•研究论文•

4-(1,2,4-三唑-5-酮-4-基)-3-硫代脲酸乙酯的合成、晶体结构及理论计算

宋纪蓉**" 任莹辉" 黄 洁" 马海霞" 徐抗震" 胡怀明"

("西北大学化工学院 陕西省物理无机化学重点实验室 西安 710069) (⁶西北大学化学系 西安 710069)

摘要 4-氨基-1,2,4-三唑-5-酮(ATO)与硫氰酸钾、氯甲酸乙酯在乙酸乙酯中反应,合成了 4-(1,2,4-三唑-5-酮-4-基)-3-硫 代脲酸乙酯,在室温下采用缓慢蒸发溶剂二甲基甲酰胺得到合适的可用于 X 射线衍射的单晶.晶体属六方系,空间群 为 *R*-3,晶体结构参数为 a=2.60524(7) nm, b=2.60524(7) nm, c=0.82579(6) nm, $\gamma=120^\circ$, V=4.8540(4) nm³, $D_c=1.442$ g/cm³, $\mu=0.300$ mm⁻¹, *F*(000)=2190, *Z*=18, *R*₁=0.0569, *wR*₂=0.1424.选取标题化合物的一个结构单元作为初始模型,运用 Gaussian 03 程序对化合物进行了 HF/6-311G, MP2/6-311G 和 B3LYP/6-311G 水平的几何全优化,并对其原子电荷 及自然键轨道(NBO)进行了分析.

关键词 4-氨基-1,2,4-三唑-5-酮; 乙氧酰基硫脲; 晶体结构; 理论计算; 自然键轨道

Synthesis, Crystal Structure and Theoretical Calculation of 4-(1,2,4-Triazole-5-one-4-yl)-3-thiourea Carboxylic Acid Ethyl Ester

SONG, Ji-Rong^{*-a} REN, Ying-Hui^a HUANG, Jie^a MA, Hai-Xia^a XU, Kang-Zhen^a HU, Huai-Ming^b (^a Department of Chemical Engineering, Shaanxi Key Laboratory of Physico-inorganic Chemistry,

Department of Chemical Engineering, Shaanxi Key Laboratory of Physico-inorganic Chemist Northwest University, Xi'an 710069) (^b Department of Chemistry, Northwest University, Xi'an 710069)

Abstract 4-(1,2,4-Triazole-5-one-4-yl)-3-thiourea carboxylic acid ethyl ester was synthesized by mixing 4-amino-1,2,4-triazole-5-one (ATO), potassium thiocyanate and ethyl chloroformate in ethyl acetate. Single crystals suitable for X-ray measurement were obtained by slow evaporation of the solvent dimethylformamide at room temperature. The crystal belongs to rhombohedral symmetry with space group *R*-3 and crystal parameters of a=2.60524(7) nm, b=2.60524(7) nm, c=0.82579(6) nm, $\gamma=120^{\circ}$, V=4.8540(4) nm³, $D_c=1.442$ g/cm³, $\mu=0.300$ mm⁻¹, F(000)=2190, Z=18, $R_1=0.0569$, $wR_2=0.1424$. A crystal unit of the title compound was selected as the initial structure, and it was fully optimized by HF/6-311G, MP2/6-311G and B3LYP/6-311G methods in Gaussian 03 package, and the atomic charges and natural bond orbital (NBO) analysis were also discussed.

Keywords 4-amino-1,2,4-triazole-5-one; ethoxylacylthiourea; crystal structure; theoretical calculation; natural bond orbital

酰基硫脲类化合物广泛的生物活性已受到人们的 普遍重视,已被用作杀虫剂、除草剂、杀菌剂及植物生 长调节剂⁽¹⁾,在商业上可以用于染料、感光胶片、橡胶、

塑料及纺织物等,某些硫脲衍生物具有生物活性,可以 用作抗癌化疗试剂、抗结核药物、安眠药、麻醉剂、驱 虫剂、消炎药、抗菌剂等^[2].在众多的硫脲衍生物中,酰

^{*} E-mail: renyinghui_ren@163.com Received November 5, 2005; revised November 29, 2005; accepted March 6, 2006. 国家自然科学基金(No. 20571060)和陕西省教育厅专项(No. 05JK294)资助项目.

