CESÀRO MEANS CONNECTED WITH THE ALLIED SERIES OF A FOURIER SERIES

BY H. C. CHOW (周鴻經)

1. Introduction.

It is classical that, if the Fourier series of a function $\psi(t)$ of bounded variation is $\Sigma \bar{c}_n$ sin nt, the sequence $n\bar{c}_n$ is bounded. This result cannot be improved. "For, the function $\psi(t) = \frac{1}{2}t(-\pi < t < \pi)$ whose Fourier series is $\Sigma(-1)^{n-1}n^{-1}\sin nt$ is of bounded variation; but we have $n\bar{c}_n = (-1)^{n-1}$ ". We know, however, that, (1) if $\psi(t)$ is of bounded variation in $(0, 2\pi)$, the sequence $n\bar{c}_n$ converges (c, α) to $2\pi^{-1}\psi(+0)$ for every $\alpha > 0$. In this paper I shall give some results concerning the convergence (C) of the sequence $n\bar{c}_n$ by studying the Cesàro means $\psi_{\alpha}(t)$ of $\psi(t)$.

We suppose throughout that f(x) is a periodic function, with period 2π , which is integrable in the Lebesgue sence in $(-\pi, \pi)$. We write

$$\psi(t) = \frac{1}{2} \left\{ f(x+t) - f(x-t) \right\}.$$

If we suppose the Fourier series of f(x) to be

(1.1)
$$\frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

the Fourier series of $\psi(t)$ is

$$\sum_{n=1}^{\infty} \bar{c}_n \sin nt,$$

where

(1) A. Zygmund, Trigonometrical Series, (1935), p. 62.

$$\sum_{n=1}^{\infty} \bar{c}_n = \sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx)$$

is the allied series of (1.1). We also write, for t > 0,

$$\Psi_{\alpha}(t) = \psi(t),$$

$$\Psi_{\alpha}(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t - u)^{\alpha - 1} \psi(u) du \qquad (\alpha > 0),$$

$$\psi_{\alpha}(t) = \Gamma(\alpha + 1) t^{-\alpha} \Psi_{\alpha}(t) \qquad (\alpha \ge 0).$$

We denote by τ_n^{α} the *n*-th Cesèro mean of order $\alpha > 0$ of the sequence $n\bar{c}_n$, i.e.

$$\tau_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\mathbf{v}=0}^n A_{n-\mathbf{v}}^{\alpha-1} \mathbf{v} \, \tilde{c}_{\mathbf{v}} \,,$$

where

$$A_n^{\alpha} = \frac{\Gamma(n+\alpha+1)}{\Gamma(n+1)\Gamma(1+\alpha)} \sim \frac{n^{\alpha}}{\Gamma(1+\alpha)}.$$

We say that $n\bar{c}_n$ is bounded (c, α) if $\tau_n^{\alpha} = O(1)$ as $n \to \infty$, and that $n\bar{c}_n$ converges (C, α) to τ if $\tau_n^{\alpha} \to \tau$ as $n \to \infty$.

2. Lemmas.

In this section I give some lemmas which will be used subsequently.

LEMMA 1(2). If a sequence converges (C) to τ and is bounded (c, a), then it converges (c, a+ δ) to τ , for every $\delta > 0$.

LEMMA 2(3). If $\psi_{\alpha}(t)$ is of bounded variation, then so is $\psi_{\beta}(t)$ for every $\beta > \alpha$

LEMMA 3(4). If $\psi_{\alpha}(+0)$ exists, then so does $\psi_{\beta}(+0)$ for every $\beta > \alpha$, and $\psi_{\beta}(+0) = \psi_{\alpha}(+0)$.

⁽²⁾ A. F. Andersen, Studier over Cesaro Summabilitesmetode, (1921).

⁽³⁾ L. S. Bosanquet, Proc. Edinburgh Math. Soc., (2), 4(1988), 12-17.

⁽⁴⁾ L. S. Bosanquet, Proc. London Math. Soc., (2) 31(1930), 144-164.

