•研究论文•

298.16 K Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 五元体系的相平衡研究

黄雪莉*.a,b 朱丽娟b 梁 涛b 宋彭生^c

(^a大连理工大学化工学院 大连 116024) (^b新疆大学化学化工学院 乌鲁木齐 830046) (^c中国科学院青海盐湖研究所 西宁 810008)

摘要 采用等温溶解平衡法研究了五元体系 Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 在 298.16 K、氯化钠饱和时各盐的溶解度 和饱和溶液的物化性质(密度,电导率)以及四元体系Na⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 的相平衡关系.研究表明:在 298.16 K, 氯化钠饱和时该五元体系溶解度相图由六个结晶区、九条单变量溶解度曲线和四个零变量点构成,六个结晶区分别对 应于 NaNO₃+NaCl, KNO₃+NaCl, KCl+NaCl, Mg(NO₃)₂•6H₂O+NaCl, MgCl₂•6H₂O+NaCl 和复盐 KCl•MgCl₂•6H₂O+NaCl; 在 298.16 K 时,该四元体系的相图由四个结晶区、五条单变量溶解度曲线和二个零变量点构成,四个结晶区分 别对应于 NaNO₃, NaCl, Mg(NO₃)₂•6H₂O, MgCl₂•6H₂O.

关键词 五元水盐体系;相平衡;物化性质;溶解度

Study on the Phase Equilibrium for the Quinary System Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O at 298.16 K

HUANG, Xue-Li^{*,a,b} ZHU, Li-Juan^b LIANG, Tao^b SONG, Peng-Sheng^c

(^a School of Chemical Engineering, Dalian University of Technology, Dalian 116024)
 (^b College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046)
 (^c Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008)

Abstract Solubilities of each salt in the system Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻ -H₂O saturated with NaCl and the system Na⁺, Mg²⁺//Cl⁻, NO₃⁻ -H₂O were investigated by isothermal method at 298.16 K. The physico-chemical properties, such as densities and conductivities, of the corresponding solutions were determined too. The dry salt phase diagram of the system Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻ -H₂O saturated with NaCl consists of six crystallization regions (NaNO₃+NaCl, KNO₃+NaCl, KCl+NaCl, Mg(NO₃)₂•6H₂O+ NaCl, MgCl₂•6H₂O+NaCl, nine univariant curves and four invariant points. The dry salt phase diagram of the system Na⁺, Mg²⁺//Cl⁻, NO₃⁻ -H₂O consists of four crystallization regions (NaNO₃, Mg(NO₃)₂•6H₂O, MgCl₂•6H₂O and NaCl), five univariant curves and two invariant points. **Keywords** quinary system; phase equilibrium; physicochemical property; solubility

我国新疆罗布泊地区蕴藏着丰富的盐湖资源, 其中的硝酸盐矿, 是目前为止我国发现的唯一的天然硝酸盐 资源, 包括固体矿和液体矿. 固体矿浸取液中主要含有 Na^+ , K^+ , SO_4^{2-} , Cl^- , NO_3^- 等成分, 此体系已有较完整 的相图数据^[1,2]和较成熟的加工工艺; 液体矿主要含有 Na⁺, K⁺, Mg²⁺, SO₄²⁻, Cl⁻, NO₃⁻等成分, 是一个复杂的六元体系,目前尚未见到关于该卤水体系相平衡研究 报道.显然,开展该卤水体系相平衡研究对该种类型卤 水的成矿规律及化学行为的研究具有重要意义.

作者前期的研究^[3,4]表明新疆硝酸盐液体矿在等温

^{*} E-mail: xuelih@263.net

Received June 6, 2006; revised November 15, 2006; accepted January 4, 2007. 国家自然科学基金(No. 20466003)资助项目.

