of order g™,
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Further, by (7), no element of (8) is of order p™*2 Since (8) con-
tains all elements of order =< p*% of @&, the uniqueness in (i) and the
result in (ii) follow immediately.

It is known that the number of sub-groups of index p of @ is
congruent to. 1 (mod p). We have shown that one of them is of rank
2 and none of them is of rank o and =3. Therefore the number of
gub-groups of index p of rank 1 is congruent to zero, mod p.

The elements of order p™ (m =3) are of the form

pr-I-m )

B* Al A i

- ~Thus -there--are- p2-q-{p?)-- such- elements—and- therefore -the—group & -
has p? cyclic sub-groups of order p™.

§2. Enumeration Principle(t). Let @ be any p-group and let
D be its principal sub-group of index p%. Let My denote a typical major
sub-group of index p% of @ with 0=a==d (naturally M;=D and M, =)
Let N be any set of sub-groups of 8. Let n(My) denote the number of
members of N which belong to M. Then

n@M)— I 2@ +p T n(W)—p* I nM) + ---
(M) (M2) (MWs)

lad(d=1)

+(—=1%p n( Mg =0,

where the sum X being taken over the @44 sub-groups Mg of @ and

(M

o (P*—1)--- (p* — po)
e =T(pe —1) ... (p* — pa)

THEOREM 1. If @ is a group of prime-power order p*(p=3, n=5)
-of rank =2, then the number of sub-groups of order p™(4<=m=n—1)
of rank 1 i8 congruent to zero, mod p.

Proof. For m =mn — 1, there are two cases to distinguish, ac-
cording to whether @ does not contain or actually contains a maximal
sub-group of rank 1. The first case is trivial. In the second case, it is
an immediate consequerice '0f the lemma (iii). Therefore the theorem
is true for m=n — 1.” 'Thé theorem is' thus true for n =5.. )

(4) loe. clt.
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Now we can assume that m < n — 1. Take R to be the set of all
sub-groups of order p™(m==4) of rank 1. By enumeration principle, we
have '

n (Do) = n (M) (mod p).

b
(M) ]
First, let @ have no maximal sub-group of rank 1, then since

m < n — 1, we have, by the hypothesis of induction, that
n(P)=0 (modp)

for each-M+,-and -hence - S S
n (M) =0 (mod p).

Secondly, let & have a maximal sub-group of rank 1, then & is of
rank 2. By the lemma, & has one maximal sub-group of rank 2, and
others, @4,; — 1 in number (gg1—1=0 (mod p)), are all of rank 1.
The induction is completed by the hypothesis of induction and the fact
that every group of rank 1 contains a unique sub-group of order p™ of
rank 1(%).

THEOREM 2. Let & e « yroup of order p® (p=3, 2=5) of runk
=2, then the number of cyclic sub-groups of order p™B=m=n — 2) of
& is congruent to zero, mod p°.

Proof. For m =mn — 2, there are two cases to distinguish, ac-
cording to whether & does not coutain or actually containg a maximal
sub-group of rank 1. For the first case, the truth is evident. For the
second case, & is of rank 2, the lemma (iv) tells the truth. The theorem
is thus true for n = 5.

Now we can assume that m < » — 2. Take N to be the set of all
cyclic sub-groups of order p™(m=3). By enumeration principle. we have
RDM)= T @) —p T n(RyY (mod p3.
Pt M=)
First, let @ have no maximal sub-group of rank 1, then, since
m < n — 2, we have, by the hypothesis of induction, that

(3) See footnote (2).
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n(M)=0 (mod p? for eachM,
Further M. cannot be cyclic, hence, by Miller’s theorem,

n(M)=0 (modp) foreachM,,
Thus n(PMe) =0 (mod p°).

Secondly, let ® have a maximal sub-group of rank 1, then & is
of rank 2, and the theorem follows from lemma (iv)

§3. For p =2, the theorems are false. In fa'ct, we have the fol-
lowing “Gegenbeispiel”’. The group

T T T e e e

A =1 Bi=1 BUAB=AT als T 7

of order 2* has only one cyclic sub-group (4) of order 2" %, since (A*
B)t=B!'=1, and has only one sub-group (A, B*) of order 2* ! of
rank 1.

The restriction on m and » in the theorems also can not be im-
proved as is shown by the following “Gegenbeispiel”:
7,u-2

AV = A= 1 (4040 =1.

{Received 5, May, 1939)

Added 1, June, 1939. It is very casy to deduce from the lemma
that the number of solutions of

r =1 .m>38

for x belonging to = group of rank 2, is divisible by p™+2.  Basing on
this fact we can generalize a result due to Kulakoff, to the following
form

THEOREM 3. If @ is a group of order p*(n=5) and rank =2,

then the number of solutions of xP™ =1 (L < m < n—1) is divisible by
pm+2‘
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