LEMMA 4(5). Let $\alpha > 0$. If $\Psi_{\alpha}(t)$ is of bounded variation in an interval (0, η), where $\eta > 0$, and $\Psi_{\alpha}(t) = 0$, then, for almost all t in (0, η) and for every $\beta > \alpha - 1$, we have

$$\Psi_{\beta}(t) = \frac{1}{\Gamma(1+\beta-\alpha)} \int_{0}^{t} (t-u)^{\beta-\alpha} d\Psi_{\alpha}(u).$$

LEMMA 5. Let $\alpha > 0$ and let

$$g^{\alpha}(n,t) = \frac{1}{A_n^{\alpha}} \left(\frac{1}{2} A_n^{\alpha-1} + \sum_{v=1}^n A_{n-v}^{\alpha-1} \cos v t \right)$$

Then, if k is a positive integer or zero, we have (6)

(2.1)
$$\left| \begin{pmatrix} d \\ dt \end{pmatrix}^{k} g^{\alpha}(n, t) \right| \begin{cases} \leq A n^{k} & (0 < t \leq \pi), \\ \leq A n^{k-\alpha} t^{-\alpha} & (n^{-1} < t \leq \pi; \quad k > \alpha - 1), \\ \leq A n^{-1} t^{-k-1} & (n^{-1} < t \leq \pi; \quad k \leq \alpha - 1). \end{cases}$$

This can be proved by an argument used by Zygmund. (7)

LEMMA 6. Let $\alpha > 0$ and $h = [\alpha]$ and let

(2.2)
$$G(n, u; \delta) = \frac{1}{\Gamma(1+h-\alpha)} \int_{u}^{\delta} (t-u)^{h-\alpha} \left(\frac{d}{dt}\right)^{h+1} g^{\alpha}(n, t) dt,$$

where $0 < \delta \leq \pi$. Then

$$\left| G(n, u; \delta) \right| \begin{cases} \leq A n^{\alpha} & (0 < u \leq \delta), \\ \leq A u^{-\alpha} & (n^{-1} < u \leq \delta). \end{cases}$$

This can be proved by an argument used by Bosanquet. (8)

3. The case $\alpha \ge 1$.

If $\alpha \ge 1$, it is interesting to note that the convergence (C, α) of the sequence $n\bar{c}_n$ depends only on the local property of the function. In fact, we can prove the following theorem.

- (5) L. S. Bosanquet, Quart. J. of Math., (Oxford), 6(1935), 113-123.
- (6) A is a constant, not always the same, independent of n, t or u, and ε .
- (7) A. Zygmund, Bull. de l'Acad. Polonaise (Cracovie), A(1925) 207-217.
- (8) L. S. Bosanquet, Proc. London Math. Soc., (2) 41(1936), 517-528.

THEOREM 3.1. If $\alpha \ge 1$, the necessary and sufficient condition for the sequence $n\bar{c}_n$ to converge (C, α) to τ is that

$$-\frac{2}{\pi}\int_{0}^{\delta} \psi(t) \frac{d}{dt} g^{\alpha}(n,t) dt \longrightarrow \tau$$

as $n \to \infty$, where δ is an arbitrary positive number.

Proof. Since

$$n\bar{c}_n = \frac{2n}{\pi} \int_0^{\pi} \psi(t) \sin nt \ dt = -\frac{2}{\pi} \int_0^{\pi} \psi(t) \frac{d}{dt} \cos nt \ dt,$$

we have

$$\tau_n^{\alpha} = -\frac{2}{\pi} \int_0^{\pi} \psi(t) \frac{d}{dt} g^{\alpha}(n, t) dt = -\frac{2}{\pi} \int_0^{\delta} -\frac{2}{\pi} \int_{\delta}^{\pi}$$

and the theorem is proved if we can show that

$$I = \int_{\delta}^{\pi} \psi(t) \frac{d}{dt} g^{\alpha}(n, t) dt = o(1)$$

as $n \to \infty$. Suppose first that $\alpha \ge 2$. Then, by the third inequality of (2.1), we have

$$\left| I \right| \leq A n^{-1} \int_{\delta}^{\pi} \left| \psi(t) \right| t^{-2} dt \leq A n^{-1} = o(1).$$