及自然蒸发过程中,氯化钠首先且始终饱和析出,因此 只需要研究 298.16 K 时 Na⁺, K⁺, Mg²⁺//Cl⁻, SO₄²⁻, NO₃⁻-H₂O 体系中和氯化钠共饱的区域的相图即可满足 指导工艺研究的需要.要进行这些研究,必须首先获得 相应的次级子体系的溶解度数据.这些次级子体系包括 四个五元体系: Na⁺, K⁺, Mg²⁺//Cl⁻, SO₄²⁻ -H₂O; Na⁺, K⁺//Cl⁻, SO₄²⁻, NO₃⁻-H₂O; Na⁺, Mg²⁺//Cl⁻, SO₄²⁻, NO₃⁻-H₂O; Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O. 其中第一 个体系是经典的海水体系,其平衡及介稳相图已被详细 研究过^[5,6]; 第二个体系即为上述罗布泊硝酸盐固体矿 浸取液体系,亦有相平衡数据^[1,2]; 后两个体系目前尚未 见相平衡关系的研究报道.Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 五元体系包括三个含 Na⁺, Cl⁻ 的四元体系: Na⁺, Mg²⁺//Cl⁻, SO₄²⁻ -H₂O; Na⁺, K⁺, Mg²⁺//Cl⁻-H₂O; Na⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O, 只有前两个有溶解度数据^[6].

本文采用等温溶解平衡法研究了 298.16 K 时 Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 体系中和氯化钠共饱的各盐 的溶解平衡规律以及 Na⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 体系 相平衡关系,获得了相图及相应平衡液相的密度、电导 率等物化性质.

1 实验

1.1 试剂和仪器

实验所用试剂均为分析纯或基准纯试剂;实验仪器 包括超级恒温水浴(上海实验仪器厂,±0.02 ℃)、 DDS-11F 型数字式电导仪(江苏江分电分析仪器有限公 司,精度1/100)、电子分析天平(精度1/10000)等.

1.2 实验方法

实验采用等温溶解平衡法^[1]进行.预试验表明本文体系平衡时间为48h,平衡固相用物料衡算、偏光显微镜、体视显微镜、差热分析等确定,并辅以X射线晶体衍射法.

1.3 化学分析方法^[7]

 Cl^- —硝酸银容量法; Mg^{2+} —EDTA 容量法; K^+ —四 苯硼钠重量法; NO_3^- —重铬酸钾氧化法; Na^+ —差减法, 以上分析方法的相对偏差均<0.4%.

1.4 平衡液相物化性质的测定

密度用称量瓶法测定, 电导率用 DDS-11F 型电导 仪测定. 所有物化性质测定均在(298.16±0.1) K 条件下 进行.

2 结果与讨论

2.1 相平衡实验研究结果及讨论

2.1.1 Na⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O四元体系

实验研究结果见表1及图1.

由表1和图1可见,该四元体系298.16 K时相图含 有四个结晶区、五条单变量溶解度曲线和两个零变量点. 此体系中未发现复盐区.四个结晶区分别对应于平衡固 相 NaNO₃, Mg(NO₃)₂•6H₂O, MgCl₂•6H₂O 和 NaCl.两个 零变量点为 A, B 点,平衡固相分别为 MgCl₂•6H₂O+ NaCl+Mg(NO₃)₂•6H₂O 及 NaCl+NaNO₃+Mg(NO₃)₂• 6H₂O. B 是异组成零变量点, A 是同组成零变量点.因篇 幅关系在此不再画出该四元体系水图.

表 1 298.16 K Na⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 体系溶解度数据 Table 1 Solubilities of the system Na⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O at 298.16 K

