•研究论文•

金属 Pt 表面水蒸汽分子吸附的量子力学计算

胡 胜*." 朱祖良" 罗顺忠" 王和义"

罗阳明"汤丽娟"朱正和"

(*中国工程物理研究院核物理与化学研究所 绵阳 621900) (*四川大学原子与分子物理所 成都 610065)

摘要 基于电子与振动近似方法和密度泛函 B3LYP 理论,氧和氢原子选择 6-311G**基函数,Pt 选择赝势基组 LanL2DZ,优化得到 Pt-OH₂结构和微观性质,稳态结构 Pt-H₂O 分子中,Pt 与 H₂O 不在同一平面,Pt 倾向于与 O 原子结 合. 计算了 100~898.15 K 温度下,水蒸汽分子在 Pt 表面吸附反应的热力学函数值和平衡压力,拟合得到 ΔS^{\odot} , ΔH^{\odot} , ΔG^{\odot} , ln *p* 与温度的函数关系.室温以上 $\Delta G^{\odot} > 0$ kJ•mol⁻¹,水蒸汽分子在 Pt 表面不能稳定吸附; 200 K 以下, $\Delta G^{\odot} < 0$ kJ•mol⁻¹,能够稳定吸附.计算了不同温度下水蒸汽分子在 Pt 表面不定解离反应的 ΔG^{\odot} 和平衡压力,室温以上 $\Delta G^{\odot} > 0$ kJ•mol⁻¹.100~898.15 K 温度下,水蒸汽分子在 Pt 表面不容易发生解离,实际反应过程中以完整分子形式参与反应.**关键词** 热力学函数;密度泛函理论; Pt;水蒸汽;吸附;解离

Adsorption Study of Water Vapor Molecule on Metal Platinum Surface by Quantum Mechanism Computation

HU, Sheng^{*,a} ZHU, Zu-Liang^a LUO, Shun-Zhong^a WANG, He-Yi^a LUO, Yang-Ming^a TANG, Li-Juan^b ZHU, Zhen-He^b

(^a Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900) (^b Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065)

Abstract Based on electron and vibration approximate means and the density functional theory B3LYP, with LanL2DZ basis sets for Pt and 6-311G** basis sets for hydrogen and oxygen, the different structures of Pt-OH₂ have been optimized. Pt and H₂O of stable Pt-OH₂ molecule are not in the same plane, and Pt atom is in connection with O atom directly. The thermodynamic functions and the equilibrium pressures of adsorption reactions of water vapor have been calculated, and their relationships with temperature were obtained. Above 298.15 K, $\Delta G^{\odot} > 0$ kJ•mol⁻¹ in 100~898.15 K, and the adsorption of water vapor molecule was not stable on Pt surface. Under 200 K, $\Delta G^{\odot} < 0$ kJ•mol⁻¹, and the water vapor molecule could adsorb on Pt surface steadily. $\Delta G^{\odot} > 0$ kJ•mol⁻¹. In 100~898.15 K, the water vapor molecules have no tendency to dissociate on Pt surface, and they participate in most reactions in intact molecule.

Keywords thermodynamic function; density functional theory; Pt; water vapor; adsorption; dissociation

水在 Pt 表面的吸附解离行为是理解众多表面现象的基础,如电化学、催化化学、表面腐蚀等,因此近二

十多年来,利用紫外光电子能谱、低能电子衍射、高分辨能量损失谱等现代分析方法,表面化学对水蒸汽在Pt

^{*} E-mail: husheng@126.com

Received May 8, 2006; revised July 24, 2006; accepted September 21, 2006. 中国工程物理研究院科学技术基金(Nos. 20040209, 20060535)资助项目.

表面的吸附和解离行为进行了深入的研究^[1-6].这些研究的结果包括:水分子在 Pt 表面完全覆盖;由于氢键作用,水分子在 Pt 表面容易团聚而形成多层吸附,只有在极低浓度情况下,才会产生单层吸附;纯净 Pt 表面水分子不会发生分解,而 Pt 表面吸附 O,K等杂质后水分子容易分解.尽管如此,由于表面化学研究都是在超高真空、超低温度下进行,与实际反应条件差异较大,因此用理论研究方法,模拟实际反应条件下水蒸汽在 Pt 表面的吸附解离行为有重要的意义.计算不同温度下水蒸汽在 Pt 表面吸附解离反应的热力学函数和平衡压力,可以分析实际反应温度下水蒸汽的吸附解离行为,目前的理论研究^[7~11]尚未涉及.

