ON AN EXPONENTIAL SUM

BY LOO-KENG HUA (華羅庚)

The main object of this paper is to prove the following theorem. Let f(x) be a polynomial of the k-th degree with integer coefficients.

$$f(x) = a_k x^k + \cdots + a_1 x$$

and let $(a_k, \dots, a_1, q) = 1$. Then

$$S(q, f(x)) = \sum_{x=1}^{q} e_q(f(x)) = O(q^{1-1/k+\epsilon}), e_q(z) = e^{2\pi i z/q},$$

where the constant implied by the symbol O depends only on k and ϵ .

This result is better than my previous one (1) in which the constant implied by O depends also on the coefficients of the polynomial.

In \$\\$3,4 some easy applications of the theorem will be given. Another application of the theorem to a problem studied by Vinogradow will be given elsewhere.

§1. The theorem is a deduction of the following lemma:

MAIN LEMMA. Let l > 1 and p be a prime, and let

$$f(x) = a_h x^h + \cdots + a_1 x$$

and $p \mid (a_1, \dots, a_k)$. Then

$$S(p^{l}, f(x)) = O(p^{l(1-1/k)}),$$

- (1) Jour. of London Math. Soc. 13(1938), 54-61.
- (2) Quarterly Jour. 3(1932), 161-167.

where the constant implied by the symbol O depends on k only.

The proof of the lemma will be given in the next section.

LEMMA 1 (Mordell).

$$S(p, f(x)) = O(p^{1-1/k}).$$

LEMMA 2. If $(q_1, q_2) = 1$ and f(0) = 0, then

$$S(q_1q_2, f(x)) = S(q_1, f(q_2x)/q_2) S(q_2, f(q_1x)/q_1)$$

Proof. Writing $x=q_1y+q_2z$, then as y and z run over the complete sets of residue systems mod q_1 and mod q_2 respectively, x runs over a complete set of residue system, mod q_1 q_2 . Further we have evidently

$$e_{q_1q_2}(f(q_1y+q_2z))=q_1(f(e_{q_1}z)/q_2)e_{q_2}(f(q_1z)/q_1).$$

Thus

$$S(q_1 q_2, f(x)) = \sum_{x=0}^{q_1 q_2 - 1} e_{q_1 q_2}(f(x)) = \sum_{y=0}^{q_2 - 1} e_{q_2}(f(q_1 y)/q_1) \sum_{z=0}^{q_1 - 1} e_{q_1}(f(q_2 z)/q_2)$$

$$= S(q_1, f(q_2 x)/q_2) S(q_2, f(q_1 x)/q_1).$$

THEOREM 1. If $(a_1, \dots, a_k, q) = 1$, then we have

$$S(q, f(x)) = O(q^{1-1/k+\epsilon}).$$

Proof. By the main lemma and the lemmas 1 and 2, we have

$$|S(q_1 f(x))| \leq (c(k))^{v(q)} q^{1-\frac{1}{k}}$$

where \mathbf{v} (q) is the number of distinct prime factors of q. Since

$$c(k)^{\mathbf{v}(q)} = O(q^{\epsilon}),$$

the theorem is proved.

§2. DEFINITION. Let

$$f(x) = a_1 x^2 + \cdots + a_1 x$$

plo || sao, $t = Min(l_1, \dots, l_k), t \ge 0$. Let s be the greatest integer such

that $p^t \parallel sa_s$. This integer is then defined to be the index of f(x), and we write $s = \inf f(x)$. Immediately we have the following lemmas:

LEMMA 1. ind $f(x) = \text{ind } f(x + \lambda)$.

LEMMA 2. ind $f(x) \ge \text{ind } f(px)$.

LEMMA 3. If ind f(x) = ind f(px), then

$$f'(x) \equiv 0 \pmod{p^{t+1}}$$

implies $p \mid x$.

