2-CONNECTED k-REGULAR GRAPHS ON AT MOST 3k+3 VERTICES TO BE HAMILTONIAN (CONTINUED)

ZHU YONG-JIN LIU ZHEN-HONG
(Institute of Systems Science, Academia Sinica)

YU ZHENG-GUANG

(Department of Applied Mathematics, Qinghua University)

Let X^* and Y^* be generated by $S \cup \{v_0\}$, where G(S) is Hamiltonian connected and $|X^*| = x^*$, $|Y^*| = y^*$ and S_1^* , S_2^* , ..., $S_{x^*}^*$ be the sets of vertices contained in the open segments of C between vertices of X^* . Let S_1^* , x_1 , S_2^* , x_2 , ..., $S_{x^*}^*$, x_x^* be the segments and vertices of X^* in order around C. S_i^* is said to be an $X^*(3)$ -interval if one of x_{i-1} and x_i belongs to $X_i^* - X_1^*$.

Let $S = S_1^*$, and $S = \{a_1, c_1, c_2, \dots, c_t, b_1\}$. It is easy to see that the statement in Lemma 2 can be modified as

$$\varepsilon(\{a_1, b_1\}, S_i^*) \leqslant \begin{cases} s_i^*, & \text{if } S_i^* \text{ is an } X^*(3)\text{-intervall,} \\ s_i^* - 1, & \text{otherwise} \end{cases}$$

and

$$\bar{\varepsilon}(\{a_i,b_i\},S_i^*) \leqslant s_i^*-1, \ j \neq 1.$$

We claim that $x^* = k$. Suppose $x^* = k + t$, t > 0. If t = 1, there does not exist an $X^*(3)$ -interval S_i^* , and thus in this case the proof of the theorem is the same as that for x = k + 1.

If $t \ge 2$, then $|X^* - X_1^*| \le t - 1$, and thus there are at most $2(t - 1) X^*(3)$ -intervals.

Following Jacksen's argument [1], one can deduce the following inequality

$$(n-2x^*)k \leq (n-2x^*)(n-2x^*-1)+4(t-1)$$

or

$$n \geqslant 3k + 1 + \left(2\iota - \frac{4(\iota - 1)}{n - 2k - 2\iota}\right).$$

As
$$n = 3k + 3$$
, $t \ge \frac{k+1}{2}$.

On the other hand, it is obvious that $2x^* + 1 \le n - 1$ and thus $t \le \frac{k+1}{2}$, which means that $t = \frac{k+1}{2}$ and $x^* = k + \frac{k+1}{2}$. Thus each interval S_i^* , $i \ne 1$, contains a

single vertex, and Si contains exactly two vertices. In this case, we have

$$\bar{\varepsilon}(V(C)-X^*,X^*)=(k-2)(x^*+1)-2\bar{\varepsilon}(S,V(C)-X^*).$$

On the other hand

$$\bar{\varepsilon}(X^*, V(C) - X^*) \leq (k-2)x^* - k.$$

Hence

$$\bar{\varepsilon}(S, V(C) - X^*) \geqslant k - 1,$$

$$\bar{\varepsilon}(S, X^*) \leqslant 2k - 4 - (k - 1) = k - 3.$$

Because $D(S) \neq \emptyset$, by Corollary 5 we have $\bar{\varepsilon}(S, X^*) \geqslant k - 2$. The contradiction shows that $D(S) = \emptyset$, i. c. $x^* = k$.

Lemma 8. Let $S = \{a, c_1, c_2, \dots, c_t, b\}$, $t \ge 2$, be an interval of C between the vertices of X. If $y \le k - 3$, then $E(S, X) \ge k - 3$.

Proof. First of all we will prove two propositions.

Proposition 1. Let c_{ε} be a rAB-vertex of S. If $y \leq k - 3$, then $\bar{\varepsilon}(\{c_{\varepsilon}\}, X) \geq 1$.