量子力学从头计算方法能准确计算单个分子的性质, 进而用统计热力学方法计算热力学函数焓 H, 熵 S 和 Gibbs 自由能 G. 一般认为,得到的结果为理想气体的性 质. 气体水分子在金属 Pt 表面的吸附解离为气固两相反 应,需要引入一些近似的处理方法. 朱正和等^[13~18]采用 电子与振动近似法,计算了 Zr, ZrCo, Pu 和 Pd 等体系与 氢气的作用,得到了与实验基本一致的结果,证实了方 法的可行性.本文将其用于气体水分子在 Pt 表面的吸 附和解离反应,结合统计热力学,导出 100~898.15 K 反应的热力学函数以及平衡压力与温度的关系,并讨论 氢同位素效应及 Pt 表面水蒸汽的吸附解离过程.

1 理论方法

表面化学研究结果认为200 K以下水蒸汽在Pt表面 主要形成多层吸附,但由于 Pt 催化的氢-水液相交换, 氢氧复合等反应实际主要与水蒸汽的单层吸附^[4]有关, 且实际反应温度一般在室温以上,因此假定水蒸汽分子 在 Pt 表面为单层吸附,计算反应(1)和(2)的热力学函数, 并导出H₂O分子平衡压力与温度的关系,以研究水蒸汽 分子在 Pt 表面的吸附解离行为.

 $Pt(s) + H_2O(g) \rightarrow Pt-H_2O(s)$ (1)

$$Pt(s) + H_2O(g) \rightarrow Pt-H(s) + Pt-OH(s)$$
(2)

由 Born-Oppenheimer 近似, 分子运动可分离为电子运动与核运动两部分.利用量子力学从头计算方法可得到理想气体热力学函数能量 E 和熵 S, 由焓与能量的关系, 可得核运动焓 $H_n = E + RT$.对于固体, 分子被固定于晶格, 因此可忽略分子的平动和转动, 近似以分子的振动能 E_v 、电子和振动运动熵 $S_{\rm Ev}$ 代替固体分子的能量 E 和熵 S, 且由于反应过程中 pV 值变化很小, 可近似认为能量 E_v 和核运功焓 H_n 相等.由此可计算反应的核运动焓变 ΔH_n^{\odot} .

以H2O在金属Pt表面的吸附反应为例,电子运动对

反应生成焓 ΔH_e[☉] 的贡献可通过下列近似计算得到, 即:

其中 $D_e(\text{H-O-H})$ 和 $D_e(\text{Pt-OH}_2)$ 分别为 H_2O 和Pt-OH₂完全 离解的离解能,可由量子化学计算得到; $\Delta H_a(\text{Pt})$ 和 $\Delta H_s(\text{Pt-OH}_2)$ 分别为金属Pt的原子化能和Pt-OH₂的升华 焓变,假设Pt吸附水分子前后结构变化不大,可认为 $\Delta H_a(\text{Pt}) \approx \Delta H_s(\text{Pt-OH}_2)$.因此 $\Delta H_e \approx D_e(\text{H-O-H}) - D_e(\text{Pt-OH}_2)$,这样,不同温度下反应的热力学函数可表示为:

 $\Delta H^{\odot} = \Delta H_{e}^{\odot} + \Delta H_{n}^{\odot} = D_{e}(\text{H-O-H}) - D_{e}(\text{Pt-OH}_{2}) + \Delta H_{n}^{\odot}$

 $\Delta S^{\odot} = S(\text{Pt-OH}_2) - S(\text{H}_2\text{O}) - S(\text{Pt})$

 $\Delta G^{\odot} = \Delta H^{\odot} - T \Delta S^{\odot}$

而由 $\Delta G^{\odot} = -RT \ln K_p' = RT \ln p$,可得到 $H_2O \oplus Pt$ 表面 吸附反应的平衡压力与温度的关系.

水蒸汽分子在 Pt 表面解离反应的热力学函数及平 衡压力与温度的关系可按类似方法得到.