Proof. By definition $l_s \le l_{s'}$, for any s', and also $l_s + s \le l_{s'} + s'$, Therefore

$$l_{\bullet} < l_{\bullet'}$$
 for $s \neq s'$;

in fact, if s < s', the result is a trivial consequence of the definition, while if s > s', then $l_s \le l_{s'} + s' - s < l_{s'}$. Thus $f'(x) \equiv 0 \pmod{p^{t+1}}$ implies

$$sa_{\bullet}x^{\bullet-1} \equiv 0 \pmod{p^{\bullet+1}},$$

i.e. $p \mid x$.

Proof of the main lemma. The lemma is immediate for $l \leq t+1$, since

$$|S(p^i, f(x))| \leq p^i \leq p^{i+1} \leq p^{2i} \leq k^2, \text{ for } t > 0,$$

and, by a result due to Mordell

$$S(p, f(x)) = 0 (p^{1-1/k})$$
 for $t = 0$.

Therefore we may assume that $l \ge t+2$. Let

$$\lambda_1, \cdots, \lambda_a$$

be the distinct roots of the congruence

$$f'(x) \equiv 0 \pmod{p^{t+1}}$$
.

Then evidently $e \leq p^t k \leq k^2$, and

$$\sum_{x=1}^{p^{l}} e_{p^{l}}(f(x)) = \sum_{i=1}^{p^{t+1}} \sum_{x=1}^{p^{l}} e_{p^{l}}(f(x)).$$

$$x \equiv i \ (p^{t+1})$$

If i is not equal to any one of the λ 's, then, letting $x = y + p^{i-2}$, we have

$$\sum_{\substack{x=1\\x\equiv i,\ (p^{t+1})}}^{p^l} e_{p^l}(f(x)) = \sum_{\substack{y=1\\y\equiv i,\ (p^{t+1})}}^{p^{l-t-1}} e_{p^l}(f(y)) \sum_{\substack{z=1\\y\equiv i,\ (p^{t+1})}}^{p^t+1} e_{p^{t+1}}(zf'(y)) = 0.$$

Therefore

$$\begin{vmatrix} p^{l} \\ \sum_{x=1}^{p} e_{pi}(f(x)) \end{vmatrix} = \begin{vmatrix} e & p^{l} \\ \sum_{i=1}^{p} \sum_{x=1}^{p} e_{pi}(f(x)) \\ x \equiv \lambda_{i}, (p^{t+1}) \end{vmatrix}$$

$$\leq e^{\max}_{1 \leq i} \leq e^{\max}_{y=1} e_{pi}(f(\lambda_{i} + p^{t+1}y) - f(\lambda_{i}))$$

$$\leq e \max_{1 \leq i \leq e} \left| \sum_{x=1}^{p^{l-t-1}} e_{pi-\mu_i}(g_i(x)) \right|,$$

where p = i is the highest power of p which divides all the coefficients of $f(\lambda_i + p^{i+1}y) - f(\lambda_i)$. Therefore

$$\begin{vmatrix} p^{l} \\ \sum_{x=1}^{l} e_{pl}(f(x)) \end{vmatrix} \leq e \underset{1 \leq i \leq e}{\overset{Max}{|x| \leq i \leq e}} p^{\mu_{i}-t-1} \begin{vmatrix} \sum_{x=1}^{l-\mu_{i}} e_{pl-\mu_{i}} (g_{i}(x)) \\ x = 1 \end{vmatrix}$$

$$\leq k^{2} \underset{1 \leq i \leq e}{\overset{Max}{|x| \in e}} p^{\mu_{i}(1-1/k)} \begin{vmatrix} \sum_{x=1}^{l-\mu_{i}} e_{pl-\mu_{i}} (g_{j}(x)) \\ x = 1 \end{vmatrix},$$

since $\mu_i \leq k(1+t)$.