Proof. Since

$$\varepsilon(\{c_s\}, X) = k - \varepsilon(\{c_s\}, \bigcup_i S_i),$$

and

$$\varepsilon(\{c_{\mathbf{g}}\}, \bigcup_{i} S_{i}) \leq 3k + 2 - 1 - k - y - 2(k - y - 1) = y + 3,$$

we have

$$\varepsilon(\{c_s\}, X) \ge k - 3 - y$$

Obviously, if $y \le k - 4$, then $\bar{\epsilon}(\{c_g\}, X) \ge 1$; if y = k - 3, then $\bar{\epsilon}(\{c_g\}, X) \ge 0$, and the equality holds only if c_g is joined to every vertex of S and to every inner vertex. In the following we will discuss the case that y = k - 3.

Let $S_i = \{a_i, e_1, e_2, \dots, e_{i_i}, b_i\}$, $S_i = \{a_i, d_1, d_2, \dots, d_{i_j}, b_i\}$ be two other intervals which contains more than one vertex, and let

$$\bar{\varepsilon}(\{a,b\},S) = t + \alpha, \ \bar{\varepsilon}(\{a_i,b_i\},S_i) = t_i + \alpha_i,$$
$$\bar{\varepsilon}(\{a_i,b_i\},S_i) = t_i + \alpha_i,$$

Since c_g is joined to every inner vertex, there is no rA-vertex or rB-vertex in S_i and S_i . Thus if $t_i \ge 1$, then $\alpha_i \le -1$; if $t_i \ge 1$, then $\alpha_i \le -1$. Since c_g is joined to every vertex in S, by Lemma 4, every inner vertex in S is also a rAB-vertex. Thus $\mathbb{E}(\{a_i, b_i\}, S) \le 1$, and $\mathbb{E}(\{a_i, b_i\}, S) \le 1$. Therefore, $\mathbb{E}(\{a_i, b_i\}, X) \ge k - 5 + t$, and if the equality holds, there must be $t_i = 0$; $\mathbb{E}(\{a_i, b_i\}, X) \ge k - 5 + t$, and if the equality holds, there must be $t_i = 0$.

On the other hand, since c_g is joined to every inner vertex, so $\bar{\varepsilon}(\{a, b\}, S_i) \leq 2$ and if the equality holds, we must have $t_i = 1$; by the same reason, $\bar{\varepsilon}(\{a, b\}, S_i) \leq 2$ and if the equality holds, we must have $t_i = 1$. Hence we have

$$\bar{\varepsilon}(\{a,b\},X) \geqslant k-5-\alpha+t_i+t_i-2,$$

and if the equality holds, there must be $t_i = t_j = 1$. Therefore

$$3(k-5) + 2t + t_i + t_i - \alpha - 2 < \varepsilon(\{a_i, b_i\}, X) + \varepsilon(\{a_i, b_i\}, X) + \varepsilon(\{a, b\}, X).$$

Since $t + t_i + t_j = y + 2 = k - 1$, we have

$$y(k-2) + 3(k-5) + k - 1 + i - \alpha - 2 < \varepsilon(V(C) - X, X)$$

= $k(k-3)$.

Since y = k - 3, $t \ge \alpha$, then k(k - 3) + 2(k - 6) < k(k - 3); hence k < 6, which is contrary to the assumption that $k \ge 6$. This proves that $\bar{\epsilon}(\{c_k\}, X) \ge 1$.

Proposition 2. Let c_x be a rAB-vertex of S. If $y \le k - 3$, then either $B(\{c_x\}, X) \ge 2$ or c_x is joined to every vertex of S.

Proof. If at least one vertex of S is not joined to c_{ε} , obviously we have $\varepsilon(\{c_{\varepsilon}\}, X) \ge 2$ if $y \le k - 4$. Thus we only consider the case y = k - 3. By Proposition 1, we know that $\varepsilon(\{c_{\varepsilon}\}, X) \ge 1$. We will only prove that if $\varepsilon(\{c_{\varepsilon}\}, X) - 1$, then c_{ε} must be joined to every vertex of S.