2 结果与讨论

2.1 Pt-OH₂微观结构及 Pt-H, Pt-OH, Pt-OH₂氢同位素 的热力学函数

采用 Gaussian03 计算程序, B3LYP 密度泛函方法, H, D, T 及 O 选择 6-311G**基组,为避免重元素相对论 效应, Pt 采用相对论有效原子实势 RECP,选择赝势基 组 LanL2DZ.对Pt-OH₂进行结构优化,并比较自旋多重 度为 1,3 和 5 时分子的能量,得到三种不同构型分子, 自旋多重度为 1 时三种构型分子能量均最低.

三种构型分子的微观结构性质列于表 1. E2 和 E3 构型分子全部原子都在同一平面上,其中 E3 构型分子 以 O 原子与 Pt 结合,而 E2 构型分子以 H 原子和 Pt 直接结合;两种结构分子谐振频率均有负值,即出现虚频,均不是稳定构型. E1 构型分子 Pt 与 H₂O 分子不在同一平面上,在三种结构中能量最低,没有出现虚频,为稳态结构. E1 分子中 O 原子与 Pt 结合,这是因为 O 原子 比氢原子有更强的电负性,易于接受 Pt 的价电子,这与其它理论计算^[21]及实验结果^[1,2,4]相符.

用量子力学计算及电子与振动近似方法得到 H₂O, Pt-H, Pt-OH, Pt-OH₂及同位素分子 100~898.15 K 的热力学函数值, Pt-OH₂及同位素分子选择 E1 稳态构型, 列于表 2.

Table 1 The micro properties of the Pt-OH2 molecules with different configurations										
Number	Sketch	Structure	$d_{\text{Pt-O}}/\text{nm}$	d _{O-H} /nm	∠HOH/(°)	$\omega_{ m e}/{ m cm}^{-1}$	<i>E</i> /a.u.			
E1						375.69				
	-		0.2087			585.18				
		C		0.00687	106 51	620.29	-105 5464			
EI	Pt Pt	C_s		0.09687	106.51	1580.99	175.5404			
						3711.96				
						3802.25				
		C_{2v}	0.25454	0.09818	110.34	-705.75				
						160.85				
	A 0					286.22				
E2						1494.82	-195.5162			
	н					3441.43				
						3548.55				
						-515 12				
						261.20				
	н			0.09591	112.82	361.30				
E3		C_{2v}	0.20731			559.05	-195.5404			
			0.20701			1564.69				
	H					3842.81				
						3952.95				

表1 不同构型 Pt-OH ₂ 分子微观性

表2 H₂O(g), Pt-H, Pt-OH, Pt-OH₂及氢同位素的热力学函数值

Table 2 The thermodynamic properties of H₂O(g), Pt-H, Pt-OH, Pt-OH₂ and their hydrogen isotopes