If ind f(x) = ind f(px), then by lemma 3,

$$\sum_{x=1}^{p^{l}} e_{pl}(f(x)) = p^{t+1} \sum_{y=1}^{p^{l-t-1}} e_{pl}(f(y)) = p^{t+1} \sum_{y=1}^{p^{l-t-2}} e_{pl}(f(p y))$$

$$= p^{t+1} \sum_{y=1}^{p^{l-t-2}} e_{pl-\mu}(g(x)) = p^{\mu-1} \sum_{y=1}^{p^{l-\mu}} e_{pl-\mu}(g(y)),$$

where p^{μ} is the highest power of p divides all the coefficients of f(py) and $f(py) = p^{\mu}g(y)$. We have then

(2)
$$\sum_{x=1}^{p^{l}} e_{pl}(f(x)) \leq p^{\mu(1-\frac{l}{h})} \left| \sum_{x=1}^{p^{l-\mu}} e_{pl-\mu}(g(x)) \right| .$$

If we apply this method repeatedly, then there are at most k steps each giving a factor less than k^2 (using (1)), the other ones giving factor 1 only (using (2)). Thus

$$S(p^{l}, f(x)) = O(p^{l(1-\frac{l}{h})}).$$

Remark. The ε in the theorem may be omitted in most cases. More precisely, by a little modification of the proof of the main lemma and a theorem due to Davenport (1), we have

$$S(q^{i}, f(x)) = O(q^{1-\frac{1}{k}})$$

provided that k is not of the form 2^g or $3 \cdot 2^g$.

§3. The object of this section is to prove the following theorem:

THEOREM 1. Lei

$$f(x) = a_k x^k + \cdots + a_1 x, (a_k, \cdots, a_1, q) = 1,$$

then

$$\sum_{n=1}^{m} e_{q}(f(x)) = \frac{m}{q} S(q, f(x)) + O(q^{1-1/k+\epsilon}).$$

Evidently it is sufficient to prove that, if 0 < m < q, we have

$$\sum_{x=1}^{m} e_q(f(x)) = O(q^{1-1/k+\varepsilon}).$$

First, we shall find a function g(x) with period q such that

$$g(x) = \begin{cases} 1 & \text{for } 0 < x < m, \\ 0 & \text{for } m < x < q. \end{cases}$$

⁽¹⁾ Jour. für Math. 169 (1933), 158-176.

If we assume $g(0) = g(m) = \frac{1}{4}$, then g(x) can be represented by the Fourier series:

$$g(x) = \frac{m}{q} + \sum_{n=-\infty}^{\infty'} \frac{1}{2\pi i n} \left(e_q(nx) - e_q(n(x-m)) \right),$$

where in the summation the term n=0 is excluded. Let

$$S_{q'} = \sum_{n=q+1}^{q'} e_q(n x).$$

It is well-known that if & is not a multiple of q, then

$$S_{q'} \leq \frac{1}{4} \{x/q\}^{-1}$$

where $\{t\}$ denotes the distance of t from the nearest integer. Consequently, by the method of partial summation, we have

$$\sum_{n=q+1}^{q'} \frac{1}{n} e_q(\pm n x) = O\left(\frac{1}{q\{x/q\}}\right).$$

Similarly, if $x \neq m$ and 0 < x < q, then

$$\sum_{n=q+1}^{q'} \frac{1}{n} e_q (\pm (x-m) n) = O\left(\frac{1}{q \{(x-m)/q\}}\right).$$

Thus, for $x \neq m$ and 0 < x < q, we have

(3)
$$g(x) = \frac{m}{q} + \sum_{n=-q}^{q} \frac{1}{2\pi i n} \left(e_q(nx) - e_q(n(x-m)) \right) + O\left(\frac{1}{q\{x/q\}}\right) + O\left(\frac{1}{q\{(x-m)/q\}}\right).$$

Next

$$\sum_{x=1}^{m} e_{q}(f(x)) = \sum_{x=1}^{q} e_{q}(f(x)) g(x) + O(1)$$

where Σ^* denotes a sum excluding x = m and x = q. By (3), we have immediately

$$\sum_{x=1}^{m} e_{q}(f(x)) = \frac{m}{q} \sum_{x=1}^{q} e_{q}(f(x)) + \frac{1}{2\pi} \sum_{i=-q}^{q} \frac{1}{n} \left(\sum_{x=1}^{q} e_{q}(f(x) + n x) - \sum_{x=1}^{q} e_{q}(f(x) + n x - m n) \right) + O\left(\sum_{x=1}^{q} \frac{1}{q\{x/q\}} \right) + O\left(\sum_{x=1}^{q} \frac{1}{q\{(x-m)/q\}} \right) = I_{1} + I_{2} + I_{3} + I_{4} + I_{5}, say.$$

We have

$$I_4 = \sum_{x=1}^q \frac{1}{q\{x/q\}} \le \frac{1}{q} \sum_{x=1}^{q/2} \frac{2q}{x} = O(\log q),$$

and the same result holds for I_5 .