In fact, if $\mathcal{E}(\{c_i\}, X) = 1$ and c_i is not joined to every vertex of S, then c_i must be joined to every inner vertex outside S. Let other two intervals of φ be $S_i = \{a_i, e_1, e_2, \dots, e_{i_i}, b_i\}$ and $S_i = \{a_i, e_1, e_2, \dots, e_{i_i}, b_i\}$. If $s_i \leq 3$ and $s_i \leq 3$, by Lemma 7, we have $\mathcal{E}(S_i, X) \geq k - 3$, $\mathcal{E}(S_i, X) \geq k - 3$. Furthermore, by Lemma 4 and Proposition 1, we obtain $\mathcal{E}(S, X) \geq k - 5$. Hence we have

$$(k-3)(k-2) + 2(k-3) + (k-5) \le \varepsilon(V(C) - X, X)$$

 $\le k(k-3),$
 $k(k-3) + k-5 \le k(k-3),$

that is $k \leq 5$, which is contrary to $k \geq 6$.

Therefore we may assume that $s_i \ge 4$, $s_i \ge 2$. Since c_s is joined to every inner vertex outside S, there is no rAB-vertex in S_i or S_i .

If $t_i \ge 2$, $t_i \ge 2$, we have $\varepsilon(\{a,b\},S_i) = 0$, $\varepsilon(\{a,b\},S_i) = 0$. By Lemma 4 and Proposition 1, we obtain

$$\varepsilon(S, X) \ge k - 5 + \iota_i + 1 + \iota_i + 1 \ge k + 1$$

Since there is no rAB-vertex in S_i or S_j , we have

$$\varepsilon(S_i, X) \geqslant k - 5$$
, $\varepsilon(S_i, X) \geqslant k - 5$.

Hence, we have

$$k+1+2(k-5)+(k-3)(k-2) \le k(k-3),$$

 $k(k-3)+k-3 \le k(k-3),$

which is contrary to the assumption that $k \ge 6$.

If $t_i \ge 2$, $t_i \le 1$, by Lemma 7 we know that $\mathcal{E}(S_i, X) \ge k - 3$; by Lemma 4 and Proposition 1 we obtain

$$\varepsilon(S, X) \ge k - 5 + \iota_i + 1 \ge k - 2,$$

 $\varepsilon(S_i, X) \ge k - 5.$

Hence, we have

$$(k-2)(k-2) + (k-3) + k-5 \le k(k-3),$$

 $k(k-3) + k-4 \le k(k-3),$

which is also contrary to k > 6.

Now we prove this lemma by the following cases.

1. There are f > 0 rAB-vertices in S_{\bullet}

(a)
$$0 < f < t$$
.

By Lemma 4 we know that no rAB-vertex of S can be joined to all vertices of S. Hence by Proposition 2 we know that $\overline{\varepsilon}(\{c_{\varepsilon}\}, X) \ge 2$ for every rAB-vertex c_{ε} of S. So we obtain

$$\bar{\epsilon}(S, X) \geqslant k - 5 - \alpha + 2f \geqslant k - 5 + f \geqslant k - 4$$

and if the equality holds, there must be a = f = 1. By Lemma 5, $(a, c_{2i+1}) \in E$, $(b, c_{2i}) \in E$, $i = 1, 2, \dots, \frac{t}{2}$, and either $(a, c_2) \in E$ or $(b, c_{i-1}) \in E$. We may suppose that $(a, c_2) \in E$. In this case c_1 is the unique rAB-vertex of S. Put $S' = \{c_1, c_2, \dots, c_t\}$. There is no rAB-vertex in S'. Otherwise there are at least two rAB-vertices in S, which is contrary to f = 1. Since $(c_1, b) \in E$, $(c_1, a) \in E$, we can conclude that

$$\bar{\varepsilon}(\{c_1,c_t\},S)=\bar{\varepsilon}(\{c_1,c_t\},S')\leqslant t-2.$$