基硫脲特殊的化学特性决定了其在配位化学领域中的 重要作用^[3,4]. 酰基硫脲可以形成分子内或分子间的氢 键作用力,而且其配位能力非常强,不但有硫原子和氮 原子可以与金属离子配位, 酰基氧原子也有配位能力, 在大多数情况下可以通过硫原子、氧原子与金属离子构 成各种特殊的立体结构,络合构成六元环状结构,提高 了酰基硫脲配合物的稳定性. 化学家以酰基硫脲作为配 体,成功地合成了铜、钴及镍配合物,并对其晶体结构 进行了研究^[5,6].本文在前人研究的基础上合成了 4-(1,2,4-三唑-5-酮-4-基)-3-硫代脲酸乙酯^[7~9],采用缓慢 蒸发溶剂二甲基甲酰胺得到单晶,用 X 射线 Bruker SMART APEX II 衍射仪收集数据,测定了晶体结构,并 对其进行了量子化学计算研究.

1 实验与计算方法

1.1 标题化合物的合成及单晶的制备

4-氨基-1,2,4-三唑-5-酮按文献[10]制备.

在干燥的条件下,0.006 mol 的氯甲酸乙酯在搅拌下 缓慢滴入含 0.006 mol 硫氰酸钾的乙酸乙酯溶剂中,滴 加完毕后在回流温度下继续搅拌反应 2 h,趁热过滤, 除去生成的 KCl,给滤液中加入 0.005 mol 的 4-氨 基-1,2,4-三唑-5-酮,回流反应 4 h. 冷却、抽滤,用蒸馏水 多次洗涤、烘干后得到白色固体,用 DMF 重结晶得到无 色针状晶体.

产率: 63%, m.p. 209~211 °C; ¹H NMR (CDCl₃, 400 MHz) δ : 1.56 (t, *J*=8 Hz, 3H, CH₃), 3.52 (q, *J*=8 Hz, 2H, CH₂), 8.23 (s, 1H, NH), 12.50 (s, 1H, NH); IR (KBr) *v*: 3414.4, 1216.6, 1723.8 cm⁻¹. Anal. calcd for C₆H₉N₅O₃S: C 31.17, H 3.90, N 30.30; found C 31.22, H 3.92, N 30.29.

1.2 衍射数据的收集和晶体结构的测定

选取尺寸为 0.43 mm×0.09 mm×0.08 mm 的单晶,

在 Bruker SMART APEXII 射线面探衍射仪上经石墨单 色器单色化的 Mo Ka (λ =0.071073 nm)射线, 以 ω - θ 方式 扫描,在 293(2) K 温度下,扫描范围为 3.06°≤θ≤25.09°, $-31 \leq h \leq 24$, $-28 \leq k \leq 31$, $-9 \leq l \leq 9$ 共收集 7205 个衍 射点, 其中1917个独立衍射点[R_{int}=0.0842]. 数据经LP 和经验吸收校正.晶体结构由直接法解出,所有非氢原 子的坐标是在以后的数轮差值 Fourier 合成中陆续确定 的. 对全部非氡原子的坐标以及各项异性热参数用经全 矩阵最小二乘法对 F² 进行修正.结构分析用 SHELXL-97软件包完成. 晶体结构分析表明, 化合物的 晶体为六方系, 空间群为 R-3. 晶胞参数为 a= 2.60524(7) nm, b=2.60524(7) nm, c=0.82579(6) nm, $\gamma=$ 120° , $\mu = 0.300 \text{ mm}^{-1}$, $V = 4.8540(4) \text{ nm}^{3}$, $D_{c} = 1.442$ g/cm³, F(000)=2190, Z=18, 最终的偏离因子为 R₁= 0.0569, wR2=0.1424. 最终差值电子云密度的最高峰为 498 e/nm³, 最低峰为-242 e/nm³.