Next, suppose that $1 < \alpha < 2$. We have, by the second inequality of (2.1),

$$\left| I \right| \leq A n^{1-\alpha} \int_{\delta}^{\pi} \left| \psi(t) \right| t^{-\alpha} dt \leq A n^{1-\alpha} = o(1)$$

Finally, let $\alpha = 1$. Then, since

$$\frac{d}{dt}g^{\alpha}(n,t)=\frac{1}{n+1}\frac{d}{dt}\left(\frac{\sin\left(n+\frac{1}{2}\right)t}{2\sin\frac{1}{2}t}\right),$$

we have

$$I = \frac{n}{n+1} \int_{\delta}^{\pi} \frac{\psi(t)}{2 \sin \frac{1}{2} t} \cos (n+\frac{1}{2}) t \, dt - \frac{1}{n+1} \int_{\delta}^{\pi} \frac{\psi(t)}{(2 \sin \frac{1}{2} t)^2} \sin nt \, dt = o(1)$$

295

by Riemann-Lebesgue theorem.

THEOREM 3.2. If $\alpha \ge 1$ and if $\psi_{\alpha}(t)$ is of bounded variation in an interval $(0, \eta)$, where $\eta > 0$, then the sequence $n\bar{c}_n$ converges (c, α) to $2\pi^{-1}\psi_{\alpha}(+0)$.

Proof. We prove first that we can suppose without loss of generality that $\psi_{\alpha}(+0) = 0$. In fact, if $\psi_{\alpha}(+0) \neq 0$, we write

$$\varphi(t) = \frac{1}{2} (\pi - t)$$

so that

$$\varphi_{\alpha}(t) = \frac{1}{2} \left(\pi - \frac{t}{\alpha + 1} \right) \longrightarrow \frac{\pi}{2}$$

as $t \rightarrow +0$ Let

$$\psi^*(t) = \psi(t) - \frac{2}{\pi} \psi_{\alpha}(+0) \varphi(t).$$

Then

$$\psi_{\alpha}^{*}(t) = \psi_{\alpha}(t) - \frac{2}{\pi} \psi_{\alpha}(+0) \varphi_{\alpha}(t)$$

and

$$\psi_{\alpha}^* (+0) = 0.$$

Since the Fourier series of $\psi(t)$ is

$$\sum_{n=1}^{\infty} \frac{\sin nt}{n} ,$$

if we suppose that the Fourier series of $\psi^*(t)$ is

$$\sum_{n=1}^{\infty} \bar{c}_n^* \sin nt,$$

then

$$\bar{c}_n = \bar{c}_n^* + \frac{1}{n} \frac{2}{\pi} \psi_\alpha (+0) \qquad ,$$

and

$$n \, \bar{c}_n = n \, \bar{c}_n^* + \frac{2}{\pi} \, \psi_\alpha (+0) \, .$$

Then the theorem is proved if we can show that the sequence $n\bar{c}_n^*$ converges (C, α) to 0.

This being so, let us suppose that $\psi_{\alpha}(t)$ is non-decreasing in $(0, \eta)$. Let ε be an arbitrarily small positive number. Choose δ so small that $\psi_{\alpha}(t) < \varepsilon$ for $0 < t \le \delta \le \eta$. Then

$$\int_{0}^{\delta} |d \psi_{\alpha}(t)| = \int_{0}^{\delta} d\psi_{\alpha}(t) = \psi_{\alpha}(\delta) < \varepsilon.$$

By Theorem 3.1, it is enough to prove that, as $n \to \infty$,

$$|J| = \left| \int_0^{\delta} \psi(t) \frac{d}{dt} g^{\alpha}(n, t) dt \right| \leq A \varepsilon.$$

Let h = [a]. Then, after h times integration by parts, we have

$$J = \left[\sum_{m=1}^{h} (-1)^{m-1} \Psi_m(t) \left(\frac{d}{dt}\right)^m g^{\alpha}(n,t)\right]_0^{\delta} + (-1)^{h} \int_0^{\delta} \Psi_h(t) \left(\frac{d}{dt}\right)^{h+1} g^{\alpha}(n,t) dt.$$

