•研究论文•

ZnSe 纳米片晶的可控合成

李军平 徐 耀 赵 宁 魏 伟 吴 东 孙予罕* (中国科学院山西煤炭化学研究所煤转化国家重点实验室 太原 030001)

摘要 以乙二胺四乙酸(EDTA)为稳定剂、丁胺(BA)为结构导向模板,采用水热合成方法制备了尺寸和晶型可控的 ZnSe 纳米片晶;利用 XRD, TEM, SEM 以及紫外-可见漫反射等手段对所得的产物进了表征,结果表明,通过改变水热温度 和 BA 用量,可以实现 ZnSe 纳米片晶的大小和物相的调控,并初步分析了其形成过程. 关键词 ZnSe;纳米片晶;物相;形貌

Controllable Synthesis of ZnSe Nanosheets

LI, Jun-Ping XU, Yao ZHAO, Ning WEI, Wei WU, Dong SUN, Yu-Han* (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001)

Abstract Novel ZnSe nanosheets with tunable size and phase have been facilely synthesized via hydrothermal routes in the presence of neutral butylamine (BA) as structure-directing agent and ethylene diamine tetraacetic acid (EDTA) as stabilizer. The as-synthesized products were characterized via XRD, TEM, SEM and the UV-Visible absorption spectra. The results showed that the hydrothermal temperature and the dosage of BA had an important effect on the size and phase of the products. A possible formation mechanism for the ZnSe nanosheets was also discussed.

Keywords ZnSe; nanosheet; phase; morphology

ZnSe 作为一种重要的 II-VI 族半导体材料,由于具 有优异的光学性能,在物理学、光化学、生物标记、光 催化、传感器、光子学、光电子学、材料学等领域都已 逐渐显示出广泛的应用前景,其制备和应用一直是半导 体领域的研究热点^[1~5].它具有直接跃迁型能带结构, 由于其宽的透光范围,较高的发光效率,低的吸收系数, 一直是研制蓝绿光发光二极管的热门材料^[6~10].由于其 优良的理化性能,ZnSe 也广泛地应用于光致发光和电致 发光器件、太阳电池、激光技术、红外探测器、热成像 技术等领域.纳米结构的 ZnSe 材料由于其小的尺寸, 表现出比其相应块体材料更加优越的光电性能,但其具 体应用又受到了形貌、尺寸及物相等因素的限制,因此 对 ZnSe 纳米材料的形貌、尺寸及物相的控制长期以来 是人们追求的目标.

近年来, 许多物理的和化学的合成技术被用来合成 不同形貌和尺寸的 ZnSe 纳米材料, 如超声化学法^[11]、 激光催化生长法^[12]、微乳模板法^[13]和溶剂热^[14]等. 而且 不同形貌的 ZnSe 纳米材料也相继被合成出来, 包括纳 米晶^[15]、超晶格^[16]、纳米线^[17]、纳米空球^[18]以及纳米 棒^[19]等. 最近, Cozzoli 等^[20]也报道了以有机胺和有机膦 为混合溶剂, 利用高温溶剂热的路线实现了 ZnSe 纳米 胶体形貌和物相的控制. 但迄今为止, 尚未见有关 ZnSe 片晶的报道. 本文以乙二胺四乙酸(EDTA)为稳定剂、丁 胺(BA)为结构导向模板, 采用水热合成方法制备了尺寸 和晶型可控的 ZnSe 纳米片晶.

^{*} E-mail: yhsun@sxicc.ac.cn

Received March 20, 2006; revised June 25, 2006; accepted August 8, 2006. 国家自然科学基金(No. 29973057)和国家重点基础研究专项基金(No. 2000048001)资助项目.

1 实验部分

1.1 试剂

醋酸锌(Zn(Ac)₂•2H₂O,分析纯,天津东丽区天大化 学试剂厂),乙二胺四乙酸(EDTA,分析纯,天津大茂顶 福化工总厂),丁胺(BA,进口试剂,Acros Organics),硼 氢化钠,硒粉;实验用水,为二次蒸馏水.