1.3 量子化学计算模型及方法

根据上述实测的化合物晶体结构,选取1个分子作 为初始构型,运用Gaussian 03量子化学程序包^[11],采用 DFT-B3LYP/6-311G,HF/6-311G 和 MP2/6-311G 方法, 对标题化合物进行构型全优化和频率计算.振动分析表 明,所得的优化构型均对应势能面上能量最小点(即无 虚振动频率),表明所得的优化构型为稳定构型.全部 计算在联想Pentium IV 微机上进行,计算中所有收敛精 度均取程序设定的缺省值.

2 结果与讨论

2.1 晶体结构分析

该化合物的原子坐标及热参数列于表 1, 部分键 长、键角及二面角列于表 2, 氢键数据列于表 3, 分子结 构如图 1, 晶体堆积如图 2.

				-	-	-			-
Atom	x	у	z	$U_{ m eq}{}^a$	Atom	x	у	z	$U_{ m eq}{}^a$
S(1)	3816(1)	3068(1)	11134(1)	56(1)	N(2)	4714(2)	3906(2)	6846(4)	52(1)
C(1)	4843(2)	3236(2)	8294(5)	47(1)	N(3)	4252(2)	3011(2)	7900(4)	43(1)
C(2)	4204(2)	3439(2)	7088(5)	52(1)	N(4)	3792(2)	2489(2)	8468(4)	45(1)
C(3)	3550(2)	2485(2)	9925(4)	39(1)	N(5)	3063(2)	1960(2)	10336(4)	45(1)
C(4)	2746(2)	1466(2)	9409(5)	50(1)	O(1)	5055(1)	2980(1)	9062(4)	58(1)
C(5)	1893(2)	510(2)	9518(7)	72(2)	O(2)	2883(1)	1389(1)	8064(3)	63(1)
C(6)	1419(3)	513(3)	8607(9)	106(2)	O(3)	2274(1)	1087(1)	10236(4)	67(1)
N(1)	5103(2)	3776(2)	7589(4)	50(1)	O(4)	6667(1)	3333(1)	9200(30)	180(11)

表1 化合物原子坐标及热参数"

Table 1 Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\times 10 \text{ nm}^2)$ for the title compound

 a $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 2 Selected bond lengths, angles and dihedral angles for the title compound										
Bond length/(10 ⁻¹ nm)										
S(1)—C(3)	1.652(4)	N(3)—N(4)	1.370(4)	C(2)—N(3)	1.361(5)					
C(1)—N(1)	1.350(5)	C(1)—O(1)	1.231(5)	C(3)—N(4)	1.356(5)					
C(2)—N(2)	1.292(5)	C(1)—N(3)	1.386(5)	C(4)—O(2)	1.213(5)					
C(5)—O(3)	1.450(6)	N(5)—C(3)	1.365(5)	C(4)—N(5)	1.364(5)					
C(5)—C(6)	1.447(8)	O(3)—C(4)	1.320(5)	N(1)—N(2)	1.364(5)					
	Bond angle/(°)									
O(3)—C(4)—N(5)	108.3(4)	C(6)—C(5)—O(3)	110.5(5)	C(4)—O(3)—C(5)	117.6(3)					
C(2)—N(2)—N(1)	103.8(4)	C(2)—N(3)—C(1)	108.0(4)	C(2)—N(3)—N(4)	126.1(4)					
C(3)—N(4)—N(3)	118.9(3)	C(4)—N(5)—C(3)	128.8(3)	N(4)—N(3)—C(1)	125.1(4)					
C(1)—N(1)—N(2)	114.0(4)									
		Dihedral angle/	(°)							
O(1)—C(1)—N(1)—N(2)	-179.6(4)	O(1)—C(1)—N(3)—C(2)	178.3(4)	S(1)—C(3)—N(5)—C(4)	171.1(4)					
N(3)—C(2)—N(2)—N(1)	-2.1(5)	N(5)—C(3)—N(4)—N(3)	174.6(3)	N(5)—C(4)—O(3)—C(5)	-175.9(4)					
N(2)—C(2)—N(3)—N(4)	173.6(3)	N(1)—C(1)—N(3)—N(4)	-173.5(3)	S(1)—C(3)—N(4)—N(3)	-5.2(5)					
N(3) - C(1) - N(1) - N(2)	2.2(4)	O(3)—C(4)—N(5)—C(3)	-173.3(4)	N(1)—C(1)—N(3)—C(2)	-3.3(4)					
C(1) - N(1) - N(2) - C(2)	-0.2(5)	N(2)—C(2)—N(3)—C(1)	3.6(5)							