If α is an integer, then $h = \alpha$ and, letting P be the integrated part of J, we have, for sufficiently large n,

$$|P| = \left| \sum_{m=1}^{h-1} O(n^{-1}) + (-1)^{h-1} \frac{1}{\Gamma(h+1)} \delta^h \psi_h(\delta) \left(\frac{d}{dt} \right)^h g^{\alpha}(n, \delta) \right| \leq A \varepsilon.$$

If α is not an integer, then $h < \alpha$ and

$$P = \sum_{m=1}^{h-1} O(n^{-1}) + O(n^{h-\alpha}) = o(1),$$

as $n \to \infty$. In either case the theorem is proved if we can show that, as $n \to \infty$

$$|J_1| = \left|\int_0^{\delta} \Psi_{\lambda}(t) \left(\frac{d}{dt}\right)^{n+1} g^{\alpha}(n,t) dt\right| \leq A \varepsilon.$$

Now, by Lemma 4,

$$J_{1} = \frac{1}{\Gamma(1+h-\alpha)} \int_{0}^{\delta} \left(\frac{d}{dt}\right)^{h+1} g^{\alpha}(n,t) dt \int_{0}^{t} (t-u)^{h-\alpha} d\Psi_{\alpha}(u)$$

$$= \frac{1}{\Gamma(1+h-\alpha)} \int_{0}^{\delta} d\Psi_{\alpha}(u) \int_{u}^{\delta} (t-u)^{h-\alpha} \left(\frac{d}{dt}\right)^{h+1} g^{\alpha}(n,t) dt$$

$$= \int_{0}^{\delta} G(n,u;\delta) d\Psi_{\alpha}(u).$$

Since

$$d\Psi_{\alpha}(u) = \frac{1}{\Gamma(\alpha)} u^{\alpha-1} \psi_{\alpha}(u) du + \frac{1}{\Gamma(\alpha+1)} u^{\alpha} d\psi_{\alpha}(u),$$

we have

$$J_{1} = \frac{1}{\Gamma(\alpha)} \int_{0}^{\delta} u^{\alpha-1} \psi_{\alpha}(u) G(n, u; \delta) du + \frac{1}{\Gamma(\alpha+1)} \int_{0}^{\delta} u^{\alpha} G(n, u; \delta) d\psi_{\alpha}(u)$$

$$= \frac{1}{\Gamma(\alpha)} \left(\int_{0}^{n-1} + \int_{n-1}^{\delta} \right) + \frac{1}{\Gamma(\alpha+1)} \left(\int_{0}^{n-1} + \int_{n-1}^{\delta} \right)$$

$$= \frac{1}{\Gamma(\alpha)} \left(J_{11} + J_{12} \right) + \frac{1}{\Gamma(\alpha+1)} \left(J_{13} + J_{14} \right).$$

By (2.2), we have

$$|J_{11}| \leqslant An^{\alpha} \int_{0}^{n-1} u^{\alpha-1} \psi_{\alpha}(u) du \leqslant A \varepsilon n^{\alpha} \int_{0}^{n-1} u^{\alpha-1} d \qquad A \varepsilon,$$

$$|J_{13}| \leqslant An^{\alpha} \int_{0}^{n-1} u^{\alpha} d\psi_{\alpha}(u) \leqslant A \int_{0}^{n-1} d\psi_{\alpha}(u) \leqslant A \varepsilon,$$

$$|J_{14}| \leqslant A \int_{n-1}^{\delta} d\psi_{\alpha}(u) \leqslant A \varepsilon.$$

It remains to show that $|J_{12}| \leq A\varepsilon$ as $n \to \infty$.

