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Let X* and Y™ be gencrated by SU{s}, where G(8) is Hamiltonian connected and
| X*| = =%, |Y*| = ¥* and 5P, ¥, ---, 5% be the scts of vertices contained in the open
segments of C between vertices of X*, Let §F, x, 57, 1), *++, Sie, x,» be the segments
and vertices of X* in order around €, S* is said o be an X*(3)-interval f onc of
x;-, and x; belongs to X! — X7,

Let S wm S¥, and S = {a,, ¢,y €35+, €45 &}, [t is casy to see that the statement in
Lemma 2 can be modified as
¥, if §F iz an X*(3)-intervatl,

s({a b}y s < {, _
s*— 1, otherwise
and
e({aj, E’i}! SPy=s—1, F=1,

We claim that =* =4, Suppose x* =k 4+ ¢,¢+ =0, If + =1, there does not exist
an X*(3)-interval 5, and thus in this case the proof of the theorem is the same as that
for r=Fk+ 1,

IfE ¢ =2, then | X* — X¥| ==t —1, and thus there are at most 2(¢r — 1) X*(3)-
intervals.

Following Jacksen's argument [l], one can deduce the following inequality
(n—2x"Yk=(n —2:")n— 22" — 1) + 4(s — 1)

or

n=3k+ 1 +(z; —-ﬁi'_'_—}h),

As n = 3k + 3, r;%-.

On the other hand, it is obvious that 2z + 1 =< s —1 and thus = k ;_ L » which

means that ¢ = —& :_ 1

a

and ¥* =k 4+

i—:I—_ Thus each interval §F, i 5= 1, conaingsa
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single vertex, and 57 contains exactly two vertices. In this case, we have
EV(C)—X*, X")=(k —2)(="+ 1) —2&(5, V(C) — X"),
On the other hand
E(X*, V(C) — X*) =< (k —2)a* — &k,
Hence
£S5, V(C)— X" =k —1,
E(S, X" ) =2k —4 —(f —1) =} — 3,
Because D(S) # &, by Corollary 5 we have E(S, X*) = k — 2, The contradiction shows
that D(S) = @, i. c. z*¥ =k,
Lemma 8. Let S = {a,e,5¢35 -y ;3 b}y £ =2, be an intereal of € between
the vertices of X, If y <<k —3, then E(S, X) =k — 3,
Proof. First of all we will prove two propositions.
Proposition 1. Let ¢; he a rdB-verex of 8§, If v =% — 3, them &({c.}, X)
=1,

Proof. Since
é(terd, X0 =k— e ({eds U's)s
and
s ({cels U S) Sk+2—1—k—y—2k—y—1)=7+3,

we have
E({cgls X)=h—3—»,
Obviously, if ¥y =& — 4, then 8({c,}. X) =15 if y =% — 3, then 2({c,}, X) =10,

and the equality holds enly if ¢, is joined to every vertex of § and to every inner vertex.
In the following we will discuss the case that ¥ =k — 3,

Lev §;={a;y e5 60577 Friw bits Si={ajdiydry ---, Jr,!- bi} be two other inter-
vals which contains more than one wvertex, and let
E{{"s &}! s) =1 + %y E({ﬂi! j'i}! S:) - "l- + [
E({ﬂ', b"}’ 3,) - f.‘ + Er,.

Since ¢ is joined to every inner vertex, there is no rd-vertex or rB-vertex in §; and
5. Thus if £, =1, then. g;==—1; if ; =1, then o = —1, Since ¢; is join=d 1o
every vertex in S, by Lemma 4, every inner vertex in § is also a rdB-vertex. Thus
E(la;y &i1, 8) =1, and 2({a;, 8;},5) =1, Therefore, ({a;, &:;}, X) =k —5 4+,
and if the equality holds, there must be 4, =0; &({%, &}, X) =k — 5+ ¢, and if the
equality holds, there must be =0,

On the other hand, since e, is joined to cvery inmer vertex, so g({a, &7}, .’S,-:: = 2

and if the equality holds, we must have & = 15 by the same reason, E({a, 2}, §;) =2
and if the equality holds, we must have 4 =1, Hence we have
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E({la, b}, X)=k—5—a+4+15—1,
and if the equality heolds, there must be g; == y; == |, Therefore
k—=5)++nu+n—o—2<e({a, b} X)
+ E({a;s &}, X) + 2({a, 4}, X),
Since t+ e+ 1=y + 2=—4&— 1, we have