表 2 化合物部分键长、键角及二面角 able 2 Selected bond lengths, angles and dihedral angles for the title compound

表 3 化合物的氢键 ^a Table 3 Hydrogen bonds of the title compound^a

	, , , , , , , , , , , , , , , , , , , ,	I I I		
D—H···A	d(D—H)/nm	d(H····A)/nm	$d(D \cdots A)/nm$	∠DHA/(°)
N(1)—H(1)····O(1)#1	0.0860	0.1929	0.2788	176.50
N(4)—H(4)····O(2)#2	0.0860	0.2030	0.2673	130.84
N(5)—H(5)…N(2)#3	0.0860	0.2122	0.2969	168.26

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 y+1/3, -x+y+2/3, -z+5/3; #2 -x+2/3, -y+1/3, -z+4/3; #3 -x+y+1/3, -x+2/3, z+2/3.

图 1 化合物晶体图 Figure 1 The crystalline structure of the title compound

图 2 化合物晶胞堆积图

Figure 2 The packing diagram of the molecular in unit-cell

从表 2 中数据可以看出,环骨架原子的二面角: N(3)-C(1)-N(1)-N(2), C(1)-N(1)-N(2)-C(2), N(2)-C(2)-N(3)-C(1), N(1)-C(1)-N(3)-C(2)与 0° 都稍有偏差,表明环平面稍有扭曲,环原子的共面性差. 三唑环骨架键长都在 0.1250~0.1390 nm,介于相应的 N-N 单、双键长(0.1449, 0.1252 nm)和 C-N 单、双键 长(0.1471, 0.1273 nm)之间^[12],表明此三唑环虽然扭曲 但仍然具有芳香性.

C(5)—C(6)—H(6A), C(5)—C(6)—H(6B)和 C(5)— C(6)—H(6C)均为 109.5°, 表明 C(6)原子取 sp³杂化, 三 唑环内的5个环原子均取 sp²杂化,构成了5中心6电子 共轭体系,由于 sp²杂化态含较多 s 成分,前者的成键强 度大于后者,造成了环内 C—H 键较环外乙基中 C(6)— H 键短[环中 C(2)—H(2)键长为 0.093 nm, N(1)—H(1)为 0.086 nm;而环外的 C(6)—H 键长却都为 0.096 nm].从 晶体数据结果还可以看出,N(5)—C(3),N(5)—C(4)和 N(4)—C(3)键长(分别为 0.1365, 0.1364 和 0.1356 nm)介 于 N—C 单、双键长之间,这是由于形成了共轭的缘故.

在标题化合物中存在两类性质的氢键,分子内氢键和分子间氢键,它们的存在使得化合物形成复杂的空间结构,氢键数据如表3所示.第一类氢键是N(4)与O(2)形成了分子内氢键;第二类氢键是三唑环上的N(2)与另一个分子的N(5)形成分子间氢键,使得化合物首(三唑环)尾(硫代脲酸乙酯支链)相连;三唑环上N(1)原子和另一个分子中的三唑环上的羰基O(1)也形成了分子间氢键,使得化合物首(三唑环)首(三唑环)相连.

2.2 几何结构优化及自然原子电荷分析

三种计算方法对标题化合物进行几何优化后所得的主要几何参数(键长和键角)见表 4. 由于考虑了电子相关、包含了更多电子相斥,故 B3LYP 方法计算键长较相应的 HF 键长有所增大. 成键原子间电荷密度越大、电子相关效应越强烈, B3LYP 计算键长与 HF 相应结果差别就越大^[13].

表 5 给出了化合物部分原子的自然原子电荷数, 三种计算方法得到的电荷分布较一致. 从表中可看到, S, N原子和 O 原子及 C(6)原子均带负电荷; 正电荷主要分布在与 S 原子和 O 原子相连的 C 原子上. 原子上负电荷越多、亲核性越强, 其与金属成键形成配合物的能力亦越强. 因此可以预示 O(2), N(5)和 O(1)原子将是化合物的主要配位中心.