Finally we consider

$$\sum_{n=1}^{q} \sum_{n=1}^{q} e_q(f(x) + nx)$$

Let $(a_n, \dots, a_2, q) = q'$ and q'' be any factor of q'. We collect the terms of the sum for which n satisfies the condition

$$(a_k, \dots, a_2, a_1+n, q) = q''.$$

$$\sum_{n=1}^{q} \frac{1}{n} \sum_{x=1}^{q} e_{q} (f(x) + n x)$$

$$\leq \sum_{q^{n}/q} \sum_{\substack{n=1\\ a_{1}+n \equiv o, (q^{n})}}^{q} \frac{1}{n} \sum_{x=1}^{q} e_{q/q^{n}} \left(\frac{1}{q^{n}} (f(x) + n x) \right)$$

$$= O\left(\sum_{q^{n}/q} \sum_{\substack{n=1\\ a_{1}+n \equiv o, (q^{n})}}^{q} \frac{1}{n} q^{n} (q/q^{n})^{1-1/k+\epsilon} \right)$$

$$= O\left(\sum_{q^{n}/q} \sum_{m=1}^{q} \frac{1}{mq^{n}} q^{n} (q/q^{n})^{1-1/k+\epsilon} \right)$$

$$= O\left(q^{1-1/k+\epsilon} \log q \sum_{q^{n}/q} q^{n-1+1/k+\epsilon} \right)$$

$$= O\left(q^{1-1/k+\varepsilon}\right)$$

This method gives

$$I_2 = O\left(q^{1-1/k+\varepsilon}\right), \qquad I_3 = O\left(q^{1-1/k+\varepsilon}\right).$$

Evidently

$$I_1 = O\left(q^{1-1/k+\varepsilon}\right).$$

Combining all these results we obtain theorem 1.

Since the denominator of an integral-valued polynomial of the k-th degree is $\leq k!$, the theorem 1 is still true, if we assume only that f(x) is an integral-valued polynomial of the k-th degree and $f(x) \not\equiv f(0)$, (mod p), where p is any factor of q.

§4. Finally I shall prove a theorem which has an interesting application to the problem of the "major arc" in Waring's problem.

THEOREM 2. Let f(x) be an integral-valued polynomial. Let

$$S(\alpha) = \sum_{x=0}^{P} e^{2\pi i f(x)\alpha}, \qquad \alpha = \frac{a}{q} + \beta,$$

$$I(\beta) = \int_0^P e^{2\pi i f(x)\beta} dx.$$

Then, if $q = O(P^{1-\epsilon})$ and $|\beta| = O(q^{-1} P^{-k+1-\epsilon})$, we have

$$S(\alpha) = \tilde{q}^{-1} S_{\alpha,q} I(\beta) + O(q^{1-1/k+\epsilon}),$$

where $\overline{q} = q(q, d)$ and d is the least common denominator of the coefficients of f(x), and

$$S_{a,q} = \sum_{x=1}^{q} e_q(a f(x))$$

and the constant implied by the symbol O depends on the confficients of f(x).

To prove this theorem we shall make use of the well-known Euler's summation formula:

We define

$$b_1(x) = x - [x] - \frac{1}{4}$$

where [x] denotes the greatest integer which does not exceed x. We define $b_i(x)$ by induction

$$(1) b_l(x+1) = b_l(x)$$

and

(2)
$$\int_{0}^{x} b_{i}(y) dy = b_{i+1}(x) - b_{i+1}(0).$$

Let b > a, and let g(x) and its derivatives (as far as they occur below) be continuous for $a \le x \le b$. Then, for any t,

(3)
$$\sum_{\substack{m \ a \leq m+t < b}} g(m+t) = \int_{a}^{b} g(x) dx + \sum_{r=0}^{l-1} \left\{ g^{(r)}(b) b_{r+1}(t-b) - g^{(r)}(a) b_{r+1}(t-a) \right\} - \int_{a}^{b} g^{(l)}(x) b_{l}(t-x) dx.$$

Proof of the theorem.