1.2 样品合成

1.2.1 NaHSe 溶液的制备

NaHSe 溶液通过硼氢化钠与硒粉反应制备^[21]. 典型的合成如下:在 N₂ 气氛的保护下,分别将 0.38 g NaBH₄和 0.40 g Se 加入到 25 mL 的 H₂O 中, 然后在剧烈搅拌的条件,将上述配制好的 NaBH₄ 溶液加入到 Se 的悬浮液中,此时体系有大量 H₂泡沫产生,反应 5 min 后,即得 0.1 mol/L NaHSe 溶液.

1.2.2 ZnSe 纳米片晶的制备

一个典型的合成步骤如下:首先配制 50 mL×0.1 mol/L的Zn(Ac)₂溶液,在剧烈搅拌的情况下,加入1.6 g EDTA和5 mL丁胺后,得一均匀透明的体系;然后将预 先配制好 50 mL×0.1 mol/L的 NaHSe 溶液倒入上述体 系中,搅拌几分钟后,混合体系转入有聚四氟内衬的反 应釜,于 140 ℃下,水热反应 16 h,自然冷却至室温, 产物经过热水、乙醇反复洗涤、过滤后,在110 ℃下干 燥 5 h,即得样品.

1.3 样品表征

样品的 XRD 测试在 Rigaku D_{max}-rA 型 X 射线衍射 仪上进行, Cu Kα 辐射, 40 kV, 30 mA. 采用 XL30S-FEG 场发射扫描电镜(SEM)和 Hitachi-800 型透射电镜(TEM) 对样品的形貌和微观结构进行分析. 紫外-可见吸收光 谱在 Shimadzu UV-2101PC 仪器上测量, 波长范围为 190~800 nm.

2 结果与讨论

2.1 ZnSe 纳米材料形貌及物相的控制

2.2.1 水热温度的影响

图 1 给出了不同水热反应温度所得产物的 SEM 图 像. 由图 1 可知,不同水热温度下所得产物的形貌基本 为片状,而且水热反应温度不同, ZnSe 纳米片晶的大小 也不相同. 在较低水热温度时(*T*=100 ℃),得到相对较 大的片,其大小约为300 nm 左右,而且大量的片晶团聚 在一起呈花状(图 1a);随着水热温度的升高(*T*=140 ℃),片晶变小(大小约为200 nm 左右),而且其花状团聚 体被分裂成泡沫状的结构(图 1b);随着水热温度的进一 步提高, ZnSe 纳米片晶更小, 形貌更加规整, 而且其粒度分布也更均匀(图 1c); 同时, 我们也可以发现, 水热温度对 ZnSe 纳米片晶的厚度几乎没有影响, 随着水热温度的升高, ZnSe 纳米片晶的厚度始终保持在几个 nm 左右. 上述事实清晰地表明, 通过控制水热温度的高低, 可实现 ZnSe 纳米形貌及大小的调控. 值得一提的是, ZnSe 纳米结构这种新型的片状形貌特征, 目前尚未见报道.

图 1 不同水热温度下所得 ZnSe 样品的 SEM 图像
 Figure 1 SEM images of ZnSe nanocrystals obtained under different hydrothermal temperature

 (a)100 ℃; (b) 140 ℃; (c) 180 ℃

图 2 给出了不同水热反应温度所得产物的 XRD 图 谱. 由图 2 可知,不进行水热处理时,所得产物的晶型 发育不完整,且杂峰较多,显然,此时所得的 ZnSe 纯度 不高(曲线 a 所示);随着水热温度的升高,纤锌矿结构 的 ZnSe 生成,而且部分晶面也发育较为完整,但其 (101)晶面尚未观察到(曲线 b 所示);随着水热温度的进 一步提高,纤锌矿结构 ZnSe 的晶面(110),(002),(101), (102),(110),(103)均被观察到,没有其它杂峰被发现, 这说明,此时,纯纤锌矿结构的 ZnSe 已完全生成(曲线 c 所示);但当温度升高至 180 ℃时,纤锌矿结构的 ZnSe 转变为闪锌矿结构的 ZnSe(曲线 d 所示).上述事实清晰 地表明,通过控制水热温度的高低,可实现 ZnSe 纳米 结构相的调控. 值得一提的是, ZnSe 有两种晶型, 一种是闪锌矿稳 定结构, 一种是纤锌矿的高温结构. 纤锌矿结构的 ZnSe 在温度高于 1023 ℃左右才能出现, 以往用湿化学方法 得到的 ZnSe 纳米材料基本上是闪锌矿的稳定结 构^[14,18,19,21], 很少有纤锌矿 ZnSe 纳米结构的报道. 最近, Gao 等^[22]利用溶剂热路线通过热分解前驱体的方法, 在 220 ℃得到了纤锌矿 ZnSe 纳米棒, 纤锌矿结构的出现 归应于水合联氨(N₂H₄•H₂O)的模板导向作用. 本文在 140 ℃左右就能得到纤锌矿 ZnSe 纳米结构, 但对于 ZnSe 纤锌矿结构在低温出现的原因还没有搞清楚, 不 过, 可以肯定的是, 这与 BA 的结构导向作用有关.