					2		5 -		
No.	Comp	osition of s	olution	Ja	necke index				
	(g/	100 g solut	ion)	[mol/mo	$1(2Cl^{-}+2N)$	$NO_{3}^{-})]$	Solid		
	Mg^{2+}	Cl^{-}	NO_3^-	2 NO_3^-	Mg^{2+}	H_2O			
1	0	8.056	25.57	0.6447	0	8.967	NaCl+NaNO ₃	[6]	
2	1.936	9.490	21.95	0.5694	0.2562	9.998	NaCl+NaNO ₃		
3	5.681	12.44	18.59	0.4608	0.7183	10.08	NaCl+NaNO ₃		
4	7.370	13.36	18.14	0.4370	0.9058	9.896	NaCl+NaNO ₃		
5(B)	8.428	14.94	19.24	0.4241	0.9475	8.573	NaCl+NaNO ₃ +Mg(NO ₃) ₂ •6H ₂ O		
6	6.270	0	38.71	1	0.8262	9.339	$NaNO_3 + Mg(NO_3)_2 \cdot 6H_2O$	[6]	
7	6.960	5.065	31.34	0.7796	0.8831	9.399	$NaNO_3 + Mg(NO_3)_2 \cdot 6H_2O$		
8	7.179	7.148	28.96	0.6985	0.8831	9.116	$NaNO_3 + Mg(NO_3)_2 \cdot 6H_2O$		
9	8.092	12.60	21.76	0.4967	0.9424	8.897	$NaNO_3 + Mg(NO_3)_2 \cdot 6H_2O$		
10	9.049	26.59	0	0	0.9925	9.507	NaCl+MgCl ₂ •6H ₂ O	[6]	
11	9.096	22.67	8.078	0.1692	0.9721	8.604	NaCl+MgCl ₂ •6H ₂ O		
12(A)	9.041	18.75	15.21	0.3169	0.9607	8.072	$NaCl+MgCl_2\bullet 6H_2O+Mg(NO_3)_2\bullet 6H_2O$		
13	9.274	18.54	14.88	0.3146	1	8.338	$MgCl_2 \bullet 6H_2O + Mg(NO_3)_2 \bullet 6H_2O$	[6]	
14	9.193	18.35	15.64	0.3277	0.9824	8.148	$MgCl_2 \bullet 6H_2O + Mg(NO_3)_2 \bullet 6H_2O$		

图 1 298.16 K Na⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 体系干盐图 Figure 1 Dry salt diagram of Na⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O at 298.16 K

2.1.2 Na^+ , K^+ , $Mg^{2+}//Cl^-$, NO_3^- -H₂O 五元体系

相平衡关系研究结果见表 2 及图 2~5.

图 2 为干盐相图,图 3 为局部放大图,图 4,5 分别 为水图和氯图.

图 2 298.16 K Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻ -H₂O 体系干盐图 **Figure 2** Phase diagram of Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻ -H₂O at 298.16 K

由表 2 和图 2, 3 可见,该相图含有六个结晶区、九 条单变量溶解度曲线和四个零变量点.此体系中存在一 个复盐区.六个结晶区分别对应于平衡固相 NaNO₃+ NaCl (a₁-a₄-b₁-a₈), KNO₃+NaCl (a₄-a₅-b₂-b₃-b₁), KCl+ NaCl (a₅-a₂-a₆-b₂), Mg(NO₃)₂•6H₂O+NaCl (a₈-b₁-b₃-b₄-a₉), MgCl₂•6H₂O + NaCl (a₉-b₄-a₇-a₃)和复盐 KCl•MgCl₂• 6H₂O+NaCl (b₂-a₆-a₇-b₄-b₃).

四个零变量点为 b₁, b₂, b₃, b₄点的平衡固相分别为 NaNO₃+KNO₃+Mg(NO₃)₂•6H₂O+NaCl, KNO₃+KCl +KCl•MgCl₂•6H₂O+NaCl, KNO₃+Mg(NO₃)₂•6H₂O+ KCl•MgCl₂•6H₂O+NaCl, Mg(NO₃)₂•6H₂O+

Figure 3 Enlarged partial diagram of Figure 2

图 4 Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻ H₂O 体系 298.16 K 水图 **Figure 4** Water diagram of Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻ H₂O at 298.16 K

图 5 Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻ -H₂O 体系 298.16 K 氯图 **Figure 5** Chloride diagram of Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻ -H₂O at 298.16 K

表 2 298.16 K Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 体系溶解度和平衡液相物化性质 **Table 2** Solubilities and physicochemical properties of the system Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O at 298.16 K