Wk—2)+3k—D+it—1+i—as—2<e(V(CY—X,X)
= k(k —3),
Since y=4{ — 3, 1=, then k(k —3) + 2(k — 6) < k(k — 3)3 hence k < 6, which
is <ontrary to the assumption that & = 6, This proves that E({c,;}, XD =1,

Proposition 2. Let ¢ br a rdB-vertex of 5, If y = k — 3, then cither E({c,}s
X) =12 or ¢y is joined to every vertex of S,

Proof. 1If at least one wertex of S is not joined to ¢, obviously we have E({c,},
X)=2if y==#% —4, Thus we only consider the case y == § — 3, By Proposition 1, we
know that 8({e;}, X) =1, We will only prove that if &#({c,;}, X) =1, then ¢; must
be joined to every vertex of &,

In fact, if B({c,}, X) =1 and ¢, is not joined to every vertex of §, then ¢, must
be joined to every imner vertex outside S, Let other two intervals of g be 5 = {a;, £,

€13 *" "5 €8 b;} and S; = {a;,’d\s day ", d;:-, b;}, I s5;,=3 and 5;=3, by Lemma
7, we have E(S;, X) =k —3, (5, X) =k —3, Furthermore, by Lemma 4 and
Proposition 1, we obuain 8(8, X) = k — 5, Hence we have
k—-3)G—-)+26—N+ Kk —-5)=<eV(C) =X, X)
= k(k—3),
k(k —3) + k — 5 < k(k - 3),
that is k=5, which is contrary to & = 6,

Therefore we may assume that 5, =4, 5; =2, Since ¢, is joined to every inner
vertex outside S, there is no rA B-vertex in §; or §;,

It , =2, =2, we have £({a, 8}, 5;) =0, £({a, b}, 5;) =0, By Lemma 4
and Proposition 1, we obtain

(S, X)) =2bk—54+u+14+n+12k4+1,
Since there is no rAB-vertex in 5; or §;, we have
E(S,X)=k—5, 8(5;, X) =k —5,
Hence, we have
k+1+ 2k =50+ (R —3DUh —2) <k(k—3),
Rk —3)+h—3=<k(k—3),
which is contrary to the assumption that k= 6,

If 22, =1, by Lemma 7 we know that £(5;,,X) = k — 3; by Lemma 4 and
Prn-po:si'l:icrn 1 we obtain
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S, X)=k—5+u+l1=%k—12,
£(S;,, X) =k —5,
Hence, we have
(k=2 —D+ Rk —-3)+i—-5=<ik(k—3),
Rk —3) +k—4<k(k—3).

which is also contrary to k = 6,

Now we prove this lemms by the fellowing cases.

1. There are f = 0 r.AdB-vertices in §,

(a) D =fe1,

By Lemma 4 we koow that no rod B-vertex of § can be joined to all vertices of §,

Henee by Proposition 2 we know that 8({c,}. X) = 2 for every rdB-vertex ¢, of 5,
S0 we obtain

S, X)=k—-5—c+2f=k—5+ji=k—14,
and if the equality holds, there must be e =f=1, By Lemma 3, (a, ;.)€ E, (&,
c)EE, i=1,2,---, é, and either (a, es) € E or (&, ¢, ) € E, We may suppose
that (@, ) € E_ In this case e, is the unique sd B-vertex of 5, Pur§ w= {e 0007,

e}, There is no rAdB-vertex in §', Otherwise there are at least two r.Ad B-vertices in §,
which is contrary o f =1, Since (r;, )EE, (¢, @)EE,; we can conclude that

E{{fis FJ}! Sj = E({rls ":}: sr) % { = 2+
Let 8({e}, 8) = ri, E({ei}s §) = ri, E({a}, 5) = B, E({6}, 5) = f, Since (4, &)

€ E, there exists a Hamiltonian chain from & to ¢, in G({S5); there also exists a Hamilto-
ntan chain from # w ¢,, Hence we have

E[{“lfl}vx};&_i_'ﬂ_‘ﬂi'l“:
(b, e} X)) k=5 =1, —f + 1,
This reduces to
ES, X) =2k —5)+ 2t —(rnn+ ) — (B + 82)
=2k —=5)4+2t—t+2—1—1
-2k —=5) 1=k —34+k—6=k—3,
(b) f=1,
If a=s¢—2, then
B8, X)=k—5—a+f=k—3,

If @>=r—1, then there iz at least one vertex of ¢ and b, which s joined ro every
vertex of §, We may assume that it is b, Tf there also exists 2 rdB-vertex ¢ in § such
that cy 15 jui:n:d to every vertex of 5, then G(S;I must be Hamiltonian cennected.