			· · · · · · ·	2 - (8)	. ,	,	···· ·	0	· 1 · · ·	
	T/K	100	200	298.15	398.15	498.15	598.15	698.15	798.15	898.15
$U(\alpha)$	$E/(kJ \cdot mol^{-1})$	58.43	60.92	63.38	65.92	68.53	71.25	74.07	77.00	80.05
$\Pi_2 O(g)$	$S/(J \cdot mol^{-1} \cdot K^{-1})$	158.01	181.06	194.35	204.09	211.81	218.30	223.94	228.98	233.56
$\mathbf{D}(\mathbf{Q}(\mathbf{r}))$	$E/(kJ \cdot mol^{-1})$	43.20	45.70	48.19	50.83	53.61	56.55	59.64	62.90	66.32
$D_2O(g)$	$S/(J \cdot mol^{-1} \cdot K^{-1})$	167.37	190.43	203.86	213.90	222.00	228.88	234.95	240.42	245.44
T O(x)	$E/(kJ \cdot mol^{-1})$	36.65	39.15	41.68	44.42	47.33	50.43	53.73	57.21	60.87
$\Gamma_2O(g)$	$S/(J \cdot mol^{-1} \cdot K^{-1})$	173.07	196.16	209.77	220.07	228.45	235.65	242.02	247.80	253.09
	$E_{\rm v}/({\rm kJ}{ m \cdot mol}^{-1})$	63.85	64.34	65.54	67.29	69.39	71.75	74.32	77.07	79.98
РІ-ОП2	$S_{\rm EV}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	0.26	3.37	8.18	13.19	17.88	22.20	26.17	29.85	33.28
	$E_{\rm v}/({\rm kJ}{ m \cdot mol}^{-1})$	46.94	47.83	49.41	51.53	53.99	56.72	59.68	62.84	66.20
Pt-OD ₂	$S_{\rm EV}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	0.52	5.44	11.77	17.86	23.36	28.34	32.92	37.15	41.11
Pt-OT ₂	$E_{\rm v}/({\rm kJ}{ m \cdot mol}^{-1})$	39.85	40.82	42.60	44.92	47.58	50.54	53.74	57.16	60.77
	$S_{\rm EV}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	0.91	7.17	14.35	21.03	26.99	32.38	37.33	41.90	46.17
DUI	$E_{\rm v}/({\rm kJ}{ m \bullet mol}^{-1})$	13.96	13.96	13.97	13.97	14.00	14.07	14.19	14.39	14.65
РІ-П	$S_{\rm EV}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	5.76	5.76	5.76	5.78	5.83	5.96	6.15	6.41	6.71
Dt D	$E_{\rm v}/({\rm kJ}{ m \cdot mol}^{-1})$	9.90	9.90	9.91	9.95	10.07	10.28	10.58	10.96	11.40
rt-D	$S_{\rm EV}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	5.76	5.76	5.78	5.90	6.16	6.54	7.00	7.51	8.03
D+ T	$E_{\rm v}/({\rm kJ}{ m \bullet mol}^{-1})$	8.11	8.12	8.14	8.23	8.44	8.76	9.17	9.65	10.20
Pt-1	$S_{\rm EV}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	5.76	5.76	5.85	6.13	6.59	7.16	7.79	8.44	9.08
	$E_{\rm v}/({\rm kJ}{ m \cdot mol}^{-1})$	27.46	27.53	27.82	28.29	28.88	29.54	30.25	31.01	31.81
п-оп	$S_{\rm EV}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	5.77	6.22	7.35	8.71	10.02	11.22	12.32	13.34	14.28
	$E_{\rm v}/({\rm kJ}{ m \bullet mol}^{-1})$	20.97	21.06	21.36	21.84	22.45	23.14	23.91	24.74	25.66
ri-UD	$S_{\rm EV}/(J \cdot {\rm mol}^{-1} \cdot {\rm K}^{-1})$	5.77	6.27	7.46	8.87	10.22	11.48	12.67	13.79	14.86
Dt OT	$E_{\rm v}/({\rm kJ}{ m \bullet}{\rm mol}^{-1})$	18.15	18.25	18.56	19.07	19.70	20.43	21.26	22.17	23.17
FI-01	$S_{\rm EV}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	5.77	6.33	7.59	9.03	10.44	11.78	13.06	14.28	15.46

2.2 金属 Pt 的焓 H 和熵 S 值

与 Pt-H, Pt-OH 和 Pt-OH₂ 及同位素分子不同, 对于 金属 Pt, 热力学函数已有比较完整的实验值, 可由热力 学关系式

$$H_{T} - H_{298} = aT + \frac{1}{2}(b \times 10^{-3})T^{2} + \frac{1}{3}(c \times 10^{-6})T^{3} - \frac{d \times 10^{5}}{T} - A$$
(1)

和

$$S_{T} = 2.303 a \lg T + (b \times 10^{-3})T + \frac{1}{2}(c \times 10^{-6})T^{2} - \left[\frac{d \times 10^{5}}{2T^{2}}\right] - B$$
(2)

得到. 式(1)和(2)中 H_T 为温度T时 Pt 的焓值, H_{298} 为标准 状态时 Pt 的焓值, S_T 为温度T时的熵值. 熵的绝对值是 可以测定的, 而焓的绝对值无法确定. 根据 Debye 的固 体量子论

$$E = 3N \frac{hv}{e^{hv/kT} - 1} + \frac{3}{2}Nhv$$
(3)