By the second mean-value theorem, we have

$$J_{12} = \psi_{\alpha}(\delta) \int_{\delta'}^{\delta} u^{\alpha-1} G(n, u; \delta) du \quad (n^{-1} < \delta' < \delta)$$

$$= \frac{\psi_{\alpha}(\delta)}{\Gamma(1+h-\alpha)} \int_{\delta'}^{\delta} u^{\alpha-1} du \int_{u}^{\delta} (t-u)^{h-\alpha} \left(\frac{d}{dt}\right)^{h+1} g^{\alpha}(n, t) dt$$

$$= \frac{\psi_{\alpha}(\delta)}{\Gamma(1+h-\alpha)} \int_{\delta'}^{\delta} \left(\frac{d}{dt}\right)^{h+1} g^{\alpha}(n, t) \int_{\delta'}^{\delta} (t-u)^{h-\alpha} u^{\alpha-1} du$$

$$= \frac{\psi_{\alpha}(\delta)}{\Gamma(1+h-\alpha)} \int_{\delta'}^{\delta} t^{h} \left(\frac{d}{dt}\right)^{h+1} g^{\alpha}(n,t) \int_{\delta'/t}^{1} (1-v)^{h-\alpha} v^{\alpha-1} dv$$

$$= \frac{\psi_{\alpha}(\delta)}{\Gamma(1+h-\alpha)} \int_{\delta'}^{\delta} t^{h} \left(\frac{d}{dt}\right)^{h+1} g^{\alpha}(n,t) F_{\alpha}(t) dt,$$

where

$$F(t) = \int_{\delta'/t}^{1} (1-v)^{h-\alpha} v^{\alpha-1} dv$$

is an increasing function of t. Applying the second mean-value theorem again, we have

$$J_{12} = \frac{\psi_{\alpha}(\delta) F(\delta)}{\Gamma(1+h-\alpha)} \int_{\delta'}^{\delta} t^{h} \left(\frac{d}{dt}\right)^{h+1} g^{\alpha}(n,t) dt \quad (n^{-1} < \delta' < \delta'' < \delta).$$

Since, by (2.1),

$$\int_{\delta''}^{\delta} t^{\hbar} \left(\frac{d}{dt}\right)^{\hbar+1} g^{\alpha}(n,t) dt = \left[\sum_{m=0}^{h} (-1)^{\hbar-m} \frac{h!}{m!} t^{m} \left(\frac{d}{dt}\right)^{m} g^{\alpha}(n,t)\right]_{\delta''}^{\delta} = O(1)$$

as $n\to\infty$, it follows that $|J_{12}|\leq A\varepsilon$. This completes the proof.

4. The case
$$0 < \alpha < 1$$
.

If $0 < \alpha < 1$, Theorem 3.1 is no longer true. In this case, we can prove the following theorem.

THEOREM 4.1. If $0 < \alpha < 1$ and if $\psi_{\alpha}(t)$ is of bounded variation in $(0, \pi)$, then the sequence $n\bar{c}_n$ is bounded (C, α) .

Proof. Here we have

$$\begin{split} \tau_{n}^{\alpha} &= -\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \frac{d}{dt} g^{\alpha}(n,t) dt = -\frac{2}{\pi} \int_{0}^{\pi} \frac{d}{dt} g^{\alpha}(n,t) dt \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} (t-u)^{-\alpha} d\Psi_{\alpha}(u) \\ &= -\frac{2}{\pi} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{\pi} d\Psi_{\alpha}(u) \int_{u}^{\pi} (t-u)^{-\alpha} \frac{d}{dt} g^{\alpha}(n,t) dt \\ &= -\frac{2}{\pi} \int_{0}^{\pi} G(n,u;\pi) d\Psi_{\alpha}(u) \\ &= -\frac{2}{\pi} \frac{1}{\Gamma(\alpha)} \int_{0}^{\pi} \psi_{\alpha}(u) u^{\alpha-1} G(n,u;\pi) du - \frac{2}{\pi} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{\pi} u^{\alpha} G(n,u;\pi) d\Psi_{\alpha}(u) \\ &= -\frac{2}{\pi} \frac{1}{\Gamma(\alpha)} \left(\int_{0}^{\pi^{-1}} + \int_{\pi^{-1}}^{\pi} \right) - \frac{2}{\pi} \frac{1}{\Gamma(1-\alpha)} \left(\int_{0}^{\pi^{-1}} + \int_{\pi^{-1}}^{\pi} \right) \end{split}$$

$$=-\frac{2}{\pi}\frac{1}{\Gamma(\alpha)}(I_1+I_2)-\frac{2}{\pi}\frac{1}{\Gamma(1-\alpha)}(I_3+I_4).$$