	Composition of solution				Janecke index						Densites/	
No.	(g/100 g solution))	$[\text{mol/mol} (2\text{K}^+ + 2 \text{NO}_3^- + \text{Mg}^{2+})]$			Solid phase	$(kg \cdot m^{-3})$	Conductivity/(S•m ^{-1})		
	NO_3^-	Cl^{-}	\mathbf{K}^+	Mg^{2+}	$2K^+$	2 NO_3^-	Mg^{2+}	$2Cl^{-}$	H_2O		(kg•III)	
$1(a_1)^{[6]}$	23.41	8.068	0	0	0	1	0	0.6028	16.06	A+G	—	—
$2(a_2)^{[6]}$	0	17.70	5.842	0	1	0	0	3.342	50.83	C+G	_	—
$3(a_3)^{[6]}$	0	26.86	0	9.110	0	0	1	1.011	9.457	F+G	_	—
$4(a_4)^{[6]}$	31.33	6.327	6.979	0	0.2610	0.7390	0	0.2610	7.102	A+B+G	_	—
$5(a_5)^{[6]}$	12.49	12.70	7.879	0	0.5001	0.4999	0	0.8890	16.17	B+C+G	—	—
$6(a_6)^{[6]}$	0	22.01	1.726	6.521	0.0760	0	0.9240	1.0693	13.16	C+E+G	—	—
$7(a_7)^{[6]}$	0	26.73	0.0629	9.080	0.0021	0	0.9979	1.0072	9.491	E+F+G	—	—
8(a ₈)	19.24	14.94	0	8.428	0.0000	0.3092	0.6908	0.4199	6.250	A+D+G	1.368	5.35
9(a ₉)	15.21	18.75	0	9.041	0.0000	0.2480	0.7520	0.5347	6.301	D+F+G	1.375	4.33
10	27.92	7.720	5.220	1.725	0.1840	0.6205	0.1956	0.3001	7.403	A+B+G	1.428	8.78
11	27.12	8.072	5.164	2.088	0.1782	0.5901	0.2318	0.3072	7.377	A+B+G	1.429	8.74
12	26.84	8.314	4.989	2.394	0.1685	0.5715	0.2601	0.3097	7.267	A+B+G	1.418	8.52
13	25.43	8.997	4.629	3.204	0.1495	0.5178	0.3328	0.3204	7.184	A+B+G	1.416	9.08
14	22.56	10.55	3.596	4.812	0.1080	0.4272	0.4648	0.3494	7.103	A+B+G	1.381	7.79
15	22.04	11.62	2.921	6.155	0.0798	0.3795	0.5407	0.3500	6.510	A+B+G	1.391	6.47
16	21.99	12.62	2.644	6.759	0.0691	0.3625	0.5684	0.3639	6.126	A+B+G	1.388	6.65
17	21.90	12.85	2.550	7.341	0.0638	0.3455	0.5908	0.3546	5.895	A+B+G	1.402	6.14
18(b ₁)	21.86	13.95	1.221	8.276	0.0293	0.3311	0.6395	0.3696	5.622	A+B+D+G	1.411	5.10
19	12.03	14.34	6.925	2.310	0.3156	0.3457	0.3387	0.7209	11.69	B+C+G	1.333	9.59
20	11.59	14.99	6.336	2.965	0.2733	0.3153	0.4114	0.7132	11.13	B+C+G	1.334	9.57
21	9.700	15.90	5.083	4.169	0.2065	0.2485	0.5449	0.7126	10.96	B+C+G	1.299	9.87
22	9.393	17.06	4.170	5.245	0.1547	0.2197	0.6257	0.6978	9.974	B+C+G	1.283	8.38
23	9.200	17.86	3.955	5.543	0.1434	0.2103	0.6464	0.7141	9.639	B+C+G	1.318	9.80
24	8.256	17.43	3.751	5.684	0.1377	0.1911	0.6712	0.7057	10.11	B+C+G	1.308	9.93
25	8.181	18.06	3.509	5.756	0.1291	0.1898	0.6812	0.7328	10.01	B+C+G	1.320	10.18
26(b ₂)	8.026	18.21	3.411	6.259	0.1192	0.1769	0.7038	0.7021	9.583	B+C+E+G	1.318	9.34
27	6.690	18.93	3.022	6.275	0.1102	0.1538	0.7360	0.7613	10.13	C+E+G	1.392	4.25
28	5.065	19.74	2.785	6.300	0.1061	0.1217	0.7722	0.8296	10.75	C+E+G	—	
29	3.853	19.94	2.547	6.314	0.1007	0.09608	0.8032	0.8697	11.40	C+E+G	1.271	9.97
30(b ₃)	19.02	15.89	0.7260	8.672	0.0179	0.2953	0.6868	0.4315	5.896	B+D+E+G	1.398	3.29
31	17.75	17.13	0.4241	8.878	0.0106	0.2786	0.7109	0.4703	5.961	D+E+G	1.385	4.18
32	17.05	17.77	0.3670	8.978	0.0092	0.2688	0.7220	0.4900	5.989	D+E+G	1.393	4.25
33	9.809	17.80	2.870	6.610	0.0947	0.2040	0.7013	0.6476	8.865	B+E+G	1.324	8.50
34	5.421	21.98	0.3480	8.444	0.0113	0.1105	0.8782	0.7838	8.943	E+F+G	1.317	7.12
35(b ₄)	16.23	18.21	0.3214	9.212	0.0080	0.2547	0.7374	0.4998	6.028	D+E+F+G	1.403	4.58

