CESARO MEANS CONNECTED WITH THE ALLIED
SERIES OF A FOURIER SERIES

BY H. C. CHOW (J§%K)

1. Introduction.

It is classical that, if the Fourier series of a function ¥ (¢) of
bounded variation is S¢, sin nt, the sequence né, is bounded. This result
cannot be improved. “For, the {function ¢y () =4t(—n <t x) whose
Fourier series is (—1)*1xn? sin »t is of bounded variation; but we have
nén=(—1)""1". We know, however, that,(') if y{¢) is of bounded varia-
tion in (0, 2rn), the sequence nén converges (¢, a) to 2a2y (+ 0) for every
a > 0. In this paper I shall give some results concerning the convergence
(C) of the sequence né, by studying the Cesaro means g (£) of P(t).

We suppose throughout that f(x) is a periodic function, with
period 2=, which is integrable in the Lebesgue sence in (—mx, n). We
write

v =L rero-fe-o}.

If we suppose the Fourier series of f(x) to be

@»

{1.1) % o + X (ancos nx + by sin nx),
n=1
the Fourier series of Y (t) is
w
S Ca sin nt,
n=1

where

(1) A. Zy.gmund, Trigonometrical Series, (1935), p. 62.
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@®
3 én = X (bs 0S8 NZ — Gy Sin nz)
n=1 n=1
is the allied series of (1.1). We also write, for ¢ > 0,
Yo (t) =y (t), {
= 1 e
Yalt) = g ./: t—uriywde  (a>0),
Ya®) =T (a + 1)E2 W (t) (a=0).

We denote by v, the n-th Cesiwo-mean of order a>0 of the .
‘sequence nén, i.e.
a 1 n o a-—1

= 4e V_E'o An—v ve,,

where

A= Tim+ta+l _ n®
* T T+ 1+  TA+a)

We say that né. is bounded (¢, a) if 1= 0(1) as n-»co, and that n¢.

converges (C, a) to t if 19 =1 as n—>o00.

2. Lemmas.

In this section I give some lemmas which will be used subsequently.

LEMMA 1(2). If a sequence converges (C) to t and is bounded
(c, a), then it converges (¢, a+38) to t, for every 3> 0.

LEMMA 2(3). If yu (t) i3 of bounded variation, then so i3y¥g (%)
for every 8 D> a

LEMMA 3(%). Ifya(+ 0) exists, then so does Pg (+ 0) for every
B > a, and VY (+0) = Ya(+9).

(2) A. P. Andersen, Studier over Cesdro Summabilitesmetode, (1921).

(*) L. S. Bosanquet, Proc. Edinburgh Math. Soc., (2), 4(1933), 12-17.

(%) L. S. Bosanquet, Proc. London Math, Soc., (2) 31(1930), 144-164.
’ .
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LEMMA 4(°). Let a>0. If¥y(t) is of bounded variation in an
interval (0, ), where n >0, and Wq (+ 0)= 0, then, for almost all t in
0, 1) and for every B> a—1, we have

— 1 _ ,\B-a
Wg (t) = I'(1+p—a) o(t W %d We (u).

LEMMA 5. Let a> 0 and let

n
g%(n,t) = :117 (% AST 4+ VEIA‘,’::}, cosvt .

Then, (I k Is « positive integer o1 zero, we have(¥)
=An* N<Lt=m,
k
(2.1) ; ((‘}t) 9% (n, t) ] =Antete I <t=m k> a—1),
V =Anpttr mMr<<t=n;, k<a-—1).

This can be proved by an argument used by Zygmund. (%)
LEMMA 6. Let &> 0 and h = [d) and let

; h
@2 Gowd) =y [ e—u e () e

where 0 <3=mx. Then

=Ant 0 u=YH),

, G (m,u; 3) I {S.Au—“ < u="d),

This can be proved by an argument used by Bosanquet. (%)

3. The case a=1.

If a=1, it is interesting to note that the convergence (C, a) of
the sequence n¢, depends only on the local property of the function.
In fact, we can prove the following theorem.