图 2 不同水热温度下所得 ZnSe 样品的 XRD 图谱 Figure 2 XRD patterns of the ZnSe samples obtained under different hydrothermal temperature

(a) 25 °C; (b)100 °C; (c) 140 °C; (d) 180 °C

2.2.2 丁胺用量的影响

图 3 给出了不同 BA 用量所得产物的 TEM 图像. 由 图 3 可知, BA 用量对 ZnSe 的形貌有着重要的影响. 当 BA 用量较少时,所得产物呈球状颗粒形貌,而且大量 的颗粒团聚在一起(图 3a);随着 BA 用量的增加,产物 由颗粒状向片状过渡(图 3b);当 BA 用量进一步增加时, 所得产物完全呈现片状形貌,而且由于其比较薄的原 故,大量的片边缘部分发生卷曲,而且片的大小在 200 nm 左右(图 3c),这与 SEM 结构一致(图 1b).由此可见, 通过控制 BA 用量,很容易实现 ZnSe 纳米结构形貌的调 控.对 ZnSe 纳米片晶进一步作 HRTEM 观察(如图 3d 所示),结果表明,ZnSe 纳米片晶是由非常小的众多纳 米颗粒构成,每个粒子的大小约5 nm 左右,这就暗示着 这种片状的纳米结构是由大小约为5 nm 左右的纳米团 簇通过自组装而形成.

图 4 给出了不同 BA 用量下所得产物的 XRD 图谱. 由图 4 可知,当 BA 用量较少时,得到的是闪锌矿结构 的 ZnSe,而且没有其它杂峰被观察到,表明产物的纯度 较高(曲线 a 所示);随着 BA 用量的增多,产物 ZnSe 逐 渐由闪锌矿结构向纤锌矿结构转变;当 BA 用量达到 5 mL 时, 纤锌矿结构的 ZnSe 完全生成, 没有其它杂峰被 发现(曲线 c 所示); 上述事实清晰地表明, BA 的用量对 所得产物 ZnSe 的物相有重要的影响.

图 3 不同 BA 用量所得 ZnSe 样品的 TEM 图像 Figure 3 TEM images of the ZnSe samples obtained under different dosage of BA

(a) 1 mL; (b) 3 mL; (c) 5 mL; (d) HRTEM image

图 4 不同 BA 用量所得 ZnSe 样品的 XRD 图谱 Figure 4 XRD patterns of the ZnSe smaples obtained under different dosage of BA

(a) 1 mL; (b) 3 mL; (c) 5 mL

上述实验结果表明. BA 用量对 ZnSe 结构及形貌有 着重要的影响. 当 BA 用量较少时, 获得闪锌矿结构的 ZnSe 纳米颗粒;随着 BA 用量的增加, ZnSe 纳米材料的 结构与形貌发生了极大的转变, 形貌由颗粒状向片状转 变,同时其相应的物相也由低温闪锌矿结构向高温纤锌 矿结构转变,这充分体现了BA的结构导向模板作用.BA 是一种两亲性的表面活性剂, 它在水溶液中聚集的状态, 与其浓度密切相关. 正如与其它表面活性剂一样[23,24], 只有其达到一定的浓度, 它才能在水溶液中聚集成特殊 的状态,才能导向无机粒子形成各种各样的纳米结构. 因此, 当 BA 用量较少时, 它就不能在水相体系中形成 一定的聚集态,从而也就不能为 ZnSe 纳米粒子的生长 提供合适的微环境. 这也可以解释为什么在水热温度较 高时, ZnSe 由高温纤锌矿结构向低温闪锌矿结构转变. 因为较高的水热温度可能破坏了 BA 在水相体系中的聚 集状态, BA 起不到模板导向的作用; 那么, 较为稳定的 低温闪锌矿结构则容易获得.