In fact, Siuce ¢y is a r.d B-vertex, there exists a Hamiltonien chain from c; 0 & in

G(S), Let this chain be
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Q—(c,—n’“ Biprrrsdyydisy =5),

Since ¢y and & are joined to every vertex of (' respectively, for any two vertices d4; and
d; (F == 1) in this chain we can obtain 2 Hamiltonian chain

('JH Bicis v vy gy disns vy Bjmis drun dyy 00 df).
By the arbitrariness of 4, and dj, G(S) is Hamiltonian connected.

Since ¢, is joined to every vertex of §, by Lemma 4 we know that every inner vertex
of §is 2 rd B-vertex, In addition 1o D{S) = 1§, we can deduce

S, X)2hk—3+6(k —2)—F—1,
If ¢ <k —2, clearly, 8(S, X) =k — 3.
T r= 4k — 2, then BE(S, X) = f ==t =k — 2 by proposition 1,

If a=:—1, nd any rdB-vertex of § can not be joined to all vertices of §, by
Proposition 2 we obtain

S, X)>k—5—a+2f>kh—5+[>k—3,

2. There s oo rAB-vertex in 5,

-

Sinez (8, X) = &k — 5 —a, clarly, the lemma holds if a=< —2, Thus we only
consider the Following two cases.

(a) a = —1,
Tt (a, 4)EE, by Lemma 5 we know that cither (@, ) € E or (o0, 8)EE, We
wnay suppost that (a, r;) € E, In this case we can conclude from Lemma 4 Corollary 4

tthat 8({ey, BY, 5) =1 =12, Since (15 8, €35 €35 * 5 B) iz 2 Homiltonian chain of G(5),
e obtain

E(S; X); E({fn b}r XJ = 't — 3,

If (a,4)¢ E, by Lemma 4 Corollary 3 we know that 8({c), ¢}, §) =<t —2, In
a way similar to 1(a) we can obtain

'E(St X) }!('[“1 "'l.}: x) + E('[b: ‘l}'r x};* -3,
{b) =10,

In this case by Lemma 4 we know that (@, b)€ E, Again by Lemma 4 Corollary 3
wz know that E{{‘:H e, }s 83 ==t —2, Thus following the preceding case we can conclude
that

(S, X)=k—3,
The proof of this lemma is complete.
In the following we will prove the theoremm by the value of ¥,
1. y =10,

Let 5, 5, --+, &, be k intervals of C in order around €, Let § w= §, == {2, &} be
the interval which contsing two vertices, Let € == I8, £, 8, 1,22+, Sysxy} be the arran-
gement of € in a right order. By Lemma 7 and Lemma 8 we know that 8(S;, X) = k—
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3 for every i. Sinee the strict inequality cannot hold, we can conclude tha:s(&;, U SJ-)

v
== & — 1 for every i,
(a) There exists an interval §;, which contsins two vertices such that
(S, X UX) =k —1.

We may assume without loss of generality that 8 sarisfies this condition. When £{{2]}.
X )y>0 and ({8}, X*) >0, if (a.5)€E and (b, 2,)€ E, then these two chords
must “cross” each other, that is £ >4, Thus (&, @)EE, (b, a)EE, Since for arbitrary
biy if (a, B)€ E, then (a, x;)EE, (&, x;)EE and (&, r,)EE, similarly, if (4, a,) €
E, then {a, z;-)€E, (&, ;4 )EE and (a, x,)EE,

Since #(5;,, X*UX") =% — 2, there exists at most one vertex in X which can be
joined 1o a and &, Hence &8({a, &}, X) = 2, which is contrary 10 &({s, ¢}, X) =1k
—3=3,

When E({a}, X™) =0 and E({&}, X*) =%k — 2, obviously, if (a,, #)€ E, then
(%;_15 a)EE and (a4, x,)EE. Thus there eyists at most one vertex in X which can he
joined 1o a, that is ({2}, X) =1, Henece

£({a, 8}, X) =<1
wheih is contrary to E({a, b}, X) =k —32=3,
(b) &(S, XYUX") ==}k — 3 for &ll intervals &, which contains two vertices.
Since E (5“ U Sj) =k — 1, we have
Y
g (S;, U s —(x* ux-)) =72,
il
Because there are only two inner vertices in C and D(5;) = @, these twe inner vertices
must be joined to §),

First of all, these two inner vertices cannot be in the same interval, otherwise they
must be joined to @; and & respectively. Thus there exists s longer cycle. Suppose

Si’ - {‘ij [ bi}ﬂ Sj' — {"ja II"’1! é:I'}
and other intervals all contsin two vertices.