Since $\psi_a(t)$ is bounded in $(0, \pi)$, we have, by (2.2)

$$|I_{1}| \leq A n^{\alpha} \int_{0}^{n-1} u^{\alpha-1} du \leq A,$$

$$|I_{3}| \leq A n^{\alpha} \int_{0}^{n-1} u^{\alpha} |d\psi_{\alpha}(u)| \leq A \int_{0}^{n-1} |d\psi_{\alpha}(u)| \leq A,$$

$$|I_{4}| \leq A \int_{n-1}^{\pi} |d\psi_{\alpha}(u)| \leq A.$$

Now, suppose that $\psi_{\alpha}(t)$ is non-decreasing in $(0, \pi)$. By the second mean-value theorem, we have

$$I_{2} = \int_{n-1}^{\pi} \psi_{\alpha}(u) u^{\alpha-1} G(n, u; \pi) du = \psi_{\alpha}(\pi - 0) \int_{\delta}^{\pi} u^{\alpha-1} G(n, u; \pi) du$$

$$= \frac{\psi_{\alpha}(\pi - 0)}{\Gamma(1 - \alpha)} \int_{\delta}^{\pi} u^{\alpha-1} du \int_{u}^{\pi} (t - u)^{-\alpha} \frac{d}{dt} g^{\alpha}(n, t) dt$$

$$= \frac{\psi_{\alpha}(\pi - 0)}{\Gamma(1 - \alpha)} \int_{\delta}^{\pi} \frac{d}{dt} g^{\alpha}(n, t) dt \int_{\delta}^{t} u^{\alpha-1} (t - u)^{-\alpha} du$$

$$= \frac{\psi_{\alpha}(\pi - 0)}{\Gamma(1 - \alpha)} \int_{\delta}^{\pi} F_{1}(t) \frac{d}{dt} g^{\alpha}(n, t) dt = \frac{\psi_{\alpha}(\pi - 0)}{\Gamma(1 - \alpha)} F_{1}(\pi) \int_{\delta'}^{\pi} \frac{d}{dt} g^{\alpha}(n, t) dt$$

$$= \frac{\psi_{\alpha}(\pi - 0)}{\Gamma(1 - \alpha)} \left\{ g^{\alpha}(n, \pi) - g^{\alpha}(n, \delta') \right\} = O(1),$$

$$(\delta < \delta' < \pi)$$

$$= \frac{\psi_{\alpha}(\pi - 0)}{\Gamma(1 - \alpha)} \left\{ g^{\alpha}(n, \pi) - g^{\alpha}(n, \delta') \right\} = O(1),$$

for

$$F_1(t) = \int_0^t u^{\alpha - 1} (t - u)^{-\alpha} du = \int_0^1 v^{\alpha - 1} (1 - v)^{-\alpha} dv$$

is an increasing function of t and $F_1(\pi)$ is bounded. Hence $\tau_n^{\alpha} = O(1)$ and the theorem is therefore proved.

THEOREM 4.2. If $0 < \alpha < 1$, and if $\psi_{\alpha}(t)$ is of bounded variation in $(0, \pi)$, then the sequence $n\bar{c}_n$ converges (C, β) to $2\pi^{-1}\psi_{\alpha}(+0)$, for every $\beta > \alpha$.

Proof. Under the given conditions, $\psi_1(t)$ is, by Lemma 2, of bounded variation, and $\psi_1(+0)$ is, by Lemma 3, equal to $\psi_{\alpha}(+0)$. Hence, by Theorem 3.2, the sequence $n\bar{c}_n$ converges (C, 1), and, by Lemma 1, converges (C, β) , for every $\beta > \alpha$, to $2\pi^{-1} \psi_{\alpha}(+0)$.

National Central University. (Received 11, April, 1939).