2.3 ZnSe 纳米结构的形成过程分析

以EDTA 为稳定剂, BA 为结构导向模板, 通过硼氢 化钠与硒粉反应来提供 Se²⁻源, 制备 ZnSe 纳米结构的 过程涉及以下几个步骤:

(1) Se²⁻源的产生

在 N_2 气保护下, 一定量的硼氢化钠与硒粉将通过 (1)及(2)式反应, 产生 Se^{2-} 离子.

 $4NaBH_4 + 2Se + 7H_2O \rightarrow 2NaHSe + Na_2B_4O_7 + 14H_2O \quad (1)$

$$HSe^{-} + OH^{-} \rightarrow H_2O + Se^{2-}$$
⁽²⁾

从上式可以看出, 硼氢化钠与硒粉经过氧化还原反应产 生 NaHSe 溶液, 由于此时体系呈碱性, 故(2)很容易发 生^[21]; 同时, 由于 EDTA 稳定剂的存在, 它能够与溶液 中的 Zn²⁺配合形成相对稳定的配合物前驱体; 由于该 配合前驱体具有适当的稳定性,在 NaHSe 溶液加入的瞬间不足以使 ZnSe 沉淀过程发生.

(2) ZnSe 的成核及生长

当将刚配制的 NaHSe 溶液加入到含有 Zn²⁺离子的 混合溶液中时,由于此时 EDTA 的稳定作用,产生的 Se²⁻离子与 Zn²⁺离子将通过反应(3)形成 ZnSe 晶核.

$$mZn^{2+} + mSe^{2-} \rightarrow (ZnSe)_m$$
(3)

随着(3)式反应的进行,体系中 ZnSe 晶核越来越多, 并逐步形成了一个 ZnSe 的过饱和溶液;此时,新生成 的 ZnSe 将在 ZnSe 晶核表面上堆积生长;或者是通过 Ostwald 老化过程,小粒子逐渐变成较大的粒子.

$$Zn^{2^+} + Se^{2^-} + (ZnSe)_m \rightarrow (ZnSe)_{m+1}$$
(4)

(4) ZnSe 纳米结构的生成

与常规直接由 Zn²⁺离子和 Se²⁻离子反应生成 ZnSe 不同的是, 这里, 在 EDTA 的稳定作用下, ZnSe 的生成 是一个较为缓慢的过程; 同时, 由于结构导向剂 BA 的 存在, 生成的 ZnSe 纳米簇并不按常规晶体生长规律那 样而去生长、发育, 而是在 BA 的诱导作用下生成一个 预期的纳米结构.

2.4 ZnSe 纳米晶的吸收光谱

图 5 给出了不同样品在室温下的 UV-Vis 吸收光谱, 其中 a 为不加任何稳定剂得到的 ZnSe 块体材料; b 为水 热温度为 180 ℃所得的 ZnSe 样品; c 为水热温度为 140 ℃所得的 ZnSe 样品; d 为水热温度为 100 ℃所得的 ZnSe 样品. 与块体的 ZnS 相比,水热法制备的 ZnSe 纳 米片晶起始吸收均发生了较大程度的蓝移,表明所得的 ZnSe 纳米样品呈现出明显的量子效应,这暗示着 ZnSe 纳米片晶与常规 ZnSe 材料在光电性能方面有着较大的 差异. 另外, 从图 5 也可以看出,不同水热温度下所得

ZnSe 样品表现出不同程度的蓝移, 水热温度越低蓝移 越明显.

3 结论

以BA为结构导向模板,EDTA为稳定剂,采用水热 合成技术,成功地合成了形貌及相可控的ZnSe纳米结 构;详细地考察了各种参数(包括模板剂用量、模板剂种 类、水热温度等)对产物结构和形貌的影响;并利用现代 表征技术监控了无机物成核和生长过程中的结构、物相 及形貌的变化规律.有趣的是,通过调节实验参数,可 以实现ZnSe纳米结构物相及形貌的可控化.这种新型 的ZnSe纳米材料具有明显的量子效应,而且水热温度 及模板剂用量对其吸收光谱影响很大.

