•研究论文•

OH 自由基的高精度量子化学研究

马海涛", 边文生*, 郑世钧" 孟令鹏*,"

("河北师范大学化学学院计算量化研究所 石家庄 050091) (^b中国科学院化学研究所 分子反应动力学国家重点实验室 北京 100080)

摘要 采用内收缩 MRCI 方法(Internally Contracted Multiconfiguration-Reference Configuration Interaction)研究了 OH 自 由基, 计算得到其基态稳定构型的键长是 0.09708 nm, 对应的实验值是 0.096966 nm, 第一激发态的键长是 0.10137 nm, 实验值是 0.10121 nm. 同时得到势能曲线 PECs (Potential Energy Curve), 再分别由 Murrell-Sorbie 势能函数拟合计算和 POLFIT 程序计算得到 OH 自由基在基态 $X^2\Pi$ 和第一激发态 $A^2\Sigma^+$ 时的光谱数据: 平衡振动频率 ω_e , 非谐性常数 $\omega_{e\chi_e}$ 以及高阶修正 $\omega_e Y_e$, 平衡转动常数 B_e , 振转耦合系数 α_e , 解离能 D_0 和垂直跃迁能量 v_{00} . 这些理论计算结果与最新的实 验值非常吻合, 精确度比前人也有很大提高. 其中我们计算得到基态 OH($X^2\Pi$)的解离能 D_0 =35568.86 cm⁻¹, 第一激发 态 OH ($A^2\Sigma^+$)的解离能 D_0 =18953.93 cm⁻¹, 从第一激发态 $A^2\Sigma^+$ (v=0)到基态 $X^2\Pi$ (v=0)的垂直跃迁能 v_{00} =32496.42 cm⁻¹.

关键词 OH 自由基; IC-MRCI 方法; 光谱参数; 解离能 D_e

Highly Accurate Quantum Chemical Study of the OH Radical

MA, Hai-Tao^{a,b} BIAN, Wen-Sheng^{*,b} ZHENG, Shi-Jun^a MENG, Ling-Peng^{*,a} (^a Institute of Computational Quantum Chemistry, Hebei Normal University, Shijiazhuang 050091)

(^b State Key Laboratry of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080)

Abstract Two potential energy curves for the ground electronic state $X^2\Pi$ and the first excited electronic state $A^2\Sigma^+$ of OH radical have been calculated using the internally contracted multiconfiguration-reference configuration interaction (IC-MRCI) method including Davidson correction. And they were fitted to analytical potential energy functions using the Murrell-Sorbie potential function to deduce the spectroscopic parameters: equilibrium bond length R_e , rotation coupling constant ω_e , anharmonic constant $\omega_e\chi_e$, equilibrium rotation constant B_e and vibration-rotation coupling constant α_e . These constants and higher-order anharmonic constant $\omega_e Y_e$ were also calculated by POLFIT. Most of the values obtained are in excellent agreement with experimental results. The calculated dissociation energy D_0 for OH(X²\Pi) is 35568.86 cm⁻¹, which is in excellent agreement with the recent experimental value (35565±30) cm⁻¹. The calculated dissociation energy D_0 for OH(A² Σ^+) is 18953.93 cm⁻¹. The calculated vertically excited energy from the ground state $X_2\Pi$ ($\nu=0$) to the first excited state $A^2\Sigma^+$ ($\nu=0$) is 32496.42 cm⁻¹. **Keywords** OH radical; IC-MRCI; spectroscopic parameter; dissociation energy

大气中绝大多数污染物质的产生和湮灭都和 OH 自 由基有一定的关系,它是大气对流层中最重要的氧化剂 之一,对酸雨的形成、臭氧的损耗等现象具有重要影 响^[1~5].同时 OH 自由基的研究对环境科学、光谱学、 天体化学等领域都是十分重要的.已有不少相关的实验 和理论研究报道^[6~12].对于 OH(X²Π)的解离能,目前有

Received September 20, 2004; revised and accepted October 29, 2004.