Let $\mathcal{E}(\{c_1\}, S) = r_1$, $\mathcal{E}(\{c_1\}, S) = r_2$, $\mathcal{E}(\{a\}, S) = \beta_1$, $\mathcal{E}(\{b\}, S) = \beta_2$. Since $(a, b) \in E$, there exists a Hamiltonian chain from a to c_1 in G(S); there also exists a Hamiltonian chain from b to c_1 . Hence we have

$$\varepsilon(\lbrace a, c_1 \rbrace, X) \geqslant k - 5 - r_1 - \beta_1 + t, \\
\varepsilon(\lbrace b, c_t \rbrace, X) \geqslant k - 5 - r_2 - \beta_2 + t.$$

This reduces to

$$\bar{\epsilon}(S, X) \ge 2(k-5) + 2t - (r_1 + r_2) - (\beta_1 + \beta_2)$$

$$= 2(k-5) + 2t - t + 2 - t - 1$$

$$= 2(k-5) + 1 = k-3 + k-6 \ge k-3.$$

(b) f = i.

If $\alpha \leq t-2$, then

$$\bar{\epsilon}(S, X) \geqslant k - 5 - \alpha + f \geqslant k - 3$$

If $\alpha \ge t-1$, then there is at least one vertex of a and b, which is joined to every vertex of S. We may assume that it is b. If there also exists a rAB-vertex c_g in S such that c_g is joined to every vertex of S, then G(S) must be Hamiltonian connected.

In fact, Since c_g is a rAB-vertex, there exists a Hamiltonian chain from c_g to b in G(S). Let this chain be

$$Q = (c_g = d_0, d_1, \dots, d_t, d_{t+1} = b).$$

Since c_i and b are joined to every vertex of Q respectively, for any two vertices d_i and d_i (i < j) in this chain we can obtain a Hamiltonian chain

$$(d_i, d_{i-1}, \dots, d_0, d_{i+1}, \dots, d_{i-1}, d_{i+1}, d_i, \dots, d_i)$$

By the arbitrariness of d_i and d_j , G(S) is Hamiltonian connected.

Since c_s is joined to every vertex of S, by Lemma 4 we know that every inner vertex of S is a rAB-vertex. In addition to $D(S) = \emptyset$, we can deduce

$$\varepsilon(S, X) \ge k - 3 + \iota(k - 2) - \iota^2 - 2$$

If t < k - 2, clearly, $\bar{\epsilon}(S, X) \ge k - 3$.

If $t \ge k - 2$, then $\varepsilon(S, X) \ge f - t \ge k - 2$ by proposition 1.

If $\alpha \ge t-1$, and any rAB-vertex of S can not be joined to all vertices of S, by Proposition 2 we obtain

$$\varepsilon(S,X) \geqslant k-5-\alpha+2f \geqslant k-5+f \geqslant k-3.$$

2. There is no rAB-vertex in S.

Since $\bar{\epsilon}(S, X) \ge k - 5 - \alpha$, clearly, the lemma holds if $\alpha \le -2$, Thus we only consider the following two cases.

(a)
$$a = -1$$
.

If $(a, b) \in E$, by Lemma 5 we know that either $(a, c_2) \in E$ or $(c_{i-1}, b) \in E$. We smay suppose that $(a, c_2) \in E$. In this case we can conclude from Lemma 4 Corollary 4 that $E(\{c_1, b\}, S) \leq i - 2$. Since $(c_1, a, c_2, c_3, \dots, b)$ is a Hamiltonian chain of G(S), we obtain

$$\bar{\varepsilon}(S, X) \geqslant \bar{\varepsilon}(\{c_1, b\}, X) \geqslant k - 3$$

If $(a, b) \in E$, by Lemma 4 Corollary 3 we know that $B(\{c_1, c_t\}, S) \le t - 2$. In a way similar to I(a) we can obtain

$$\bar{\varepsilon}(S, X) \geqslant \bar{\varepsilon}(\{a, c_i\}, X) + \bar{\varepsilon}(\{b, c_i\}, X) \geqslant k - 3$$

In this case by Lemma 4 we know that $(a, b) \in E$. Again by Lemma 4 Corollary 3 we know that $\tilde{\varepsilon}(\{c_1, c_i\}, S) \leq i - 2$. Thus following the preceding case we can conclude that

$$\varepsilon(S,X) \geqslant k-3$$
.