References

- Gong, H.; Liu, K. P.; Wang, M. Q.; Huang, H. China Ceramics 2003, 39, 15 (in Chinese).
 (宫华,刘开平, 汪敏强, 黄晖, 中国陶瓷, 2003, 39, 15.)
- Xue, D. S.; Wu, H. C. Optoelectronic Technology & Information 2004, 17, 1 (in Chinese).
 (薛大顺, 吴洪才, 光电子技术与信息, 2004, 17, 1.)
- 3 Li, H. Y.; Jie, W. Q. *Chin. J. Semiconductors* **2003**, *24*, 58 (in Chinese).
 - (李焕勇,介万奇,半导体学报,2003,24,58.)
- Jiang, H. Q.; Yao, X.; Che, J.; Wang, M. Q.; Kong, F. T.; Zhang, L. Y. *Piezoelectrics & Acoustooptics* 2004, 26, 99 (in Chinese).
 (姜海青,姚熹,车峻,汪敏强,孔凡涛,张良莹,压电与 声光, 2004, 26, 99.)
- 5 Zhang, H.; Hao, E. C.; Yang, B.; Shen, J. C. *Chem. J. Chin. Univ.* 2000, 21, 1767 (in Chinese).
 (张浩, 郝恩才, 杨柏, 沈家骢, 高等学校化学学报, 2000, 21, 1767.)
- 6 Wang, Y.; Wang, M.; Xi, Y.; Kong, F.; Zhang, L. J. Cryst.

Growth 2004, 268, 575.

- 7 Kvietkova, B. D.; Hetterich, M.; Schubert, M.; Spemann, D. *Thin Solid Films* **2004**, 455, 228.
- Soundeswaran, S.; Senthil, K. O.; Dhanasekaran, R.; Ramasamy, P.; Kumaresen, R.; Ichimura, M. *Mater. Chem. Phys.* 2003, 82, 268.
- 9 Rusu, G. I.; Popa, M. E.; Iulia, S. Appl. Surf. Sci. 2003, 218, 223.
- 10 Perna, G.; Capozzi, V.; Plantamura, M. C.; Minafra, A.; Biagi, P. F.; Pallara, M.; Orlando, S.; Marotta, V.; Giardini, A. Appl. Surf. Sci. 2003, 208, 582.
- Zhu, J.; Koltypin, Y.; Gedanken, A. Chem. Mater. 2000, 12, 73.
- 12 Duan, X. F.; Lieber, C. M. Adv. Mater. 2000, 12, 298.
- 13 Karanikolos, G. N.; Alexandridis, P.; Itskos, G.; Petrou, A.; Mountziaris, T. J. *Langmuir* 2004, 20, 550.
- 14 Peng, Q.; Dong, Y.; Deng, Z.; Sun, X.; Li, Y. Inorg. Chem. 2001, 40, 3840.
- 15 Shavel, A.; Gaponik, N. A. J. Phys. Chem. B 2004, 108, 5905.
- 16 Yang, J.; Xue, C.; Yu, S. H. Angew. Chem., Int. Ed. 2002, 41, 4697.
- 17 Chen, M.; Gao, L. Mater. Chem. Phys. 2005, 91, 437.
- 18 Peng, Q.; Dong, Y.; Li, Y. Angew. Chem., Int. Ed. 2003, 42, 3027.
- 19 Lv, R.; Cao, C.; Zhai, H.; Wang, D.; Liu, S.; Zhu, H. Solid State Commun. 2004, 130, 241.
- 20 Cozzoli, P. D.; Manna, L.; Curri, M. L.; Kudera, S.; Giannini, C.; Striccoli, M.; Agostiano, A. *Chem. Mater.* 2005, 17, 1296.
- Li, L.; Wu, Q. S.; Ding, Y. P.; Wang, M. P. Mater. Lett. 2005, 59, 1623.
- 22 Chen, M.; Gao, L. Mater. Chem. Phys. 2005, 91, 437.
- 23 Hu, G.; Ma, D.; Liu, L.; Cheng, M.; Bao, X. Angew. Chem., Int. Ed. 2004, 43, 3452.
- 24 Blin, J. L.; Léonard, A.; Yuan, Z.; Gigot, L.; Vantomme, A.; Cheetham, A. K.; Su, B. L. Angew. Chem., Int. Ed. 2003, 42, 2872.

(A0603209 ZHAO, X. J.; ZHENG, G. C.)