同时, Debye 温度定义为

$$\Theta = \frac{hv}{k} \tag{4}$$

式(3), (4)中, *N*为阿佛加得罗常数, *h*为普朗克常数, *k*为波 尔兹曼常数, *v* (s⁻¹)为谐振子频率. Pt 的 Debye 温度 Θ = 240 K, 可算出 298 K 时的能量 *E* 为 7.83 kJ•mol⁻¹. 式(1), (2)中相关常数^[20]分别为, *a*=24.0 J•mol⁻¹, *b*=5.604 J•mol⁻¹, *c*=0, *d*=0.4182 J•mol⁻¹, *A*=7.26 kJ•mol⁻¹, *B*= 96.19 J•mol⁻¹•K⁻¹, 从而可计算出不同温度下的 *H* 和 *S*, 见表 3.

2.3 水蒸汽分子在金属 Pt 表面的吸附及同位素效应

由文献方法^[17]计算 H₂O 完全离解的离解能 D_e (H-O-H)=933.68 kJ•mol⁻¹, Pt-OH₂完全离解的离解能 D_e (Pt-OH₂)=986.79 kJ•mol⁻¹. 结合表 2, 表 3 数据, 计算 H₂O, D₂O 和 T₂O 蒸汽分子在 Pt 表面吸附反应的焓变 ΔH^{\odot} , 熵变 ΔS^{\odot} 和 Gibbs 自由能变化 ΔG^{\odot} ; 由 ΔG^{\odot} = $-RT \ln K_{p'}$, 得到不同温度下 H₂O, D₂O 和 T₂O 蒸汽分子 的平衡压力, 结果见表 4.

表3 Pt 的焓 H 和熵 S

Table 3 The H and S of Pt										
T/K	100	200	298.15	398.15	498.15	598.15	698.15	798.15	898.15	
$H/(kJ \bullet mol^{-1})$	2.58	5.27	7.83	10.46	13.14	15.86	18.63	21.46	24.34	
$S/(J \cdot mol^{-1} \cdot K^{-1})$	12.85	31.56	41.98	49.59	55.57	60.55	64.84	68.62	72.02	

表4 吸附反应在100~898.15 K 时热力学函数及平衡压力的计算值

Table 4 The calculations of the thermodynamic functions and equilibrium pressures of adsorption reactions in 100~898.15 K

		2		1	1		1				
T/K	100	200	298.15	398.15	498.15	598.15	698.15	798.15	898.15		
$Pt(s) + H_2O(g) \rightarrow Pt-OH_2(s)$											
$\Delta H^{\odot} / (\text{kJ} \cdot \text{mol}^{-1})$	-51.10	-56.63	-61.26	-65.52	-69.54	-73.45	-77.31	-81.14	-84.99		
$\Delta S^{\odot}/(\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1})$	-170.55	-209.25	-228.15	-240.49	-249.51	-256.65	-262.61	-267.75	-272.30		
$\Delta G^{\odot} / (\mathrm{kJ} \bullet \mathrm{mol}^{-1})$	-34.05	-14.78	6.76	30.23	54.75	80.07	106.04	132.56	159.57		
p/Pa	1.66×10^{-13}	13.99	$1.56 imes 10^6$	$9.38\!\times\!10^8$	5.58×10^{10}	$9.96 imes 10^{11}$	8.70×10^{12}	4.80×10^{13}	1.93×10^{14}		
$Pt(s) + D_2O(g) \rightarrow Pt-OD_2(s)$											
$\Delta H^{\odot} / (\mathrm{kJ} \bullet \mathrm{mol}^{-1})$	-52.78	-57.91	-62.20	-66.19	-70.01	-73.78	-77.52	-81.27	-85.04		
$\Delta S^{\odot}/(J \bullet mol^{-1} \bullet K^{-1})$	-179.65	-216.55	-234.07	-245.62	-254.20	-261.08	-266.87	-271.89	-276.35		
$\Delta G^{\odot} / (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$	-34.82	-14.59	7.59	31.61	56.62	82.39	108.80	135.74	163.16		
p/Pa	6.59×10^{-14}	15.60	$2.17 imes 10^6$	142×10^{9}	$8.76 imes 10^{10}$	1.59×10^{12}	1.40×10^{13}	7.75×10^{13}	3.13×10^{14}		
$Pt(s) + T_2O(g) \rightarrow Pt-OT_2(s)$											
$\Delta H^{\odot} / (\mathrm{kJ} \bullet \mathrm{mol}^{-1})$	-53.32	-58.38	-62.51	-66.38	-70.14	-73.84	-77.54	-81.26	-85.02		
$\Delta S^{\odot}/(\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1})$	-184.96	-220.55	-237.40	-248.63	-257.03	-263.81	-269.53	-274.52	-278.95		
$\Delta G^{\odot} / (\mathrm{kJ} \bullet \mathrm{mol}^{-1})$	-34.82	-14.27	8.27	32.61	57.90	83.96	110.63	137.84	165.51		
p/Pa	6.52×10^{-14}	18.98	$2.85 imes 10^6$	1.92×10^{9}	1.20×10^{11}	2.18×10^{12}	1.92×10^{13}	1.06×10^{14}	4.28×10^{14}		