上表第一列中, a₁~a₇ 点为文献[6]中的两盐及三盐共饱点, b₁~b₄ 点为四盐共饱点. 固相列中 A 为 NaNO₃, B 为 KNO₃, C 为 KCl, D 为 Mg(NO₃)₂•6H₂O, E 为 KCl•MgCl₂•6H₂O, F 为 MgCl₂•6H₂O, G 为 NaCl.

KCl•MgCl₂•6H₂O+MgCl₂•6H₂O+NaCl. 九条单变量溶 解度曲线分别为 NaNO₃+KNO₃+NaCl $(a_4 \rightarrow b_1)$, NaNO₃ +Mg(NO₃)₂•6H₂O+NaCl $(a_8 \rightarrow b_1)$, KNO₃+Mg(NO₃)₂• 6H₂O+NaCl $(b_1 \rightarrow b_3)$, Mg(NO₃)₂•6H₂O+KCl•MgCl₂• 6H₂O+NaCl $(b_3 \rightarrow b_4)$, Mg(NO₃)₂•6H₂O+MgCl₂•6H₂O+ NaCl $(b_4 \rightarrow a_9)$, KNO₃+KCl+NaCl $(a_5 \rightarrow b_2)$, KNO₃+ KCl•MgCl₂•6H₂O+NaCl $(b_2 \rightarrow b_3)$, KCl+KCl•MgCl₂• 6H₂O+NaCl ($a_6 \rightarrow b_2$), KCl•MgCl₂•6H₂O+MgCl₂•6H₂O +NaCl ($a_7 \rightarrow b_4$).

2.2 物化性质研究结果及讨论

为了研究溶液组成与物化性质的关系,测定了五元 体系中相应各点的密度、电导率等物化性质. 图 6 以图 2 中 NaNO₃+KNO₃+NaCl 和 KNO₃+KCl+NaCl 单变 量线 a₄-b₁和 a₅-b₂为例,分别绘制了曲线上相应点的平

图 6 五元体系 Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻ -H₂O 298.16 K 部分 溶解度曲线上物化性质-组成图

Figure 6 Physicochemical property-composition diagram of equilibrium solution of the quinary system at 298.16 K

衡液相物化性质-组成图.

可以看出,随着溶液 Mg²⁺摩尔分数的增加,溶液 的物化性质均呈规律性的变化:密度变化不大,电导率 降低.