Since for all I ss 4, 7, we have £({a;, &}, (e, d}) =2 and D(5;) = @, we claim
that E({d.‘, &,‘, dia 'E‘J'} M S;) = ]._

If there exists | #= i, j, such that &({a;, &y, @5 &;}, Si) = 2, there must be &({a;,
bity S1) =1, E({a;, &}, §;) =1, Since &({ay; b1}, {c,d}) =1, there arc two ways
to connect:

(’} (Eu C} £ EI {'ﬁ}r d) EE,

In thizs case, (b;, a0 E, (a;, &) E, Hence we can get a longer cycle.

(H} ('ﬂ'la f) E E! (dds JJ £ -Eq.
In this case there must be (&;, a,) € E, (&;, a;) € E; thus E({8,}, X*) = 0, Other-
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wise B(S;, X) = &({4}, X) =k — 2, which is contrary to &(5;, X) =k — 3, Sup-
pose (ap, &;)€ E, In this case, it is contrary to Lemma 1. These prove that &({a;, &,
giy b}y Si) =1,

Since ¢ and d cannot be rA B-vertices, thus (a;, & )JEE, (a;,8;)EE, and we have

E{{‘iv &i}i xj + E{{“h ﬁi}: x) = 2(2#. - 4) - {'i. —2)—4
w3k — 10 => 2k — 6 = 20k — 3},

which is contrary to E(S,, X} =& — 3 and 8(5;, X) =k — 3,

We conclude that ¥ == 0 cannot occor.

.1=y=%k—13,

By Lemmas 7 snd 8, we can deduce

kk—3)=zs(V(O) - X, X2k -+ Gk —r)k—3)
=k(k—3)+vy,

which iz contrary to the assumption ¥ =1,

Ly=k—2,

Let 8§ = {aj, c1y €25 =~y cyyy Bi} and Sy = {ay, diy dyy <-4 doys &} be two intervals
which contain more than ome vertex. Put

£({ﬂ,‘, b"}, S‘} - + :“! 1. - f'} Il-

Then

(32) & and 5; cannot be consecutive intervals on €, Otherwise, let z; be the vertex of
X between §; and §;, Hence the degree of x; is at least & + 1 since x; is joined to every
vertex of Y, which is contrary to the assumption of g-regularity.

(b) (ai, 8)€E, (a1, &;)€E,

If they are not truc, suppose (aj,4) € E (sec Fig.2*), We can get a longer cycle since
the vertex ¥; of ¥ between §; and 5; is joined to every vertex of X, Hence (4;, 5,)EE,
Similarly, we have (a;, §;)EE,

{c) By Lemma 1 we can get the following inequalities
E({ai}s Si) + 8({a}, S) =5 —1,
(15}, 5) + (b}, S =5 —1,
e({ark, 5i) + &({ai}, S) =0 — 1,
e({&i}, Si) + 8({4i}, S) =5 — 1,
These four inequalities must be strict. Otherwise, suppose 8({a;}, 5;) + 8({a;}, §;) = 5—

1, Then (a;, &) € E, which is contrary to (b). Similarly we can prove thar the others
are strict too. So we have

E({’J’l &f: iy 'bl'}'.l SﬂLI"S'f} é 2[-‘1: +.I'g _'2} - '1._.

® Figure 2 in the first part of this paper at page 47 of the last issue of this Jourmal.
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B(SiUS, X) =4k —2) —2(si +au—2) +4 =2k —8,
Hence
k(k—3) = E(V — X, X) = (k — 2)(k — 2) + 2k — 8 > k(k — 3),

which is in contradiction.

4. y=f —1,

y =k = 1 cannot held since

k(k —3)=&(V(C) =X, X) = (k — 1)k —2) = &(k — 3).

As we have said the proof of the theorem is for the cage that r == 1, Now we prove
briefly that the theorem zlso holds when r =2 or r =3,

Assume that there exists ancther vertex w, besides o, in B, Then the number of the

inner wvertices of € is reduced. Thus for sny interval 5, & ({a,—, b}, U S,-) must be re-
inl

doeed and the number which is reduced is exactly r — 1, If 5 == 2, since at most one of

g; and &; can be adjacent to w,, we still have E(S, X) = & — 3, TIf & = 3 and (a;, &;)

€ E, by the proof of Lemma 7, we shall have 2(8,, X) =4 — 3, if (&, 5)EE and

{(2ise) € E, (b;y ) € E, then we may take the chain {a;, w, &} a5 edge (o, 4;),

In this case which reduces to the preceding case and we still have &(5;, X) =k — 3,

Therefore the result of Lemma 7 still holds if there exist more then ooe isolated vertex
in R,

IE s; =4, let 5;m {a;, €, €3, """, €45 s}, We have used the following types of
chords in the proof of Lemmas 8:

(a) &8({ai, b:}s X) and E({c,}, X), where ¢ is the rAB-vertex of §;;

(b} g({fu bl’}'l x} ar E(‘{‘f‘lr fr}l xj;

{c} E{{fu f:}s- X).