First step.

(4)
$$S(\alpha) = \sum_{x=0}^{P} e^{2\pi i f(x)\alpha} = \sum_{v=1}^{\bar{q}} \sum_{\substack{0 \le r \le P \\ r \equiv v, (\bar{q})}} e_q(a f(v)) e^{2\pi i \beta f(r)}$$
$$= \sum_{v=1}^{\bar{q}} e_q(a f(v)) d_v,$$

where

$$d_{v} = \sum_{j} e^{2\pi i \beta f(\overline{q}j + v)} = \sum_{j} \Phi(j + v/\overline{q}),$$

$$o \leq \overline{q}j + v \leq P \qquad o \leq j + v/\overline{q} \leq P/\overline{q}$$

$$\Phi(x) = e^{2\pi i \beta f(\overline{q}x)}$$

By Euler's summation formula, we have

(5)
$$d_{\mathbf{v}} = \int_{0}^{P/\bar{q}} \Phi(\mathbf{x}) d\mathbf{x} + \sum_{r=1}^{l-1} \left\{ \Phi^{(r)} \left(\frac{P}{\bar{q}} \right) b_{r+1} \left(\frac{v}{\bar{q}} - \frac{P}{\bar{q}} \right) - \Phi^{(r)}(0) b_{r+1} \left(\frac{v}{\bar{q}} \right) \right\} - \int_{0}^{P/\bar{q}} \Phi^{(l)}(\mathbf{x}) b_{l} \left(\frac{v}{\bar{q}} - \mathbf{x} \right) d\mathbf{x}.$$

Since

$$\int_{0}^{P/\overline{q}} \Phi(x) dx = \int_{0}^{P/\overline{q}} e^{2\pi i \beta f(\overline{q}x)} dx = \frac{1}{\overline{q}} \int_{0}^{P} e^{2\pi i \beta f(y)} dy,$$

we have, from (4) and (5)

$$S(\alpha) = \frac{S_{\alpha q}}{\overline{q}} I(p) + \sum_{r=1}^{l} \left\{ \Phi^{(r)} \left(\frac{P}{\overline{q}} \right) a_{r+1} \left(\frac{v}{\overline{q}} - \frac{P}{\overline{q}} \right) - \Phi^{(r)}(0) b_{r+1} \left(\frac{v}{\overline{q}} \right) \right\} - R$$

where

$$a_{r+1}\left(\frac{v}{\bar{q}}-t\right) = \sum_{v=1}^{\bar{q}} e_q(af(v)) b_{r+1}\left(\frac{v}{\bar{q}}-t\right),$$

$$R = \sum_{v=1}^{\bar{q}} e_q(af(v)) \int_{0}^{P/\bar{q}} \Phi^{(l)}(x) b_l\left(\frac{v}{\bar{q}}-x\right) dx.$$

Second step. If $q = O(P^{1-\epsilon})$, $\beta = O(q^{-1}P^{-k+1-\epsilon})$ and $0 < x \le P/\bar{q}$, then

(6)
$$\Phi^{(r)}(x) = O(P^{-r\varepsilon}).$$

Suppose f(v) have only one term, namely $f(v) = Av^{h}$. Let

$$\psi(x) = e^{2\pi i \beta A (\tilde{q}x)^{k}}.$$

First, we shall prove that

$$\psi^{(\tau)}(x) = O(P^{-\tau \epsilon})$$

Let $\psi_1(z) = e^{z^{h_1}}$, then

$$\psi_1^{(r)}(z) = e^{s} F_r(z),$$

where $F_r(z)$ is a polynomial of the r(k-1)-th degree. Therefore

$$\psi^{(r)}(x) = e^{2\pi i \beta A (\bar{q}x)^k} F_r((2\pi i \beta A)^{1/k} \bar{q} x) ((2\pi i \beta A)^{1/k} \bar{q})^r.$$