^{*} E-mail: bian@iccas.ac.cn; menglp@mail.hebtu.edu.cn

国家自然科学基金(No. 20073024)、河北省自然科学基金(No. B2004000147)资助项目.

丰富的实验数据. 1956 年, Barrow^[7]给出了 OH(X²Π)的 解离能 $D_0[OH(X^2\Pi)] = (35450 \pm 100) \text{ cm}^{-1}$, 而且该实验 值一直被普遍接受; 2002 年, Ruscic 等^[11]通过脉冲场电 离光电子能谱 (pulsed-field-ionization photoelectron spectroscopy) 和 质 量 选 择 光 电 离 (mass-selected photoinization measurements) 实验方法间接得到了 D_0 [OH(X²П)]=(35593±24) cm⁻¹, 该实验值与 Barrow^[7] 的相比数值差别比较大,但是后者更为精确;同时 Ruscic 等^[11]还进行了 CCSD(T) (coupled cluster with single, double and triple excitations)方法的理论计算支持 他们的实验结果; 2003年, Zhang 等^[12]通过高 Rydberg 态 原子飞行时间质谱,对 OH 自由基光解产物 O(3PJ)的精 细结构分布进行了研究,实验测得 $D_0[OH(X^2\Pi)] =$ (35565±30) cm⁻¹, 该实验值与 Ruscic 等^[11]的实验值相 吻合. 对于包括OH($A^2\Sigma^+$)解离能在内的其它OH的光谱 数据也有不少实验的报道. 但是在理论研究方面, 由于 常见的从头算方法如 HF (Hartree-Fock), DFT (Density Functional Theory), MPn (Møller-Plesset Perturbation Theory), CIS (Configuration Interaction Single Excitation), CASSCF (Complete Active Space SCF)等不能很好 地应用到 open-shell 激发态体系, 所以前人所得理论计 算数据中有些和目前实验值存在不小的偏差. 对其光谱 数据的精确理论计算应该建立在准确的势能曲线 PEC (Potential Energy Curve)基础上. 本文用 IC-MRCI 方法 (Internally Contracted Multiconfiguration-Reference Configuration Interaction)^[13]详细计算研究了 OH 自由基 PEC, 并对 OH 基态和第一激发态的理论光谱数据给予 了报道,这些计算值与实验值十分吻合.

1 计算方法

OH 自由基的基态 $X^{2}\Pi$ 组态是(1s)²(2sσ)²(2pσo+1s_H)²(2pπo)²(2pπo)¹, 当(2pσo+1s_H)轨道上的 1 个电子转移到 (2pπo)时形成第一激发态 $A^{2}\Sigma^{+}$,其组态是 (1s)²(2sσ)²(2pσo+1s_H)¹(2pπo)⁴.因为研究的体系是自由基,用单行列式波函数为基础的方法(如 HF, MPn, DFT) 来进行研究会有大的偏差,所以必须使用多参考态波函数的计算方法(如 MRCI 等)才会有可靠的计算结果^[14].

前人^[9]曾使用多组态自洽场方法 MCSCF (Multiconfiguration Self-Consistent Field)来研究这个体系,这 样方法处理了部分非动态相关造成的相关能损失,但是 没有考虑动态相关能损失^[15,16].

本文计算采用了专业量化计算软件包 MOLPRO 2002.6^[17]中速度快、相关能损失小且收敛效果好的内收 缩多参考组态相互作用方法 IC-MRCI^[13],这比传统的

MRCI 要好,因为在传统的 MRCI 方法中组态函数 CSF 和变分参数的数目随基组的增大和参考态数目的增多 而急剧增加,从而导致实际计算工作的困难.基组我们 选用 Dunning 相关一致 4-ξ 基组(Dunning's correlation consistant quadruple-zeta basis sets)^[18],同时加上弥散函 数以增加价轨道在空间上的分布范围,表示为 AVQZ. 分别由多个初始构型开始,以扫描计算寻找驻点,并进 行频率分析以确定其是全局最低点.对于 MRCI 方法中 由于大小一致性(size consistent)产生的误差可以通过戴 维森校正 (Davidson Correction)来处理,从而得到 OH($X^2\Pi$)和 OH ($A^2\Sigma^+$)的势能曲线(PEC).