2.3 分子总能量及前沿轨道能量分析

分子轨道理论认为,最高占据轨道(HOMO)、最低 空轨道(LUMO)及其附近的分子轨道对生物活性影响最 大,因此研究前沿轨道的性质可以为确定活性部位以及 探讨作用机制等提供重要信息.HOMO具有优先提供电 子的重要作用,LUMO具有接受电子的重要作用^[14,15]. 表 6 列出了用 B3LYP 和 HF 两种方法计算后所得的分 子总能量、前沿轨道能量和轨道主要成分的百分比值. 由于考虑了电子相关效应,B3LYP 方法计算的总能量比 HF 能量低.

	U	· ,	U	.,			
Bond length	B3LYP	HF	MP2	Bond length	B3LYP	HF	MP2
S(1)—C(3)	1.7022	1.7045	1.7019	N(3)—N(4)	1.3725	1.3565	1.3784
C(1)—N(1)	1.3781	1.353	1.3856	C(1)—O(1)	1.2367	1.2197	1.2502
C(2)—N(2)	1.3065	1.2748	1.3288	C(1)—N(3)	1.4266	1.3905	1.4302
C(5)—O(3)	1.4917	1.4666	1.5013	C(2)—N(3)	1.3892	1.383	1.3919
N(5)—C(3)	1.396	1.373	1.4053	C(3)—N(4)	1.3665	1.3439	1.3771
O(3)—C(4)	1.3607	1.3236	1.3746	C(4)—O(2)	1.2447	1.2195	1.2544
N(1)—N(2)	1.4086	1.3892	1.4187	C(4)—N(5)	1.3822	1.3699	1.3894
C(5)—C(6)	1.5176	1.5125	1.524				
Bond angle	B3LYP	HF	MP2	Bond angle	B3LYP	HF	MP2
O(3)—C(4)—N(5)	109.7217	110.3089	109.1006	C(6)—C(5)—O(3)	110.6509	110.7335	110.536
C(2)—N(2)—N(1)	104.3316	105.2222	103.6913	C(2)—N(3)—C(1)	109.2535	108.9572	109.8087
C(3)—N(4)—N(3)	121.3029	121.3854	119.9041	C(1)—N(1)—N(2)	114.1639	113.2149	114.5463
C(4)—O(3)—C(5)	117.7817	120.8079	116.2888	N(4)—N(3)—C(1)	123.4588	123.7916	122.9719
C(2)—N(3)—N(4)	127.1707	127.1322	126.4437	C(4)—N(5)—C(3)	128.3667	128.9323	128.4424

表 4 三种方法计算化合物的键长(×10⁻¹ nm)、键角(°) Table 4 Selected bond length (×10⁻¹ nm) and bond angle (°) from three methods of the title compound

	表5 化合物的目然原子电荷计算结果(e)	
Table 5	Calculated results natural atomic charges of the title compound ((e)

				υ	1	()	
Atom	B3LYP	HF	MP2	Atom	B3LYP	HF	MP2
S (1)	-0.18471	-0.29112	-0.25037	O(3)	-0.55121	-0.62902	-0.64732
N(1)	-0.43735	-0.49662	-0.52435	C(1)	0.73079	0.98084	0.92110
N(2)	-0.26487	-0.28083	-0.29144	C(2)	0.20613	0.28985	0.30425
N(3)	-0.29072	-0.35178	-0.37286	C(3)	0.26917	0.44367	0.43511
N(4)	-0.41717	-0.46974	-0.49063	C(4)	0.89739	1.06957	1.09176
N(5)	-0.61717	-0.69936	-0.72140	C(5)	0.05318	0.05838	0.05459
O(1)	-0.61094	-0.71435	-0.71921	C(6)	-0.60376	-0.54664	-0.55514
O(2)	-0.64721	-0.73438	-0.74573				