(3) L. S. Bosanquet, Quart. J. of Math., (Oxford), 6(19356), 113-123.
(¢) A is a constant, not always the same, independent of n, t or u, and ¢-
(") A. Zygmund, Bull..de U'Acad. Polonaise (Cracovie), A(1925) 207-217.
(8) L. S. Bosanquet, Proc. London Math. Soc., (2) 41(1936), 517-528.
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THEOREM 3.1. If a=1, the necessary and sufficient condition. for
the sequence né, to converge (C, a) to tis that

2f v () —g"-(n ) dt —>1

as n—> 00, where § is an arbitrary positive number.
Proof. Since

nc,.—-w_f w(t)smntdt———~f w(t) cosntdt

we have o - T

«_ _2[% . d =—‘2’fa‘ifn
S = Eéxp(t)dtg(n,t)ah: -2

and the theorem is proved if we can show that
= A4 a =
I=[Twt) S gemthdt = o)

as m —00. Suppose first that a=2. Then, by the third inequality of
(2.1), we have

, 1 I‘S_An—lf ,w(t) 't—?dt<An‘1 o (1).

Next, suppose that 1 <« a< 2. We have, by the second inequality of
2.1),

, 1 , sAni—aj;“ , ¥ (t) ll £0dt < A nte = o(1)

Finally, let a = 1. Then, since

d _« 1 d (sin(n+Ht
a9 mO= 11w Tzsingt )

we have

=_" Ty - 1 (1) _
I=a2t1)s 2simis cos (n+)tdt — o 6—1(25111“), sin nt dt = o (1)
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by Riemann-Lebesgue theorem.

THEOREM 3.2. If a==1 and if Yo (¢) is of bounded variation in
an interval (0, n), where n> 0, then the sequence e, converges (¢, a)
to 27 1a (+ 0).

Proof. We prove first that we can suppose without loss of gen-
erality that Ya(+ 0)=0. In fact, if Y. (+ 0) =0, we write

_ 1.
@ () = 5 (=)

so that

_ 1 _t bt
@, (0= (n 0;4-1)—*2‘

as t—> + 0 Let
PO = p 0 — =yl 0 ().
Then
Yo ) = Ya ®) = 2w (+ 0) pa D)
and
Ve (+0) = 0.
Since the Fourier series of ¥ (¢) is

o s
sin nt
z s
n=1 n

if we suppose that the Fourier series of ¥*(t) is

. o * .
2 & sinnt,
n=l

then

12

- . = 1 4
c,.—a,,+nu\1’a(+0) o
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and
o=k 2
nCu—-7lCn+;'lPa(+0).

Then the theorem is proved if we can show that the sequence nz* con-
verges (C, a) to 0.

This being so, let us suppose that yq(¢) is non-decreasing in (0,
n). Let ¢ be an arbitrarily small positive number. Choose § so small
that yu(t)<e for 0 <t =<3 =<m. Then

9

- S }
Lo ravam = [Fava® = vt <e.
Q [o]

By Theorem 3.1, it is enough to prove that, as n - 00,

1J] = [ﬁbxp(t)% g“(n,t)dtl =

Let b = [a]. Then, after k times integration by parts, we have

h " ) 5 a1
7= = comrvne( &) oo o] + -1 [P o (&) e m
i dt 0 o dt
Tfa is an integer, then k = a and, letting P be the integrated part of J,
we have, for sufficiently large n,

h—1
IPI=| 2 00+ (-1 kg, P (5) o) | =4

m=

If a is not an integer, then % < 4 and

h—1
P=2 0OnY)+0n=0(1),
m=1
as 7 —00. In either case the theorem is proved if we can show that, as
7 ->00

AR I_/c:b‘l’:.(t)(%)'“ 0" (ntdt | SAe.