OH 自由基的 PECs 分别在平衡核间距的位置达到 极小值,有个明显的势阱,即 $V(R=R_e)=-D_e$. 当核间 距离趋于无穷大时, PEC 有正确的渐进行为, 即 $\lim_{R\to\infty}V(R)=常数;$ 当核间距离趋于零时,势能趋于 无穷大 $\lim_{R\to\infty}V(R)\to\infty$. 目前有很多势能函数形式可以 使用,比如 Morse 函数,Rydberg 函数, 广义 Morse 函数 (GMF)和 Murrell-Sorbie 函数(MS)等,其中 Rydberg 函 数^[19] 可表示为:

$$V(\rho) = -D_e(1+a\rho)\exp(-a\rho) \tag{1}$$

它在 $\rho=0$ ($R=R_e$)处存在一个深为 D_e 的势阱.

Murrell 和 Sorbie 在 1974 年进一步修改 Rydberg 函数后得到修改的五参数 Rydberg 函数更具优越性,虽然对于大多数的双原子体系,该函数四阶力常数与光谱测定值符合不是很好,但是其二阶与三阶力常数与光谱值符合很好,是目前最好的势能函数之一.所以本文采用Murrell和 Sorbie 提出的 MS 函数^[20],该函数的表示形式为

$$V(\rho) = -D_e(1 + \sum_{i=1}^n a_i \rho^i) \exp(-a_1 \rho)$$
(2)

其中ρ=R-R_e,通常公式可以简化^[21]写成

$$V(\rho) = -D_e (1 + a_1 \rho^1 + a_2 \rho^2 + a_3 \rho^3 + a_4 \rho^4 + a_5 \rho^5 + a_6 \rho^6 + a_7 \rho^7 + a_8 \rho^8 + a_9 \rho^9) \exp(-a_1 \rho)$$
(3)

其中 PEC 的二、三、四阶力常数可以分别表示成

$$f_2 = D_e(a_1^2 - 2a_2) \tag{4}$$

$$f_3 = 6D_e(a_1a_2 - a_3 - a_1^3/3) \tag{5}$$

$$f_4 = D_e (3a_1^4 - 12a_1^2a_2 + 24a_1a_3) \tag{6}$$

相应的各种理论光谱数据参数可以表示成

$$B_e = h/8\pi^2 c \mu R_e^2 \tag{7}$$

$$\omega_e = \sqrt{\frac{f_2}{4\pi^2 \mu c^2}} \tag{8}$$

$$\alpha_e = -\frac{6B_e^2}{\omega_e} \left(\frac{f_3 R_e}{3f_2} + 1 \right) \tag{9}$$

$$\omega_e \alpha_e = \frac{B_e}{8} \left[-\frac{f_4 R_e^2}{f_2} + 15 \left(1 + \frac{\omega_e \alpha_e}{6 B_e^2} \right)^2 \right] \tag{10}$$

2 结果和讨论

对于 OH 自由基的基态组态(1s)²(2so)²(2poo + 1s_H)²(2p π o)²(2p π o)¹, 其总电子自旋角动量 s=1/2, 故表 示为 X²П. 其分子轨道的形状参见图 1(a)所示:

(b) (1s)(2sσ)²(2pσo+1s_H)¹(2pπo)²(2pπo)²

 图 1 (a) OH(X²Π)分子轨道的立体等高示意图,等高值为 0.3;
 (b) OH(A²Σ⁺)分子轨道的立体等高示意图,等高值为 0.3 分子由管状模型表示.这些图是由 MOLDEN3.4¹²¹程序绘制得到

