ON AN EXPONENTIAL SUM

By Loo-KENG HUA (ZERER)

The main object of this paper is to prove the following theorem:*
Let f(2) be a polynomial of the k-th degree with integer coeffi-

cients.
f@=arxk+ «eo + 12

and let (¢g. +++, ¢, q)=1. Then

q , e
S )= X ealie) =00 """F), eqla) = ¥,
where the constant implied by the symbol O depends only on k and &.

This: result is better than my previous one(!) in which the con-
stant implied by O depends also on the coefficients of the polynomial.

In $$3,4 some easy applications of the theorem will be given.
Another application of the theorem to a problem studied by Vinogradow

will be given elsewhere.
§1. The theorem is a deduction of the following lemma:

MAIN LEMMA. Let [ >1 and p be a prime, and let

f(z) = ant® + + - + o2
and p t(ay,+-+, axr). Then
S (', f(z) = 0 @111k,

(1) Jour. of London Math. Soc. 13(1938), 54-61.
Quarterly Jour. 3(1932), 161-167.
'
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where the constant implied by the symbol O depends on k only.
The proof of the lemma will be given in the next section.

LEMMA 1 (Mordell).

S, fa) =0 @ k),
LEMMA 2. If (q1, ¢.)=1 and f(0)= 0, then
S(q1gz, f (@) = S (a1, f(q22)] q2) S (@2, f (01 Z) [ q1)

Proof. Writing z = ¢,y + ¢-2, then as y and z run_ over the
complete sets of residue systems mod ¢, and mod ¢. respectively, ¥ runs

over a complete set of residue system, mod ¢, ¢.. Further we have
evidently

eae, (f (1Y + q22)) = q1(f (eq, 2)[ q2) €0, (f (01 2)/Q1).
Thus

q1q2—1 q2—1 q1—1
Srqa f@E) = 2 eqe(f(x) = Z eq,(f(q1y)/q)) T eq(f(q22)/q2)

x=0 y=0 z=0

= S(q1, f(q22)/q2 S (@2, f (01 %)/ Q).
THEOREM 1. If (a,, +++, ax, q)=1, then we have

S(g, f (@) = O (@'~ Vk+e),

Proof. By the main lemma and the lemmas 1 and 2, we have

vq) I~
IS(@fEI=EEN""a &,
where v (¢) is the number of distinct prime factors of q. Since

()P = 0(qv),
the theorem is proved.

§2. DEFINITION. Let ;
[()=arz® +iee- + a2

plall 8as, £t = Min (4, ++-, ), t=0. Let 8 be the greatest integer such
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that p*lsa, This integer is then defined to be the index of f(x), and
we write s =ind f(z). Immediately we have the following lemmas:

LEMMA 1. ind f(x)=1ind f(x + A).
q LEMMA 2. ind f(z)=ind f(px).
LEMMA 3. [/f ind f(x)=ind f(px), then
)= 0 (mod p*?)
implies p | x.

i Proof. By definition I,=l,, for any s’, and alsol, +s=<lIy + s,
Therefore

e < ls fors=F¢';

in fact, if s < ¢’, the result is a trivial consequence of the definition,
while if s > ¢/, then l,=Il,+s'—s< ly. Thus f'(2)=0 (mod p**) im-
plies

Sas ™1 =0 (mod p*tY),
ie p|a.

Proof of the main lemma. The lemma is immediate for | = t 41,
since
S@ fa)i=p= r=p*=i2fort >0,

and, by a resuit due to Mordell
S(p, f(x) =0 (pt1/k) fort =0.
Therefore we may assume that 1 = t+2. Let
A - - e, Ay
be the distinet roots of the congruence
F(x)=0 (mod p**).

Then evidently e =< p'k = k?, and

pé pt+l  pl
3 ep(flr))= = I ept(f(2)).
x=1 im] z=1

x =1 (ptHl)
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If ¢ is not equal to any one of the A’s, then, letting x =y + p*~*1 2, we
have
l l-t=1 t+1

p P P
S eu(f@)= = exn(f@) 2 epn(zf(y)=0.
z=1 y=1 z=1
z =1, (pt+l) y =1, (ptt)) ' =0, (pt))
Therefore
i p! ( 3 e ot
S oemf@)| =12 I  ealf@)
L x=l | i i=1l x=1 2
x = Ai, (ptH)
< , Mazx ")l_t—l |
=€l<i<e. 2‘.1 e (f (b + 9" y) — F (W)
Y= ‘
l-t—1
)M ! 14 [
éc'l%ﬁ'ﬁe{ 21 eptay (94 (2) |,
z=

where pm is the highest power of p which divides all the coefficients
of f(A¢ + p* y) — f(A;). Therefore

| 2! iy pl i
2 enlfla)| e 2ttt | $ et toita |
z=1 l - | x=1 !
M : g™ I
0 =g S, PMUTHR % o ewmle@) |
T ==

since u; =k(1 +t).
If ind f(x)=ind f(pzx), then by lemma 3,

pl pl-t-l pl-t—:'
Z eulfl@d=p"*"* £ exa(f()=9p" 2 ex(f (0 y)
z=l y=l y=al
l.t~2 _ . T -
o £ e = pr-t 2 eno,
y=1 ' y=l
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where p* is the highest power of p divides all the coefficients of f(py)
and f(py)=op*g(y). We have then