由表4数据可得:

(1) 从 100~898.15 K, H₂O, D₂O, T₂O 蒸汽分子与 Pt 的吸附反应均为放热反应,随反应温度升高,放热增加,其中 298.15 K 时 H₂O 的吸附热为-61.26 kJ•mol⁻¹, 与实验值^[12]-62.72 kJ•mol⁻¹接近; 熵变均为负值,温度 越高,负得越多; ΔG[☉] 随温度增加而增大,反应需要的 平衡压力也相应升高.

(2) H_2O , D_2O 和 T_2O 在金属 Pt 表面的吸附反应有同 位素效应. 相同反应温度下,前者一般有更高的反应熵 变 ΔS^{\odot} ,更高的反应焓变 ΔH^{\odot} ,更低的 ΔG^{\odot} 和平衡压 力. 但在低于 200 K 时,3 种同位素分子的 ΔG^{\odot} 值及平 衡压力没有明显差异, H_2O , D_2O 和 T_2O 分子可以相互取 代.

(3) 200 K 以下, 水蒸汽在 Pt 表面吸附反应的 $\Delta G^{\odot} < 0$ kJ•mol⁻¹, 能够稳定吸附. 室温以上, $\Delta G^{\odot} > 0$ kJ•mol⁻¹, 水蒸汽的平衡压力远大于该温度下水的饱和蒸汽压, 因此水蒸汽分子在 Pt 表面不能稳定吸附, 与 Pt 表面原子发生碰撞后, 又快速离开 Pt 表面.

对表 3 数据进行拟合,得到 ΔS^{\odot} , ΔH^{\odot} , ΔG^{\odot} , ln *p* 与温度的函数关系,结果列在下面.

$$Pt(s) + H_2O(g) \rightarrow Pt-OH_2(s)$$
(5.1)

$$\Delta S^{\odot} = -127.96517 - 0.51572T + 0.00072T^{2} - 3.5997 \times 10^{-7}T^{3}$$
(5.1.1)

$$\Delta H^{\odot} = -45.16627 - 0.06385T + 0.00004T^2 - 1.9933 \times 10^{-8}T^3$$
(5.1.2)

$$\Delta G^{\odot} = -51.94551 + 0.16523T + 0.00012T^{2} - 4.8492 \times 10^{-8}T^{3}$$
(5.1.3)

$$\ln p = -74.71984 + 0.42512T - 0.00066T^{2} + 3.457 \times 10^{-7}T^{3}$$
(5.1.4)

$$Pt(s) + D_2O(g) \rightarrow Pt-OD_2(s)$$
(5.2)

$$\Delta S^{\odot} = -139.58508 - 0.48692T + 0.00068T^{2} - 3.4227 \times 10^{-7}T^{3}$$
 (5.2.1)

$$\Delta H^{\odot} = -47.36099 - 0.05822T + 0.00003T^2 -$$

$$1.8035 \times 10^{-8} T^{3} \tag{5.2.2}$$

$$\Delta G^{\odot} = -53.73041 + 0.17678T + 0.00011T^{2} - 4.3048 \times 10^{-8}T^{3}$$
 (5.2.3)

$$\ln p = -76.43376 + 0.43596T - 0.00068T^{2} + 35255 \times 10^{-7}T^{3}$$
(5.2.4)

$$3.3235 \times 10^{-1}$$
 (3.2.7)

$$Pt(s) + T_2O(g) \rightarrow Pt-OT_2(s)$$
(5.3)

$$\Delta S^{\odot} = -146.47382 - 0.46773T + 0.00065T^2 -$$

$$3.2756 \times 10^{-7} T^{3} \tag{5.3.1}$$

$$\Delta H^{\odot} = -48.05876 - 0.05678T + 0.00003T^2 -$$

$$1.8318 \times 10^{-8} T^{-5}$$
 (5.3.2)