表6 分子总能量、前沿轨道能量(Hartree)和轨道主要成分的百分比值

Table 6	Table 6 Total energy, frontier orbital energy (Hartree) and the percentage of orbital compositions									
	B3LYP					HF				
E _{ttota} /Hartree	<i>E</i> _{ttota} /Hartree —1131.61932483				-1126.60)647108				
E _{HOMO} /Hartree	-0.24229				-0.34	4890				
E _{LUMO} /Hartree		-0.0)6858			0.079	978			
ΔE^a /Hartree	ΔE^a /Hartree 0.17371			0.42868						
Atom	Ŀ	I^b	L^b		H^b		L^b			
Atom	s ^c	\mathbf{p}^{c}	s ^c	\mathbf{p}^{c}	s ^c	p ^c	s ^c	p ^c		
S (1)	0.024	57.46	0.009	17.66	0.0304	67.415	0.0076	15.24		
N(4)	13.035	2.468	0.361	10.279	0.0509	13.032	0.2185	10.470		
N(5)	10.545	2.009	0.006	0.700	0.1620	7.732	0.0138	1.8867		
O(1)	0.0168	0.0204	0.0409	0.0569	0.0138	0.268	0.0305	0.028		
C(1)	0.029	0.258	0.996	0.643	0.0201	0.2363	0.7459	0.4896		
C(3)	0.178	11.11	0.004	35.074	0.0235	7.2803	0.0194	43.10		
C(4)	0.448	0.358	0.003	14.300	0.00301	0.0428	0.0039	10.382		

 $^{a}\Delta E = E_{LUMO} - E_{HOMO}$. ^b H represents atomic orbital percentage in HOMO and L represents atomic orbital percentage in LUMO. ^c s and p represent s orbit and p orbit, respectively.

由表可知,两种计算方法得出的结论比较一致,同 样的以 HF 计算结果为例,标题化合物的最高占据轨道 主要位于硫脲基上,最低空轨道主要位于硫脲甲酰基 上.同时,尽管 S(1)原子和 C(3)原子所带自然电荷数比 较小(表 5),但它们在前沿轨道中所占的比重值较大(表 6,图 3),因此发挥了较强的作用.而 C(1)原子带的正电 荷最多,但在 LUMO 中所占的比重较小(图 3b),难以发 挥电子受体作用;同理,O(1)原子带的负电荷较多,但 在 HOMO轨道中的比重值却很小(图 3a),很难发挥供电 子的作用.

2.4 自然键轨道分析

在 HF/6-311G 水平下对化合物进行了自然键轨道 (NBO)分析,自然键轨道占据数列于表 7. S(1)—C(3), C(1)—O(1), N(2)—C(2), O(2)—C(4)之间为双键,它们

图 3 标题化合物的 HOMO (a)和 LUMO (b)轨道示意图 Figure 3 HOMO (a) and LUMO (b) of the title compound

的占据数包含 σ 键与 π 键之和,故明显大于其他单键, 其中 C(1)—O(1)和 O(2)—C(4)的占据数比较大,与其键 长(0.1231 和 0.1213 nm)相对比较短对应.

表 8 列出了化合物中部分电子供体(Donor)轨道 *i* 和 电子受体(Acceptor)轨道 *j* 之间的相互作用稳定化能 *E*.

		14010	occupancy of i	B o for the the co	npounu		
Bond	B3LYP	HF	MP2	Bond	B3LYP	HF	MP2
S(1)—C(3)	3.95252	3.96638	3.96238	C(5)—O(3)	1.98610	1.98816	1.98751
C(1)—N(1)	1.98910	1.98946	1.99000	N(1)—N(2)	1.98142	1.98254	1.98972
C(1)—N(3)	1.98126	1.98377	1.98405	N(3)—N(4)	1.98918	1.98956	1.98397
C(1)—O(1)	3.99119	3.99036	3.99136	LP(1)O2	1.97188	1.97670	1.97628
C(2)—N(2)	3.94608	3.9588	3.9569	LP(2)O2	1.82793	1.89089	1.89215
C(2)—N(3)	1.98668	1.98711	1.98817	LP(1)O1	1.97188	1.98039	1.97988
C(3)—N(4)	1.98767	1.98795	1.98859	LP(2)O2	1.84640	1.87654	1.87677
C(2)—N(5)	1.98481	1.98615	1.98684	LP(1)O3	1.96491	1.967013	1.97411
C(4)—N(5)	1.98529	1.98603	1.98756	LP(2)O3	1.80492	1.85203	1.86675
C(4)—O(2)	3.98857	3.98752	3.9786	LP(1)N1	1.66303	1.72944	1.73125
C(4)—O(3)	1.99018	1.99116	1.99034	LP(1)N2	1.94150	1.95455	1.96122
C(5)—C(6)	1.99052	1.99005	1.99084	LP(1)N3	1.66918	1.73793	1.73995
LP(1)S1	1.98601	1.98761	1.98633	LP(1)N4	1.69682	1.74623	1.76427
LP(2)S1	1.88422	1.91232	1.90335	LP(1)N5	1.64842	1.71856	1.72379