溶液密度与溶液的组成密切相关,由于硝酸盐和氯 化镁的溶解度大,本体系的密度主要取决于二者的浓 度. a₄-b₁和 a₅-b₂单变量线上,硝酸盐均达到饱和,故而 密度变化不大.

电导率与溶液的浓度、温度以及电解质的种类等许 多因素有关,对特定体系主要受溶液中单位体积离子数 和离子间静电作用的影响.在较高浓度范围,离子间静 电作用占主导作用.随着溶液中离子总浓度增加,离子 间相互作用逐渐增强,致使离子的电迁移速度大大减 小,导电能力减弱,电导率减小. a₄-b₁和 a₅-b₂单变量线 上电导率的变化正符合这个规律.

3 结论

通过研究得出以下结论:

(1) 298.16 K 时四元体系 Na⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 相图中含有四个结晶区、五条单变量溶解度 曲线和两个零变量点. 此体系中未发现复盐区.

(2) 298.16 K, 氯化钠饱和时, 五元体系 Na⁺, K⁺, Mg²⁺//Cl⁻, NO₃⁻-H₂O 中有六个两盐结晶区、九条单变量 溶 解 度 曲 线 和 四 个 零 变 量 点 , 存 在 复 盐 KCl•MgCl₂•6H₂O.

(3) 和 Na⁺, K⁺, Mg²⁺//Cl⁻, SO₄²⁻ -H₂O 体系相比, 两者共同存在 MgCl₂•6H₂O, KCl•MgCl₂•6H₂O, KCl 与 NaCl 的共饱区; 和 Na⁺, K⁺//Cl⁻, SO₄²⁻, NO₃⁻ -H₂O 体 系相比, 两者均存在 KCl, NaNO₃, KNO₃ 与 NaCl 的共饱 区.

(4) 平衡液相中密度变化不大, 电导率值随液相组 成变化而有较大的改变.

References

- Su, Y.-G.; Lü, B.-L.; Wang, X.-R. The Study on Phase Diagram of Inorganic Chemical Production (I): Theoretical Foundation, Chemical Industry Press, Beijing, 1985, pp. 223~257 (in Chinese).
 (苏裕光, 吕秉玲, 王向荣, 无机化工生产相图分析(一): 理论基础, 化学工业出版社, 北京, 1985, pp. 223~257.)
- 2 Li, Y.-W.; Han, W.-T. *Chin. Sci. Bull.* **1998**, *43*, 2089 (in Chinese).

(李亚文, 韩蔚田, 科学通报, 1998, 43, 2089.)

- Huang, X.-L.; Zhang, J.-S.; Hu, Z.-Z.; Ma, F.-Y. Industrial Minerals and Processing 2004, (8), 6 (in Chinese).
 (黄雪莉,张建树,胡子昭,马风云,化エ矿物与加工, 2004, (8), 6.)
- 4 Huang, X.-L.; Zhang, J.-S.; Hu, Z.-Z.; Ma, F.-Y. Industrial Minerals and Processing 2004, (10), 13 (in Chinese).
 (黄雪莉, 张建树, 胡子昭, 马风云, 化エ矿物与加工, 2004, (10), 13.)
- 5 Jin, Z.-M.; Xiao, X.-Z.; Liang, S.-M. Acta Chim. Sinica 1980, 38, 313 (in Chinese).
 (金作美,肖显志,梁式梅,化学学报, 1980, 38, 313.)
- 6 Howard, S. Solubilities of Inorganic and Organic Compounds, Pergamon Press, Pergamon, Oxford, New York, 1979.
- 7 Analytical Department of Qinghai Institute of Salt-lake, Chinese Academy of Sciences, *The Analyses of Brines and Salts*, Science Press, Beijing, **1988** (in Chinese).
 (中国科学院青海盐湖研究所分析室,卤水和盐的分析方法,科学出版社,北京, **1988**.)

(A0606067 CHENG, B.; DONG, H. Z.)