Consequently

$$\psi^{(r)}(x) = O(1 + (|\beta|^{1/k} q x)^{(k-1)r})(|\beta|^{1/k} q)^{r}$$

$$= O(P^{-r\varepsilon}).$$

Next, we suppose f(x) to be a polynomial with the first coefficient A. Let

$$\Phi(x) = \psi(x)\psi_1(x), \qquad \psi_1(x) = e^{2\pi i \beta(f(\bar{q}x) - A(\bar{q}x)^k)}.$$

Suppose (6) to be true for k-1, i.e. when $|\beta| \le q^{-1} P^{-k+2-\epsilon}$, we have

$$\psi_1^{(r)}(x) = O(P^{-r\varepsilon}).$$

Since $q^{-1} P^{-k+2-\varepsilon} > q^{-1} P^{-k+1-\varepsilon}$, we have

$$\psi_1^{(r)}(x) = O(P^{-r\varepsilon}),$$

for $|\beta| = O(q^{-1}P^{-k+1-\epsilon})$. Further, since

$$\Phi^{(r)}(x) = \psi^{(r)}(x) \psi_1(x) + \begin{pmatrix} r \\ 1 \end{pmatrix} \psi^{(r-1)}(x) \psi_1'(x) + \cdots + \psi(x) \psi_1^{(r)}(x),$$

we have

$$\Phi^{(\tau)}(x) = O\left(\max_{0 \le i \le r} (\psi^{(\tau-i)}(x) \psi_i^{(i)}(x))\right) = O(P^{-\tau \varepsilon}).$$

Third step. Take

The state of the s

$$l = [1/\epsilon] + 1,$$

then.

$$\Phi^{(1)}(x) = Q(P^{-1}),$$

Therefore

$$|R| = O\left(\frac{1}{q} \int_{0}^{P/\bar{q}} P^{-1} dx\right) = O(1).$$

Fourth step. Let

$$S_{\bullet} = \sum_{h=1}^{v} e_{q}(af(h)).$$

By the definition of a_r (t), we have

$$a_{\tau}\left(\frac{\overline{v}}{\overline{q}}-t\right)=S_{1}b_{\tau+1}\left(\frac{1}{\overline{q}}-t\right)+\sum_{v=2}^{\overline{q}}(S_{v}-S_{v-1})b_{\tau+1}\left(\frac{v}{\overline{q}}-t\right)$$

$$=\sum_{m=1}^{\overline{q}-1}S_{m}\left\{b_{\tau+1}\left(\frac{m}{\overline{q}}-t\right)-b_{\tau+1}\left(\frac{m+1}{\overline{q}}-t\right)\right\}+S_{q}b_{\tau+1}(1-t).$$

By theorem 1,

$$S_v = O(\bar{q}^{1 - \frac{1}{\bar{b}} + \epsilon}) \qquad \text{for } 0 < v \le q.$$

Thus

$$a_{r}\left(\frac{v}{\bar{q}}-t\right)=0\left(\bar{q}^{1-1/k+\varepsilon}\left\{\sum_{m=1}^{\bar{q}-1}\left|b_{r+1}\left(\frac{m}{\bar{q}}-t\right)-b_{r+1}\left(\frac{m+1}{\bar{q}}-t\right)\right|+1\right\}\right).$$

Since b_{r+1} is a function of bounded variation, we have

$$a_r\left(\frac{v}{\overline{q}}-t\right)=O\left(\overline{q}^{1-1/k+\varepsilon}\right)$$

Fifth step. Combining the results of the 2nd, 3rd and 4th steps, we have, in conclusion, that

$$S(\alpha) - \bar{q}^{-1}S_{\text{eq}}I(p) = O\left(\bar{q}^{\frac{1-\frac{1}{b}+\epsilon}{b}}\sum_{r=1}^{l-1}P^{-r\epsilon} + 1\right) = O\left(\bar{q}^{\frac{1-1/k+\epsilon}{b}}\right).$$

National Tsing Hua University

(Received 14, April 1939).