Figure 1 (a) Orbitals space plots of OH(X² Π) using a space contour value of 0.3; (b) orbitals space plots of OH(A² Σ ⁺) using a space contour value of 0.3; molecule was represented by tube model

These diagrams were made by using MOLDEN3. 4 program^[22]

IC-MRCI 计算所需要的分子轨道(MO)是由 CASSCF (Complete Active Space Self-Consistent Field)^[23]计 算产生. 在 CASSCF 计算时应选取较大的活化空间,在 PEC 不同区域上活化空间始终包括 O 的 2s, 2p, 3s, 3p 和 H 的 1s, 只有 O 的 1s 不包括在 CASSCF 的活化空间内; IC-MRCI 计算的活化空间和 CASSCF 的保持一致.

MOLPRO 在处理酉矩阵对角化过程使用阿贝尔点 群,对所研究的分子要降低对称性到它的最大阿贝尔点 群表示,对于同核双原子分子使用 *D*_{2h} 表示,对于异核 双原子分子 OH 应该使用 *C*_{2v}, *C*_{~v}和 *C*_{2v}中不可约表示 对应的函数关系见表 1.

Table 1	Transform relationship between the $C_{\infty_{v}}$ and C_{2v} group				
	$C_{\infty_{\mathrm{v}}}^{(\mathrm{a})}$	C_{2v}	Function		
	Σ^+	A_1	s, z		
	Σ^{-}	A_2	xy		
	П	$B_1 + B_2$	<i>x</i> , <i>xz</i> , <i>y</i> , <i>yz</i>		
	Δ	$A_1 + A_2$	s, z, xy		

表1 C_{∞} , 和 C_{2} , 群对应的函数关系

 Π and Δ in $C_{\infty v}$ symmetry are degenerate in C_{2v} symmetry.

我们用 IC-MRCI/AVQZ 方法和基组计算得到 OH(X²П)的键长是 0.09708 nm, 对应实验值是 0.096966 nm, 只有 1.1757‰的误差; 其木苏荣等^[9]用 QCISD(T)/ 6-311++(3DF, 3PD)得到的键长是 0.09704 nm, 但是他 们得到的解离能 D_0 (O—H)=53635.575 cm⁻¹, 与实验值 D_0 (O—H)=(35565±30) cm⁻¹相差甚远.我们计算所得 基态振动频率 ω_e =3739.46 cm⁻¹, 对应实验值是 3737.76 cm⁻¹, 只有 0. 4548‰的误差.

OH 自由基的第一激发态 $A^{2}\Sigma^{+}$ 组态是 (1s)²(2so)²(2poo+1s_H)¹(2pno)⁴,其总电子自旋角动量 s=1/2,反映操作 $\sigma(x, y)$ 下其电子波函数不变,表示为 $A^{2}\Sigma^{+}$.其分子轨道的形状参见图 1(b)所示.用 MRCI/AVQZ方法和基组计算得到第一激发态的键长是 0.10138 nm,对应实验值是 1.0121 nm,只有 1.6797‰的 误差.图 2 中给出在 OH(X²Π)和 OH(A²Σ⁺)相应的势能曲 线(PEC).

图 2 由 IC-MRCI/AVQZ 计算得到的 OH 基态 X²Π (2)和第一 激发态 A²Σ⁺ (1)的势能曲线

Figure 2 IC-MRCI/AVQZ calculated potential energy profiles of the ground state $X^{2}\Pi$ (2) and first excited state $A^{2}\Sigma^{+}$ (1) of OH

通过对自由基 OH(X²Π)和 OH(A²Σ⁺)电子密度 ρ 对 空间坐标求二阶导数 $\nabla^2(\rho)r$,可以得到电子密度的 Laplacian 分布- $\nabla^2(\rho)r$,如图 3 所示.