They all use an A-vertex (or a rd-vertex) and a B-vertex (or a rB-vertex). Besi-
des, it may use a rAB-vertex.

For rdAB-vertex ¢p whether r =1 or r=>1, we have E({c,}, X) =1, Thus
propositions 1 and 2 in Lemma 8§ still hold.

When using an A-vertex {or 2 rdA-vertex) and a B-vertex {or a rB-vertex) of §;,
even if w, is not jeined to these two vertices st the same time, we still have B(S;, X) =
k — 3 since the number of the inner vertices is reduced. Otherwise, if uy is joined tothese
two vertices at the same time, then w, cannot be joined 1o the A-vertex or B-vertex or rd-
vertex of rB-vertex of other interval. So for sny 8, § =, we have &(5;, X) =k —2,
This is contrary to (& — 2)(# — 1) =< &(k —3), This proves that Lemma 8 holds if
r =1, Heoce it guarantees that the technique of the preceding proof is cfficient for r>
1|-

Part II. R contains no isolared wvertices.

Let 0 = {4, a3, *-*4 g,} bc a chain in R, (@) be the number of occurreneces of
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ordered pairs (e;, ;) of the vertices of €, such that ¢; is joined to one of 4, and g,
¢; is joined to the other, and

s{{‘?}! -‘5".1..‘: {r|'+l! Citans """ fr—l}} = u.
{Ciens Ciszn *=* 9 €i=i} it gaid to be an exchange-interval of C relative 1o

Lemma 9 Let O = 14,, iy -~ 9¢} be a chan with maximal length in R such that
(@) =222, and 8,4 5z, -+ -, 8, denote the exchange-intervali of € relative to O, For
any 5; and 'silu i jl -gi' _ {‘i: LAETE B rn}! S‘f — {c.I Catls """ 2 fr}. Then

8({ers cnls §i) <5 — &,
Proof. Obvicusly
INCeD N S| <5 — 8,
Let 4 =N(c)NS;, B=N(ea)NS, Pur
At = (e €Sy h+1=<{=h+glc,e A},
A wm e e 5, h—g=f=h—1]c,e A},

Then
BSS; —{A*UA"U{eus camy =5 cagu}
Since
HA*UA"U{cas €1y oo o campatli = 4] + 8,
50
1Bl <5 — |4 —e.
That is

e({ers e}y 5) = A + |Bl =5 — e,
Now we return to the proof of the thearem for part 110
We know that [V(C)| = 3k if n =<3k + 3™; thus [R| =3, Since R contains

no igsolated wertices, there is only one component. Let the chain in R be 0 = {g,,4,, * - -
gels thus g=2 or g =3,

Case A, g =12,
1 [(N(g) NV(CHUN(g)NV(C))| =k, the vertices g, and g, are contracted to

one vertex g, So this case can be proved in the same way as part L. In the following we
only consider the case that

HNCg I NVICHUWN(gINV(C)) =k —1,
We have that N(g,)NV(C) = N(g;)NV(C) and [N(g)NV(C}|=|N(g)NV(C)| =
k—1, Pat N{g)NV(C)=X, The cycle C is divided into k — 1 open intervals §,,

Syy v o5 54y by the vertices of X, Let 5, = {¢y, €440 **°, €m}. By Lemma 9, we
have

E({ciy tmls Si) =5, —2 (f#1i),
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E({t‘n tats |J Sj) <> (5—12)

FE T e
S3#h+1=(h—1)—5—2(k—2) <4,

5{53,. X)=e(lei ents X)
=22%k—=2(s; —=1)—4 =2k —15—1),

s(tj S;,X)} jS"___‘: 2(k —s5; —1)

- =3+ 24+ (k—6)k+1)+2,
It # =6, we have

k=1

H(U S,-.X)::*t’—ik+2.

iy

On the other hand,
k-1

s(x, Us)<t—Dk—D=F—3k+2,
=]
which is in contradiction.
Case B. ¢ —3.
The proof of this case is anslogous to that of g == 2,

The procf of the theorem is now completed.