The proof of this lemma is complete.

In the following we will prove the theorem by the value of y.

1.
$$y = 0$$
.

Let S_1, S_2, \dots, S_k be k intervals of C in order around C. Let $S = S_1 = \{a, b\}$ be the interval which contains two vertices. Let $C = \{S_1, x_1, S_2, x_2, \dots, S_k, x_k\}$ be the arrangement of C in a right order. By Lemma 7 and Lemma 8 we know that $\mathcal{E}(S_i, X) \ge k$.

3 for every i. Since the strict inequality cannot hold, we can conclude that $\mathcal{E}\left(S_i, \bigcup_{i \neq i} S_i\right) = k - 1$ for every i.

(a) There exists an interval Si which contains two vertices such that

$$\varepsilon(S_l, X^+ \cup X^-) \geqslant k-2$$
.

We may assume without loss of generality that S satisfies this condition. When $\mathcal{E}(\{a\}, X^-) > 0$ and $\mathcal{E}(\{b\}, X^+) > 0$, if $(a, b_i) \in E$ and $(b, a_i) \in E$, then these two chords must "cross" each other, that is i > j. Thus $(b, a_2)\bar{\in}E$, $(b_k, a)\bar{\in}E$. Since for arbitrary b_i , if $(a, b_i) \in E$, then $(a, x_i)\bar{\in}E$, $(b, x_i)\bar{\in}E$ and $(b, x_k)\bar{\in}E$, similarly, if $(b, a_i) \in E$, then $(a, x_{i-1})\bar{\in}E$, $(b, x_{i-1})\bar{\in}E$ and $(a, x_1)\bar{\in}E$.

Since $\varepsilon(S_t, X^+ \cup X^-) \ge k - 2$, there exists at most one vertex in X which can be joined to a and b. Hence $\varepsilon(\{a,b\},X) \le 2$, which is contrary to $\varepsilon(\{a,b\},X) = k - 3 \ge 3$.

When $\mathcal{E}(\{a\}, X^-) = 0$ and $\mathcal{E}(\{b\}, X^+) \geqslant k - 2$, obviously, if $(a_i, b) \in E$, then $(x_{i-1}, a) \in E$ and $(a, x_1) \in E$. Thus there exists at most one vertex in X which can be joined to a, that is $\mathcal{E}(\{a\}, X) \leqslant 1$. Hence

$$\bar{\varepsilon}(\{a,b\},X) \leqslant 1$$

which is contrary to $\bar{\epsilon}(\{a,b\},X)=k-3\geqslant 3$.

(b) $\bar{\epsilon}(S_l, X^+ \cup X^-) \leq k - 3$ for all intervals S_l which contains two vertices.

Since
$$\bar{\epsilon}\left(S_{i}, \bigcup_{i \neq j} S_{i}\right) = k - 1$$
, we have

$$\varepsilon \left(S_i, \bigcup_{j \neq i} S_j - (X^+ \cup X^-)\right) \ge 2.$$

Because there are only two inner vertices in C and $D(S_l) = \emptyset$, these two inner vertices must be joined to S_l .

First of all, these two inner vertices cannot be in the same interval, otherwise they must be joined to a_1 and b_1 respectively. Thus there exists a longer cycle. Suppose

$$S_i = \{a_i, c, b_i\}, S_i = \{a_i, d, b_i\}$$

and other intervals all contain two vertices.

Since for all $l \neq i, j$, we have $\mathcal{E}(\{a_l, b_l\}, \{c, d\}) = 2$ and $D(S_l) = \emptyset$, we claim that $\mathcal{E}(\{a_i, b_i, a_j, b_j\}, S_l) \leq 1$.

If there exists $l \neq i$, j, such that $\mathcal{E}(\{a_i, b_i, a_i, b_i\}, S_l) = 2$, there must be $\mathcal{E}(\{a_i, b_i\}, S_l) = 1$. Since $\mathcal{E}(\{a_i, b_i\}, \{c, d\}) = 2$, there are two ways to connect:

(i) $(a_1, c) \in E, (b_1, d) \in E$.