由图3可以看到,在OH($A^2\Sigma^+$)的键轴方向上容易和 其它分子发生反应.OH($A^2\Sigma^+$)内层单占据($2p\sigma\sigma+1s_H$)轨 道具有强需电子性,在气相中甚至可以和 Ar 形成带有 离子态性质的稳定的 van der Walls 分子 Ar⁺OH^{-[24~26]}. 如图 1(b)所示,内层单占据($2p\sigma\sigma+1s_H$)轨道方向就是 OH($A^{2}\Sigma^{+}$)的键轴方向,所以稳定的 van der Walls 分子 Ar⁺OH⁻一定是直线型. 由于 OH($A^{2}\Sigma^{+}$)中 H 原子上电子 云偏向 O 原子,这使得 H 原子端比 O 原子端的需电子 性要稍强,所以 A 态线形 OH-Ar 的稳定性要稍大于 A 态线形 Ar-OH,这在 Berry 等^[25,26]的激光诱导荧光光谱 实验中得到了证实,他们观测到了稳定的 van der Walls 分子 OH($A^{2}\Sigma^{+}$)+Ar(¹S).

图 3 (c) OH(X²Π)电子密度的 Laplacian 分布立体等高示意图, 等高值为 0.53; (d) OH(A²Σ⁺)电子密度的 Laplacian 分布立体等 高示意图, 等高值为 0.53

这些图由 MOLDEN3.4^[22]程序绘制得到

Figure 3 (c) Space plot of Electron Laplacian distribution for OH(X²Π) using a space contour value of 0. 53; (d) space plot of Electron Laplacian distribution for OH(A²Σ⁺) using a space contour value of 0.53

These diagrams were made by using MOLDEN3.4 program^[22]

在 1990 年, Esposti 等^[24]计算得到了 OH(A²Σ⁺)+Ar 和 OH(X²П)+Ar 的反应势能面 PES (Potential Energy Surface), 分别见图 4(e)和(f). 文献[24]中指出, 在 R_e= 0. 29 nm, $\theta_e = 0^{\circ} \pi R_e = 0.22$ nm, $\theta_e = 180^{\circ}$ 的地方有两个 很深的极小值分别为1100和1000 cm⁻¹, 在 $\theta_e = 90^{\circ}$ 上的 极小值仅仅 67 cm⁻¹,其中在 $R_e = 0.29$ nm, $\theta_e = 0^\circ$ 的位置 是全局最小点(global minimum), 对应 OH(A²Σ⁺)中 H 原 子顶端的键轴方向; OH(X²Π)也有一定的需电子性形成 van der Walls 分子. 如图 1(a)所示, 由于 OH(X²П)提供 的外层单占据轨道(2pπo)与键轴方向相互垂直,所以它 在键轴方向成键能力远小于 OH(A²Σ⁺). 如图 4(f)所示, 在 $R_e = 0.38$ nm, $\theta_e = 0^{\circ}$ 的全局最小点值为 100 cm⁻¹, 远 远小于 1100 cm⁻¹, 即 OH($A^2\Sigma^+$)的亲核反应活性部位在 H 原子顶端的键轴方向上, 它在气相中形成的线形 van der Walls 分子 $OH(A^2\Sigma^+)$ +Ar 的稳定性要远远大于 OH(X²Π)+Ar. 如图 3 所示, 外层单占据(2pπo)轨道垂 直于键轴方向也使得 OH(X²Π)在成键方向上相比于 $OH(A^{2}\Sigma^{+})$ 略有各向同性, $OH(X^{2}\Pi)$ 在 H 原子顶端的键轴 方向上的亲核反应活性大大降低.如图 4 所示, OH(X²П)在 θ_{ℓ} =90°上的极小值是 60 cm⁻¹, 小于 θ_{ℓ} =0° 上的全局最小点 100 cm⁻¹, 而 OH(A² Σ ⁺)在 θ_e =90°上的 极小值是 67 cm⁻¹ 远远的小于 $\theta_{e}=0^{\circ}$ 上的全局最小点 1100 cm^{-1} .