+

Now, by Lemma 4,



FEB.] CESARO MEANS 297

- ___1__ (] _d_ h+l e ,
J1 I‘(1+h—a)./o. (dt) g (n,t)dtf(t u e AWy (u)
e Y A 8 af d\M

= r(1+h—a)f° d“’ﬂ‘“’f. (t—) (‘dt) g% (n. t) dt
6 []
=_£ G(n,u;8)d Wa(u).
Since
1
dW¥q(u) = —F (E)i uu-i Ya (u) du + P(a1+1) u® dye (1),
we have

1 [ 5 3
J1=-m)£ ul lwa(u)(r(n.u;?))du+F(:+1)£ u® G (n,u; d) dyu(u)

= r"(laf(.fo"_l*f:—x)melrﬂ(ﬁ T :—l)

= I‘](:(ﬁ (Jll + J]z) +

By (2.2), we have

1
Ii?d‘_rﬁ(z]n + J1a).

| Ju | < An® f " o e (u) du < Aen® f "Tusld T As,
(o]

[o]

—1 oy —.
T | < dne "7 0oy < 4 [ dga 0 < e,
o ©

[}
|l S AS,, dpa ) < .

It remains to show that | J,. | = Ae as n— 00,
By the second mean-value theorem, we have

J12 = Ya (62/;[: u*1Gm,u;d)du 1LY LB

=T‘(‘;Pff(l?—)—$)./: us du _/:,6 ¢ —upe (£)" gt

877 \M
= e o) o f e —wrewa
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a(ﬁ) d M1 ~ o ha e
“T+h— a)f ( ) 9%n,8) f, (1 —ovfCveldy
Ya (3) 6 d +1 ‘
—rael (L) em R,
where

F.(t) =./:'/t (1— v ev*idy

is an increasing function of t. Applying the second mean-value theorem

again, we have

- Ya@F@®) L
72 = Tith—a) a" dt) g% (m, 1) dt (1 < & <87 <D,

Since, by (2.1),
8 Ml h 1 m 5
Sot(ar) emoa=[ = 1pmlim( L) ), -om

m=0

as n—00, it follows that | J,, |=Ae. This completes the proof.

4. The case 0 <a < 1.
If 0 <a < 1, Theorem 3.1 is no longer true. In this case, we can

prove the following theorc -
THEOREM 4.1. If 0 <a <1 and if Yo (t) is of bounded variation

in (0, x), then the sequence né, is bounded (C, a).
Proof. Here we have

a2 (T4l =_2["d i SN P
==k [Crogemaa==2 [” dtga(n,tmtm_a) [ t—wre av.

=T nI‘(l a)f“ d‘l’“"“)f E—uy* dt 9% (n, t)dt

=_7'ﬁf G (n,u; ) d¥q ()

== E g Vatu 6 s mau—2 L [0t 6 (nuim ¥

2L ek (L )
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o

1 2 1

Since Yy (t) is bounded in (0, x), we have, by (2.2)
[ 11| éAn"‘f"—1 uldu < A,
(o]
| Iy | <Anuf""ua | dye(w) | < A f"_1 | dya (@) | < A,
o [o]
ILl<afl ldiatw | <4,

Now, suppose that Ye(f) is non-decreasing in (0, x). By the second
mean-value theorem, we have

I, =f;; Ya @) u*1G (n, ;) du = q (:n:—O)./;T w4 G (n, w7 du

(<8 )
= 'liy‘q((ln‘_’_’(g)' g Ui du _L “t—uye jt g% (n,t)dt
_ Wa(x=0) f*d b
“T(1=a) f6 dt g%(n, t,)dtj; U4 —u)y " du
_Na(m—0) % d o _ Yalm—0) Fi(n) [~ d
=l CR o ovimar =" OPELTE gem,par
By )

= VOB fga o, 2y — gen, 8] = 0 ),

for
Fit) = fb' w1 (f—u) e du = /; | e —yedy

is an increasing function of ¢ and F,;(x) is bounded. Hence 1¢=0(1)
and the theorem is therefore proved.

THEOREM 4.2. If 0 < a< 1, and if Yo (t) is of bounded variation
in (0, x), then the sequence né, converges (C, ) to 2xyy (+ 0), for
every 8 > a.
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Proof. Under the given conditions, Y;(¢) is, by Lemma 2, of
bounded variation, and ¥, (+0) is, by Lemma 3, equal to Yo (+0). Hence,
by Theorem 3.2, the sequence né¢. converges (C, 1), and, by Lemma 1,
converges (C, B), for every f>a, to 2x2 Yo (+ 0).

Nacional Central U ‘versity.
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