In this case, $(b_i, a_i) \in E$, $(a_i, b_i) \in E$. Hence we can get a longer cycle.

(ii) (a₁, c) ∈ E, (a₁, d) ∈ E.

In this case there must be $(b_i, a_i) \in E$, $(b_i, a_i) \in E$; thus $\mathcal{E}(\{b_i\}, X^+) > 0$. Other-

wise $\mathfrak{E}(S_l, X) \geqslant \mathfrak{E}(\{b_l\}, X) = k - 2$, which is contrary to $\mathfrak{E}(S_l, X) = k - 3$. Suppose $(a_l, b_l) \in E$. In this case, it is contrary to Lemma 1. These prove that $\mathfrak{E}(\{a_i, b_i, a_i, b_i\}, S_l) \leqslant 1$.

Since c and d cannot be rAB-vertices, thus $(a_i, b_i) \in E$, $(a_i, b_i) \in E$, and we have

$$8(\{a_i,b_i\},X) + 8(\{a_i,b_i\},X) \ge 2(2k-4) - (k-2) - 4$$

$$= 3k - 10 > 2k - 6 = 2(k-3),$$

which is contrary to $\bar{\varepsilon}(S_i, X) = k - 3$ and $\bar{\varepsilon}(S_i, X) = k - 3$.

We conclude that y = 0 cannot occur.

2.
$$1 \leq y \leq k-3$$
.

By Lemmas 7 and 8, we can deduce

$$k(k-3) \ge \varepsilon(V(C)-X,X) \ge y(k-2) + (k-y)(k-3)$$
$$= k(k-3) + y,$$

which is contrary to the assumption $y \ge 1$.

3.
$$y - k - 2$$

Let $S_i = \{a_i, c_1, c_2, \cdots, c_{i_j}, b_i\}$ and $S_i = \{a_i, d_1, d_2, \cdots, d_{i_l}, b_l\}$ be two intervals which contain more than one vertex. Put

$$\varepsilon(\{a_i,b_i\},S_i)=t_i+\alpha_i,\ i=j,l$$

Then

- (a) S_i and S_i cannot be consecutive intervals on C_* . Otherwise, let x_i be the vertex of X between S_i and S_i . Hence the degree of x_i is at least k+1 since x_i is joined to every vertex of Y, which is contrary to the assumption of k-regularity.
 - (b) (a_i, b_i)∈E, (a_i, b_i)∈E.

If they are not true, suppose $(a_i,b_i) \in E$ (see Fig.2*). We can get a longer cycle since the vertex y_i of Y between S_i and S_i is joined to every vertex of X. Hence $(a_i, b_i) \in E$. Similarly, we have $(a_i, b_i) \in E$.

(c) By Lemma 1 we can get the following inequalities

$$\begin{split} & \varepsilon(\{a_i\}, S_i) + \varepsilon(\{a_i\}, S_i) \leqslant s_i - 1, \\ & \varepsilon(\{b_i\}, S_i) + \varepsilon(\{b_i\}, S_i) \leqslant s_i - 1, \\ & \varepsilon(\{a_i\}, S_i) + \varepsilon(\{a_i\}, S_i) \leqslant s_i - 1, \\ & \varepsilon(\{b_i\}, S_i) + \varepsilon(\{b_i\}, S_i) \leqslant s_i - 1. \end{split}$$

These four inequalities must be strict. Otherwise, suppose $\mathfrak{s}(\{a_i\}, S_i) + \mathfrak{s}(\{a_i\}, S_i) = s_i - 1$. Then $(a_i, b_i) \in E$, which is contrary to (b). Similarly we can prove that the others are strict too. So we have

$$\mathcal{E}(\{a_i, b_i, a_i, b_i\}, S_i \cup S_i) \leq 2(s_i + s_i - 2) - 4,$$

^{*} Figure 2 in the first part of this paper at page 47 of the last issue of this Journal.

$$\varepsilon(S_i \cup S_l, X) \geqslant 4(k-2) - 2(s_i + s_l - 2) + 4 \geqslant 2k - 8.$$

Hence

$$k(k-3) \ge \bar{\epsilon}(V-X,X) \ge (k-2)(k-2) + 2k - 8 > k(k-3),$$

which is in contradiction.