图 4 (e) OH(A²Σ⁺)+Ar 势能面的等高线图; (f) OH(X²Π)+Ar 势能面的等高线图

OH 键长固定为 1.95 Bohr. θ_e 是由 OH 质量中心到 Ar 的矢量与 OH 键矢量 的夹角. 该图取自文献[24]

Figure 4 (e) Contour plot of the $OH(A^2\Sigma^+)$ +Ar interaction potential; (f) contour plot of the $OH(X^2\Pi)$ +Ar interaction potential

OH bond distance is fixed at r=1.95 Bohr. *R* is the distance from the Ar atom to the center of mass of OH. θ_e is the angle between the *r* and *R* vectors. The information is from the Ref. 24

分别采用两种方法,通过对 PEC 曲线计算分析得 到相应的光谱数据.其中一种,是通过 MS 函数^[20]拟合 及公式(1~10)计算得到 OH 的光谱数据;另一种,是用 德国斯图加特大学 Werner 教授提供的 POLFIT 程序对 PEC 计算得到相应的光谱数据,具体参见表 2.

对于 OH(X²П),我们对比了 NIST (National Institute of Standards and Technology)计算化学标准参考数据库 (Computational Chemistry Comparison and Benchmark DataBase)^[27] 最新公布的平衡振动频率 ω_e ,零点能 ZEP, 平衡转动常数 B_e 和键长 R_e 的计算标准参考值,我们的 计算值与实验值更接近,具体参见表 3.

总的来说,我们计算得到的 OH 光谱数据比 NIST 最新公布的计算标准参考值更接近实验值. 其中由 MS 函数^[20]拟合及公式(1~10)计算得到的 OH 光谱数据稍 逊于由 POLFIT 程序对 PEC 计算得到相应的光谱数据, 这可能是因为 MS 函数^[20]及公式(1~10)本身存在的问题,比如该函数四阶力常数与光谱测定值有大约 7%的 相对误差^[20].

此外 Ruscic 等^[11]采用 CCSD(T)/AV7Z 方法理论计 算得到 *D*₀[OH(X²Π)]=(35591±42) cm⁻¹, 这与他们的 表 2 OH 基态(X²Π)和第一激发态(A²Σ⁺)的光谱数据对照表

m^{-1} v_{00}^*/cm^{-1}
'92
10 ^[10]
24 ^[11] 30 ^[12] 100 ^[28]
.83 32537.9966
32496.42 10 ^[10] 32402.3 14 ^[11]

 v_{00} is the vertically excited energy from the ground state $X^2\Pi$ ($\nu=0$) to the first excited state $A^2\Sigma^+(\nu=0)$ of OH. (g) is from the fitted MS function^[20]; (h) is from the program POLFIT provided by Dr. Werner, H. J. of Universität Stuttgart.

表 3 OH(X²Π)的平衡振动频率 ω_e , 零点能 ZEP, 平衡转动常数 B_e 和键长 R_e 的计算标准参考值^[27]、本文计算值和实验值^[27] Table 3 Benchmark calculated^[27], present calculated and experiment values^[27] for frequencies, zero-point energies, rotational constants and geometries for OH(X²Π)

	$\omega_e/{ m cm}^{-1}$	ZEP/cm^{-1}	B_e/cm^{-1}	R_e/nm
QCISD(T)/cc-pVTZ	3738	1782	18.836	0.0972
CCSD(T)/cc-pVTZ	3740	1764	18.841	0.0971
Present calculated value by MS	3726.9241	1840.2447	18.8649	0.09708
Present calculated value by POLFIT	3739.46	1847.6	18.927	0.09713
Expt. value	3737.76	1847.00	18.910	0.096966

QCISD(T) is quadratic configuration interaction with single, double and triple excitations; CCSD(T) is coupled cluster with single, double and triple excitations.