—~

l 1 -
p B(l-3) P .
2 Lz en(f(z) =p F 2 enn(g(x) .
r=] x=1 t

If we apply this method repeatedly, then there are at most % steps each
giving a factor less than k® (using (1)), the other ones 'giving factor
1 only (using (2)). Thus

SEi@=06"""®). i

Remark. The g in the theorem may be omitted in most cases.
More precisely, by a little modification of the proof of the main lemma
and a theorem due to Davenport (1), we have

1

S, f@)=0 (¢ #)
provided that k is not of the form 29 or 3.27,
§3. The object of this section is to prove the following theorem:
THEOREM 1. Lei

f@=ara®+ o +a12, (@, *++, 01,9 =1,
then

m
T ealfm) = = S(q, f @)+ O (g1ik*e),
r=
Evidently it is sufficient to prove that, if 0 < m < ¢, we have
m
3 eq(f (@) = O(gt/**),
r=1

First, we shall find a function g(z) with period q such that

1 for 0 <2< m,

g(z)_= {0 form<z<q.

e L

(1) Jour. fir Math. 169(1933), 158-176.
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1f we assume g(O);:g(m): 4, then ¢g(x) can be represented by the
Fourier series:

oo!

gloy="4+ 3= 2“11.7, (eq(n Z)— eq{n(z — -m))),
q9 n=—~ow o

where in the summation the term n = 0 is excluded. Let
ql

Sa' = > €q {n w).

n=q+1
It is well-known that-if » s not a multiple of g, then

Se =4{z/q}?

tance of ¢ from the nearest integer. Con-

sequently, by the method of partial summation, we have

where {4t} denotes the dis

q' 1
= eq(:tn:v)=0(
n=q+1 n

1
a{z/q} )
Similarly, if zs=m and 0 < x < ¢, then

1

1 —of... 1
n=2q+171 ¢a(= (@ m)n)_O(Q{(m—m)/q})
Thus, for 2 3=m and 0 < 2 < ¢, we have
3 ( )_m + o (eq (nx) — eq(n{x — m)))
(3) g\x) = q n-:—q o2xin ‘€0 q

+0(Grarar) * 2 (g /ey ).
Next

m

E; eq(f(2)) = }%‘r ee(fZ)g(x)+ O(1)
xr= r=

where ¥* denotes a sum exc¢luding x =m and x =q. By (3), we have
immediately
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nt _ ’—'!
IE_—} eq(f (x)) == P

x

Yo+ L v 2 ai@ o
=1 21 poy M\ x=1

— %"‘ e{flx)y + nx —mmn) )

xr=1

+o( se 1 )+o( s Lo )

O\ ser gfz/qd 1 1 {@—m)/q}
=n+I+Is + I+ + Is, say.

We have

and the same result holds for I;.

Finally we consider

q 1 q
2 S ef (@) +n2)
n=1 M =

Let (ax, *++, @2, ¢)=¢’ and ¢” be any factor of ¢. We collect the

)

terms of the sum for which n satisfies the condition

(ak’ sec, G2, 1+, Q) = q”-

q 1‘ q
= L2 e(f@)+nz)
1 |

n=1 | x=

=3 3 Ls e (Lt@enn)
/g n=l N e=1 q/9” \ Q"
a;+n=o, (q")
q 1 :
=0 (E > ot ml=1/k+¢
Al , 9'(a/a")

a1+n=o0,(q")

q/¢" 1
=0 b s —q" ml—1/k+e
(wq 2 omg ¢ (¢/9")

-0 ('q“l-'-llk+elogq > q,,—1+1!k+s)
9"lq
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=0 ( ql—l,'k+e)
This method gives
L=0 <q1—l/k+e)' I=0 (ql-l/k-}-s).

Evidently
L=0 ( gl= ke )

Combining all these results we obtain theorerp 1.

Since the denominator of an integral-valued polynomial of the
k—th degree is =<k!, the theorem 1 is still true, if we assume only that
f(z) is an integral-valued polynomial of the k~th degree and f(z) & f(0),
(mod p), where p is any factor of q.

§4. Finally I shall prove a theorem which has an interesting ap-
plication to the problem of the “major arc” in Waring’s problem.