4.
$$y = k - 1$$
.

y = k - 1 cannot hold since

$$k(k-3) \geqslant \bar{\varepsilon}(V(C)-X,X) \geqslant (k-1)(k-2) > k(k-3).$$

As we have said the proof of the theorem is for the case that r=1. Now we prove briefly that the theorem also holds when r = 2 or r = 3.

Assume that there exists another vertex u_0 besides v_0 in R_* . Then the number of the inner vertices of C is reduced. Thus for any interval S_i , $\varepsilon\left(\{a_i,b_i\},\bigcup_{i\to i}S_i\right)$ must be re-

duced and the number which is reduced is exactly r-1. If $s_i=2$, since at most one of a_i and b_i can be adjacent to u_0 , we still have $E(S, X) \ge k - 3$. If $s_i = 3$ and (a_i, b_i) $\in E$, by the proof of Lemma 7, we shall have $\bar{\epsilon}(S_i, X) \ge k - 3$, if $(a_i, b_i) \in E$ and $(a_i, u_0) \in E$, $(b_i, u_0) \in E$, then we may take the chain $\{a_i, u_0, b_i\}$ as edge (a_i, b_i) .

In this case which reduces to the preceding case and we still have $\bar{\epsilon}(S_i, X) \geqslant k-3$. Therefore the result of Lemma 7 still holds if there exist more than one isolated vertex in R.

If $s_i \ge 4$, let $S_i = \{a_i, c_1, c_2, \dots, c_i, b_i\}$. We have used the following types of chords in the proof of Lemma 8:

- (a) \$\(\{a_i, b_i\}, X\) and \$\(\{c_g\}, X\), where \$c_g\$ is the \$rAB\$-vertex of \$S_i\$;
- (b) $\delta(\{c_1, b_i\}, X)$ or $\delta(\{a_i, c_i\}, X)$;
- (c) $\bar{\epsilon}(\{c_1, c_t\}, X)$.

They all use an A-vertex (or a rA-vertex) and a B-vertex (or a rB-vertex). Besides, it may use a rAB-vertex.

For rAB-vertex c_g whether r=1 or r>1, we have $\mathcal{E}(\{c_g\}, X) \ge 1$. propositions 1 and 2 in Lemma 8 still hold.

When using an A-vertex (or a rA-vertex) and a B-vertex (or a rB-vertex) of S_i , even if u, is not joined to these two vertices at the same time, we still have $\delta(S_i, X) \ge$ \(\lambda = 3 \) since the number of the inner vertices is reduced. Otherwise, if \(u_0 \) is joined to these two vertices at the same time, then uo cannot be joined to the A-vertex or B-vertex or rAvertex of rB-vertex of other interval. So for any S_i , $i \neq i$, we have $\varepsilon(S_i, X) \ge k - 2$. This is contrary to $(k-2)(k-1) \le k(k-3)$. This proves that Lemma 8 holds if r > 1. Hence it guarantees that the technique of the preceding proof is efficient for r> 1.

Part II. R contains no isolated vertices.

Let $Q = \{q_1, q_2, \dots, q_\ell\}$ be a chain in R, $\iota(Q)$ be the number of occurrences of

ordered pairs (e_i, e_j) of the vertices of C, such that e_i is joined to one of q_1 and q_2 , e_j is joined to the other, and

$$\varepsilon(\{q_1, q_2\}, \{c_{i+1}, c_{i+2}, \cdots, c_{j-1}\}) = 0.$$

 $\{c_{i+1}, c_{i+2}, \dots, c_{i-1}\}$ is said to be an exchange-interval of C relative to Q.