表7 化合物的自然键轨道占据数^a Table 7 Occupancy of NBO for the title compound

^{*a*} LP(1) and LP(2) denote the first and the second lone pair electron respectively.

表8 化合物的 HF/6-311G 自然轨道分析部分结果"

Table 8 Part of calculated results of the title compound at the HF/6-311G level by NBO analysis

Donor (i)	Acceptor (<i>j</i>)	$E/(kJ \cdot mol^{-1})$	Donor (i)	Acceptor (<i>j</i>)	$E/(kJ \bullet mol^{-1})$
LP(1)N(1)	BD*(1)C(1)—O(1)	425.77	LP(1)N5	BD*(1)S(1)—C(3)	377.66
LP(1)N(1)	BD*(2)C(2)—N(2)	137.40	LP(1)N5	BD*(2)C(4)—O(2)	318.56
LP(1)N(3)	BD*(1)C(1)—O(1)	307.90	LP(2)O2	BD*(1)N(4)—H(4)	21.96
LP(1)N(3)	BD*(2)C(2)—N(2)	221.91	LP(1)N4	BD*(1)S(1)—C(3)	483.54

^{*a*} *E* denotes the stabilization energy, BD denotes bonding orbital, BD* denotes antibonding orbital, LP denotes lone-pair. For LP: (1) and (2) denote the first and the second lone pair electron respectively.

稳定化能 E 越大表明 i 与 j 轨道相互作用越强, 即 i 向 j 提供电子的倾向越大, 电子的离域化程度越大^[15~17].

由分析结果可知, 在三唑环中, 氮原子的孤对电子 都与相邻键有强的相互作用, 如 N(3)原子的孤对电子与 其相邻键 N(2)—C(2)和 C(1)—O(1)反键轨道的稳定化能 分别为 221.96 和 307.90 kJ•mol⁻¹; N(1)原子的孤对电子与 其相邻键 C(1)—O(1)和 N(2)—C(2)反键轨道的稳定化能 分别为 425.77 和 137.40 kJ•mol⁻¹, 表明三唑环共轭. 三唑 环外的 N(4)原子上的孤对电子对 S(1)—C(3)有强的相互 作用, 其反键轨道相互作用的稳定化能为 483.54 kJ• mol⁻¹; 同样 N(5) 原子上的孤对电子对其相邻键 S(1)— C(3)和 C(4)—O(2)也有较强的相互作用, 其反键轨道相 互作用的稳定化能分别为 377.66 和 318.56 kJ•mol⁻¹. 这 些表明硫脲甲酰基形成了共轭体系, 这与晶体结构的分 析结果—致.

从表中还可以看出, O(2)原子上的孤对电子对 N(4)—H(4)的反键轨道的稳定化能为 21.69 kJ•mol⁻¹, 表 明 O(2)原子与 N(4)—H(4)间有一定的相互作用, O(2)原 子作为电子给体, N(4)—H(4)作为电子受体, 它们之间 形成了 N(4)—H(4)…O(2)氢键, 这与表 3 中所示的氢键 一致.