实验值 D_0 [OH(X²П)]=(35593±24) cm⁻¹相吻合. Zhang 等^[12]通过高 Rydberg 态原子飞行时间质谱得到的 D_0 [OH(X²П)]=(35565±30) cm⁻¹, 该实验值与我们理论 计算值 D_0 [OH(X²П)]=35568.86 cm⁻¹+分吻合,而且我 们的 IC-MRCI/AVQZ 方法的工作量小于昂贵的 CCSD(T)/AV7Z 方法. 我们理论计算得到的解离能 D_0 [OH(A²Σ⁺)]=18953.93 cm⁻¹ 与现有的实验值 D_0 [OH(A²Σ⁺)]=(18956±14) cm⁻¹也+分吻合. OH 自由 基从基态 X²Π (ν =0)到第一激发态 A²Σ⁺ (ν =0)的垂直跃 迁能 ν_{00} 的计算值为 32496.42 cm⁻¹, 与实验值 32402.3 cm^{-1[27]}比较吻合.

3 结论

本文以 IC-MRCI/AVQZ 方法计算得到了 OH 自由 基在基态和第一激发态的势能曲线(PECs), 然后分别通 过 MS 函数^[20]和 POLFIT 程序计算得到相应的平衡构型, 特征频率及其相关光谱数据.其中从基态 $X^2\Pi$ (v=0)到 第一激发态 $A^2\Sigma^+$ (v=0)垂直跃迁能量 v_{00} 的理论计算值 32496.42 cm⁻¹ 与实验值比较吻合;理论计算得到的 OH($X^2\Pi$)的解离能 D_0 [OH($X^2\Pi$)]=35568.86 cm⁻¹完全支 持了最新的实验结果 $D_0[OH(X^2\Pi)] = (35565 \pm 30) \text{ cm}^{-1[12]}$. 同时 $OH(A^2\Sigma^+)$ 的解离能与已有的实验文献报道也十分 吻合.目前还没有关于 ω_{ey_e} 的实验文献报道,本文从理 论上预测了 ω_{ey_e} 的数值.我们计算得到的势能曲线和光 谱数据理论计算值,对进一步研究构建 Ar+OH 反应全 势能面(global PES)提供了重要的基础.

References

- 1 Ehalt, D. H.; Dorn, H. P.; Poppe, D. *Edinburgh: Proc. R.* Soc. **1991**, *97B*, 17.
- 2 Pfeiffer, T.; Forberich, O.; Comes, F. J. *Can. J. Phys. Rev. Can. Phys.* **2001**, *79*(2-3), 131.
- Ren, X.-R.; Wang, H.-X.; Shao, K.-S.; Miu, G.-F.; Tang, X.-Y. *Environ. Sci.* 2002, 23(4), 26 (in Chinese). (任信荣, 王会祥, 邵可声, 缪国芳, 唐孝炎, 环境科学, 2002, 23(4), 26.)
- 4 Zhang, J.; Chen, Z.-L. *Environ. Sci.* **1998**, *18*(1), 62 (in Chinese).

(张晶, 陈宗良, 环境科学, **1998**, 18(1), 62.)

5 Sun, J.-Q. Atmospheric Pollution Detected by Laser, Science Press, Beijing, 1992, p. 120 (in Chinese). (孙景群, 激光探测大气污染, 科学出版社, 北京, 1992,

- 6 Lemaire, J. L. J. Chem. Phys. 1989, 91(11), 6657.
- 7 Barrow, R. F. Ark. Fys. Semin. Trondhein 1956, 11, 281.
- 8 Berry, M. T.; Mitchell, R. B. J. Phys. Chem. 1988, 92, 5551.
- 9 Qimu, S.-R.; Zhao, Y.-F.; Jing, X.-G.; Qin, Y.-L.; Li, X.-Y.; Su, W.-H. *Chin. J. Atom. Mol. Phys.* **2003**, *20*(1), 75 (in Chinese). (其木苏荣,赵永芳, 井孝功, 秦艳利, 李新营, 苏文辉,

原子与分子物理学报, 2003, 20(1), 75.)