Lemma 9 Let $Q = \{q_1, q_2, \dots, q_k\}$ be a chain with maximal length in R such that $t(Q) = t \ge 2$, and S_1, S_2, \dots, S_i denote the exchange-intervals of C relative to Q. For any S_i and S_j , $i \ne j$, $S_i = \{c_i, c_{i+1}, \dots, c_m\}$, $S_j = \{c_m, c_{m+1}, \dots, c_k\}$. Then

$$\varepsilon(\{c_i, c_m\}, S_i) \leq s_i - g$$
.

Proof. Obviously

$$|N(c_i) \cap S_i| \leq s_i - g$$
.

Let $A = N(c_i) \cap S_i$, $B = N(c_m) \cap S_i$. Put

$$A^+ = \{c_f \in S_i, h+1 \leqslant f \leqslant h+g \mid c_h \in A\},\$$

$$A^- = \{c_i \in S_i, h - g \leq f \leq h - 1 \mid c_h \in A\}.$$

Then

$$B \subseteq S_i \to \{A^+ \cup A^- \cup \{c_x, c_{x-1}, \dots, c_{x-x+1}\}\}.$$

Since

$$|\{A^+ \cup A^- \cup \{c_x, c_{x-1}, \dots, c_{x-y+1}\}\}| \ge |A| + g,$$

so

$$|B| \leqslant s_i - |A| - g.$$

That is

$$\varepsilon(\{c_i, c_m\}, S_i) = |A| + |B| \leq s_i - g.$$

Now we return to the proof of the theorem for part II.

We know that $|V(C)| \ge 3k$ if $n \le 3k + 3^{13}$; thus $|R| \le 3$. Since R contains no isolated vertices, there is only one component. Let the chain in R be $Q = \{q_1, q_2, \dots, q_g\}$; thus g = 2 or g = 3.

If $|(N(q_1) \cap V(C)) \cup (N(q_2) \cap V(C))| \ge k$, the vertices q_1 and q_2 are contracted to one vertex q_2 . So this case can be proved in the same way as part I. In the following we only consider the case that

$$|(N(q_1)\cap V(C))\cup (N(q_2)\cap V(C))|=k-1.$$

We have that $N(q_1) \cap V(C) = N(q_2) \cap V(C)$ and $|N(q_1) \cap V(C)| = |N(q_2) \cap V(C)| = k-1$. Put $N(q_1) \cap V(C) = X$. The cycle C is divided into k-1 open intervals S_1 , S_2, \dots, S_{k-1} by the vertices of X. Let $S_i = \{c_i, c_{i+1}, \dots, c_m\}$. By Lemma 9, we have

$$\varepsilon(\{c_i, c_m\}, S_i) \leq s_i - 2 \quad (j \neq i),$$

$$\varepsilon\left(\left\{c_{i}, c_{m}\right\}, \bigcup_{j \neq i} S_{j}\right) \leq \sum_{j \neq i} (s_{j} - 2)$$

$$\leq 3k + 1 - (k - 1) - s_{i} - 2(k - 2) \leq 4.$$

$$\varepsilon(S_{i}, X) \geq \varepsilon(\left\{c_{i}, c_{m}\right\}, X)$$

$$\geq 2k - 2(s_{i} - 1) - 4 = 2(k - s_{i} - 1).$$

$$\varepsilon\left(\bigcup_{i=1}^{k-1} S_{i}, X\right) \geq \sum_{i=1}^{k-1} 2(k - s_{i} - 1)$$

$$= k^{2} - 3k + 2 + (k - 6)(k + 1) + 2.$$

If $k \ge 6$, we have

$$\varepsilon\left(\bigcup_{i=1}^{k-1}S_i,X\right)>k^2-3k+2.$$

On the other hand,

$$\varepsilon\left(X, \bigcup_{i=1}^{k-1} S_i\right) \leqslant (k-2)(k-1) = k^2 - 3k + 2,$$

which is in contradiction.

Case B. g = 3.

The proof of this case is analogous to that of g = 2.

The proof of the theorem is now completed.