References

- Wang, D.-X.; Bo, Z.-S. New Pesticide Series, Central China Normal University Press, Wuhan, 1998, p. 31 (in Chinese).
 (王大翔,柏再苏,新农药论丛,华中师范大学出版社, 武汉, 1998, p. 31.)
- 2 Zou, J.-S.; Xue, S.-J.; Guan, Q. Synth. Chem. 2001, 9(2), 109 (in Chinese).
- (邹金山, 薛思佳, 管谦, 合成化学, **2001**, 9(2), 109.)
- 3 Koch, K. R. Coord. Chem. Rev. 2001, 216, 473.
- 4 Huang, Z.-S.; Wu, X.-L.; Liu, Y.; Jiang, L.-S.; Wang, Z.-C.; Gu, L.-Q. Chin. J. Org. Chem. 1998, 18(5), 481 (in Chinese).
 (黄志纾, 吴晓琳, 刘煜, 蒋腊生, 王植材, 古练权, 有机
- 化学, **1998**, *18*(5), 481.) 5 Shen, X.; Wen, T.-B.; Liu, Q.-T.; Huang, X.-Y.; Kng, B.-S.; Wu, X.-L.; Huang, Z.-S.; Gu, L.-Q. *Polyhedron* **1997**,

16(15), 2605.

- 6 Guillon, E.; Mohamadou, A.; Dechamps-Olivier, I.; Barbier, J.-P. Polyhedron 1996, 15(5/6), 947.
- 7 Sun, X.-H.; Gao, R.-L.; Liu, Y.-F.; Sun, G.-F.; Chang, J.-H.; Wang, H.-F. *Chem. Eng.* 2003, *31*(2), 75 (in Chinese).
 (孙晓红,高润利,刘源发,孙国锋,常建华,王慧芳,化 学工程, 2003, *31*(2), 75.)
- Li, S.-X.; Wang, Y.-G. Chin. J. Org. Chem. 2003, 23(11), 1311 (in Chinese).
 (李淑贤, 汪焱钢, 有机化学, 2003, 23(11), 1311.)
- 9 Wei, T.-B.; Chen, J.-C.; Wang, X.-C.; Yang, S.-Y. Chem. J. Chin. Univ. 1992, 13(9), 1217 (in Chinese).
 (魏太保,陈继畴,王秀春,杨素铀,高等学校化学学报, 1992, 13(9), 1217.)
- 10 Zhang, J.-G. *M.S. Thesis*, Beijing Institute of Technology, Beijing, **2000** (in Chinese).

(张建国,硕士学位论文,北京理工大学,北京,2000.)

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. 11 E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, Revision B. 01, Gaussian, Inc., Pittsburgh PA, **2003**.

- 12 Harmony, M.-D; Laurie, V.-W.; Kuczkowski, R.-L. J. Phys. Chem. Ref. Data **1979**, 8(3), 619.
- 13 Xiao, H.-M.; Chen, Z.-X. Modern Theory of Tetrazole Chemistry, Science Press, Beijing, 2000, p. 38 (in Chinese). (肖鹤鸣, 陈兆旭, 四唑化学的现代理论, 科学出版社, 北京, 2000, p. 38.)
- Ma, H.-X.; Song, J.-R.; Hu, R.-Z.; Li, J. Chin. J. Chem.
 2003, 21(12), 1558.
- Ma, H.-X.; Song, J.-R.; Xu, K.-Z.; Hu, R.-Z.; Zhai, G.-H.; Wen, Z.-Y.; Yu, K.-B. *Acta Chim. Sinica* 2003, 61, 1819 (in Chinese).
 (马海霞, 宋纪蓉, 徐抗震, 胡荣祖, 翟高红, 文振翼, 郁 开北, 化学学报, 2003, 61, 1819.)
- 16 Xiao, H.-M.; Ju, X.-H. Intermolecular Interactions in Energetic Systems, Science Press, Beijing, 2004 (in Chinese).
 (肖鹤鸣, 居学海, 高能体系中的分子间相互作用, 科学出版社, 北京, 2004.)
- 17 Fang, G.-Y.; Xu, L.-N.; Xiao, H.-M.; Ju, X.-H. Acta Chim. Sinica 2005, 63, 1055 (in Chinese).
 (方国勇, 徐丽娜, 肖鹤鸣, 居学海, 化学学报, 2005, 63, 1055.)
- 18 Xu, L.-N.; Xiao, H.-M.; Fang, G.-Y.; Ju, X.-H. Acta Chim. Sinica 2005, 63, 1062 (in Chinese).
 (徐丽娜,肖鹤鸣,方国勇,居学海,化学学报, 2005, 63, 1062.)

(A0511052 LI, W. H.; ZHENG, G. C.)