- 10 Joens, J. A. J. Phys. Chem. A 2001, 105, 11041.
- 11 Ruscic, B.; Wagner, A. F.; Harding, L. B. J. Phys. Chem. A **2002**, *106*, 2727.
- 12 Zhou, W.; Yuan, Y.; Zhang, J.-S. J. Chem. Phys. 2003, 119(19), 9989.
- 13 (a) Werner, H. J.; Knowles, P. J. J. Chem. Phys. 1988, 89(9), 5803.

(b) Knowles, P. J.; Werner, H. J. Chem. Phys. Lett. 1988, 145, 514.

(c) Knowles, P. J.; Werner, H. J. Theor. Chim. Acta 1992, 84, 95.

- 14 Bian, W.-S.; Werner, H. J. J. Chem. Phys. 2000, 112, 220.
- 15 Veszpremi, T.; Feher, M. Quantum Chemistry: Fundamentals to Applications, Kluwer Academic/Plenum, Dordrecht, New York, 1999.
- 16 Ira, N. L. Quantum Chemistry, Allyn and Bacon, Boston, 1999.
- MOLPRO2002.6 is a package of *ab initio* programs written by Werner, H. J.; Knowles, P. J.; Schütz, M.; Lindh, R.; Celani, P.; Korona, T.; Rauhut, G.; Manby, F. R.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, L. D.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer, G.; Lloyd, A. W.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklaß, A.; Palmieri, P.; Pitzer, R.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.

- 18 Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
- 19 Rydberg, R. Z. Physik 1931, 73, 376.
- 20 Murrell, J. N.; Sorbe, K. S. J. Chem. Soc., Faraday Trans. 1974, 70, 1552.
- 21 Zhu, Z.-H. Molecular Structures and Potential Function, Science Press, Beijing, 1997, Chapter 4.4 (in Chinese).
 (朱正和, 分子结构与分子势能函数, 科学出版社, 北京, 1997, 第 4.4 章.)
- 22 Schaftenaar, G. *MOLDEN3.4*, CAOS/CAMM Center, Netherlands, **1998**.
- (a) Werner, H. J.; Knowles, P. J. J. Chem. Phys. 1985, 82, 5053;
 (b) Knowles, P. J.; Werner, H. J. Chem. Phys. Lett. 1985,
 - 115, 259.
- Esposti, A. D.; Werner, H. J. J. Chem. Phys. 1990, 93(5), 3351.
- 25 Berry, M. T.; Brustein, M. R.; Adamo, J. R.; Lester, M. J. *Phys. Chem.* **1988**, *92*, 5551.
- 26 Berry, M. T.; Brustein, M. R.; Lester, M. Chem. Phys. Lett. 1988, 153, 17.
- (a) Huber, K. P.; Herberg, G.; Linstrom, P. J.; Mallard, W. G. (Eds.) *Constants for Diatomic Molecules* (data prepared by Gallagher, J. W.; Johnson, R. D. in *NIST Chemistry WebBook*, NIST Standard Reference Database No. 69, National Institute of Standards and Technology, Gaithersburg MD, 2001, 20899. (http://webbook.nist.gov/).
 (b) Computational Chemistry Comparison and Benchmark DataBase, National Institute of Standards and Technology, Gaithersburg MD, 2001, 20899 (http://srdata.nist.gov/).
- 28 Ruscic, B.; Feller, D.; Dixon, D. A.; Peterson, K. A.; Harding, L. B.; Asher, R. L., Wagner, A. F. J. Phys. Chem. A 2001, 105, 1.
- 29 Carlone, C.; Dalby, F. W. Can. J. Phys. 1969, 47, 1945.

(A0409204 SHEN, H.)

p. 120.)