THEOREM 2. Let f(x) be an integral-valued polynomial. Let
S (o) = g I %mi f()a a= % +8
x=o0 ’ q ’

. o
1) = j:e“”"'f(”)ﬁ dz.

Then, if q = O (P!=%) and |B| =0(g~! P=*+1-t) we have

S(®) = 77 Saye 1(8) +0(g'"VE+e),

where §=q(q, d) and d is the least common denominaior of the coeffi-
clents of f(x), and

Seg= T eqlaf@) -
z=1 . . Lo

and the constant; implied. by the symbol O depends on the comfficients
of f(@.  \ ! o e
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To prove this theorem we shall make use of the well-known
Euler’s summation formula:

We define
biz)=2z— [1] + 4,

where [x] denotes the greatest integer which does not exceed z. We
define b; (z) by induction

(1) bitx + 1) = b (z)

and ‘
)
@ f bi(y) Ay = b1 (2) — besa (0).
o

Let b > a, and let g(2) and its derivatives (as far as they occur
below) be continuous for a=z=b. Then, for any ¢,

b -1
3 > gm+t=fo@dz+ T { 99 ®) brat—)
m a r=0

a<m+t<bd

— 9 a) by (t — a) } - fbg(‘) () b (t — z) d.

a

Proof of the theorem.

First step.
P 2xif(z)a 3 ,
4) Sl= Z e = 3 S eqla fiv) 2B
z=0 v=lo<r=<P
r=v,(q)
]
= 2 eqlaflv)d,,
v=1
where
0= 2rv=P h o£j+v7qspla

@ (@) = £2H/(22)



319 LOO-KENG HUA : [1940

By Euler’s summation formula, we have

o am[Momas 5 fon(5) (3~ 5)
¢ —«bm(o)bm( )} f o0 (x) by :.; - )
Since o
fP/aQ(x)dz= '()/'P/ﬂei’xiﬁf(ﬂx)dx: % :)/‘Pei’xiﬂf(u)dy’
p= . -
we have, from (4) and (5)
S (@) = S""I(p)+r§1{(l>('> 2)

(
~ 2 b (2 )

where

’

am(i. —t)= % eq(af(’li))brﬂ(—;——t)

l;

R= %1 eq (af(v))f o () b;( i z) dez.

Y=

Second step. 1fq = O(F**),f = O (g P*1t)and 0<z = P/q, then

6 O (x) = O(P™).
Suppose f(v) have only one term, namely f(v)= Av*. Let
2xiBA (G )b
Y(x)=¢ .

p—

First, we shall prove that ,
| 4 (z) = O (P,

Let\p,(z)fe’;thgn o N e
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1
" (2) = e* Fy(2),
where F, (z) is a polynomial of the r(k — 1)-th degree. Therefore

v (2) = e2MBATD* B (omiB )V g 2) (2miBA) ! F gy

Consequently

Y@ =0+ (|8 ]| Vkqa)fk-Dn( itk gy
= 0 (P).

Next, we suppose f(x) to be a polynomial with the first coefficient
A. Let

2xif(f(qz)— A(Jx)e )
b (x) = Y (x) 1 (2), Y1(x)=¢ .

Suppose (6) to be true for k — 1, i.e. when |B|=q? P *+2¢, we have
" (z) = O (P).

Since g1 P*t2-¢ > g1 p~#+1—t we have
i (z) = O (P~™),

for|B| = O (¢ P*+1-t)  TFurther, since
® ™) (2) = ¢ (@) 1 (2) + ( ! ) WD (2) g @) + e + @) (@),

we have

*@) = 0 ( Maz ™ @wi (@) ) = 0P,

o<i<r
Third step. Take
1=11/6] +1,
then.
L @) =.Q(PY),

a8 v



a1z LOO-KENG HUA {1940

Therefore ,
iR{=0 (%fPlﬁp_ldx) =0(1).
o

Fourth step. Let | .

v

S.o= = eqlaf(h)).

By the definition of a, (t), we have
9 [——
v 1 a TN
ar ( d ) Sl br+1 (q t) + v§2(S’ So—l) bH—l ( a t)

= 2 | Sm{ f+1(—'— t)—'br+1(—;—1-— t)}'f'sobrﬂ(l—t).

By theorem 1,

1
=0@'""*9 foro < v=<gq.
Thus

af(%—t)'—:o(ql-l/k-"e{m:llb"‘f‘l(%’ .)—br+1

(=77 - 1) +1)),

Since b, 1 i3 a2 function: of bounded variation, we have

w(Z-t)=0 (e -

Fifth step. Cériibining the results 3f the 2nd, 8rd and 4th
steps, we have, in conclusion, that

St0) =1 Suel (p) = o("tj*,’rz.l P ”;4'1)=o(q“”"“)_

. National Tsing Hua University
(Recef¥ed’ 14, - Aprik 1939). .



