NOTE ON THE DIOPHANTINE EQUATION

$$x^s y^y = z^s$$

BY CHAO KO (柯君)

Dr. Erdös conjectured that the Diophantine equation

$$(1) x^x y^y = z^z$$

has no integer solution, if |x|>1, |y|>1, |z|>1. In the present note, I shall prove that his conjecture is correct only when (x, y)=1 and (1) has infinitely many solutions when (x, y)>1.

Without loss of generality, we can suppose that

$$z > y \ge x > 0$$
.

If (x, y) = 1, from (1), we have obviously

$$x = x't$$
, $y = y's$, $z = st$,

where x', y', s, t are positive integers and (s, x't) = (t, y's) = 1, and, therefore, (1) becomes

where s>x' and t>y'. Since (x', s)=(y', t)=1.

$$x'^{xi} = t^{s-xi}, \qquad y'^{yi} = s^{t-yi}.$$

Since (x', s-x') = (y', t-y') = 1, it is evident that

(2)
$$x' = m^{s-x}, \quad t = m^{x'}; \quad y' = n^{t-y'}, \quad s = n^{y'};$$

where m and n are positive integers.

Suppose $y' \ge x'$. If

$$s-x' < x'$$

from (2), we have

206

which contradicts to that x' is a positive integer, since $2x' > n^{y'} > x'$ leads to s=1 and, therefore, 1>x'>0. Hence $s-x' \ge x'$ and $t=m^{w'}$ divides x', which leads to m=1 and so t=1, contrary to that t>y'>0. Similarly, we can prove that (2) has no integer solution when y' < x'. This proves that Erdös' conjecture is correct when (x, y)=1.

If we omit the restriction (x, y) = 1 and put

$$x = kx', \quad y = ky', \quad z = kz',$$

equation (1) becomes

$$k^{n_i+y_i-z_i}x^{ix_i}y^{iy_i}=z^{iz_i}.$$

Let $x'=2^4$, $y'=3^2$, $z'=2^3.3$, then x'+y'-z'=1 and from (3), $k=2^8.3^6$. Hence

$$x = 2^{12} \cdot 3^6$$
, $y = 2^8 \cdot 3^8$, $z = 2^{11} \cdot 3^7$

is a solution of (1).

Mr. W. H. Chu communicated to me that

$$x' = 2^6$$
, $y' = 7^2$, $z' = 2^4$. 7

give another solution

$$x = 2^{70}, 7^{14}, y = 2^{64}, 7^{16}, z = 2^{68}, 7^{16}$$

of (1).

The above two solutions suggest that if we write

$$x' = 2^{2n}, \quad y' = (2^n - 1)^2, \quad z' = 2^{n+1}(2^n - 1),$$

then from (3)

$$k = 2^{2^{n+1}(2^n-n-1)} (2^n-1)^{2(2^n-1)}$$

which is an integer for any positive integer n, since then $2^n-n-1 \ge 0$. Hence (1) has infinitely many integer solutions FEB.]

NOTE ON THE DIOPHANTINE EQUATION

207

$$x = 2^{2^{n+1}(2^n - n - 1) + 2n} (2^n - 1)^{2(2^n - 1)},$$

$$y = 2^{2^{n+1}(2^n - n - 1)} (2^n - 1)^{2(2^n - 1) + 2},$$
and
$$z = 2^{2^{n+1}(2^n - n - 1) + n + 1} (2^n - 1)^{2(2^n - 1) + 1}.$$

National Szechuan University, Chengtu.

(Received 28 March, 1939).

.