 $\Delta G^{\odot} = -54.13605 + 0.18083T + 0.00011T^2 -$

$$4.2492 \times 10^{-8} T^{3} \tag{5.3.3}$$

$$\ln p = -76.89026 + 0.44135T - 0.00069T^{2} + 3.6085 \times 10^{-7}T^{3}$$
 (5.3.4)

由 $\Delta G = 0$ kJ•mol⁻¹ 可计算压力为 0.1 MPa 时水蒸汽 在 Pt 表面的脱附温度.而表面化学研究水蒸汽在 Pt 表 面的吸附脱附行为时实际压力远低于 0.1 MPa,由公式 $\Delta G = \Delta G^{\odot} + RT \ln Q_f \mathcal{D}(5.1.3), (5.2.3), (5.3.3)计算低于$ 0.1 MPa 压力时水蒸汽的脱附温度,结果列于表 5.

表5 不同平衡压力下水蒸汽的脱附温度

Table 5 Desorption temperature of H2O, D2O, T2O vapor atdifferent balance pressure

p/Pa	1×10^5	10 ³	1	10^{-3}	10^{-6}
$T_{\rm D}$ (H ₂ O)/K	268	227	185	155	134
$T_{\rm D}$ (D ₂ O)/K	265	226	184	155	134
$T_{\rm D}$ (T ₂ O)/K	262	224	183	155	134

由表 5 知道, 随平衡压力降低, H₂O, D₂O 和 T₂O 的 脱附温度也逐渐降低, 不同压力下的脱附温度表现出明 显差异; 相同平衡压力下, 不同同位素分子的脱附温度 也不同, 但随压力降低, 这种差异变得逐渐不明显, 最 后几乎相等. 表面化学用程序升温脱附方法测定水分子 在 Pt 表面的脱附温度, 受加热速率等影响, 单层水分子 的脱附温度的实验值^[1,2,6]在 150~200 K, 计算值与其基 本接近.

2.4 水蒸汽分子在金属 Pt 表面的离解

由计算^[17]得 Pt-H 离解能 *D*_e(Pt-H)=333.94 kJ•mol⁻¹, Pt-OH 离解能 *D*_e(Pt-OH)=614.71 kJ•mol⁻¹和 Pt-H₂O 离 解能 *D*_e(OH₂)=933.68 kJ•mol⁻¹. 结合表 2,表 3 数据,计 算水蒸汽分子在金属 Pt表面解离反应的 Gibbs 自由能变 化及平衡压力,结果列于表 6.

由表 6 可以看出, 随温度升高, 水蒸汽在 Pt 表面解 离反应的 ΔG^{\odot} 值逐渐增加, 相应水蒸汽平衡压力也逐

表6 解离反应在 100~898.15 K 时热力学函数及平衡压力的计算值

Table 6	The calculations of	the thermodynamic	functions and	equilibrium press	ures of dissociation 1	eactions in $100 \sim 898$.	.15 k
---------	---------------------	-------------------	---------------	-------------------	------------------------	------------------------------	-------

			-							
T/K	100	200	298.15	398.15	498.15	598.15	698.15	798.15	898.15	
$Pt(s)+H_2O(g) \rightarrow Pt-H(s)+Pt-OH(s)$										
$\Delta G^{\odot} / (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$	-31.37	-10.78	13.75	41.50	71.32	102.82	135.70	169.79	204.95	
p/Pa	4.15×10^{-12}	155.37	2.60×10^{7}	2.82×10^{10}	3.05×10^{12}	9.65×10^{13}	1.44×10^{15}	1.31×10^{16}	8.43×10^{16}	
$Pt(s)+D_2O(g) \rightarrow Pt-D(s)+Pt-OD(s)$										
$\Delta G^{\odot} / (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$	-25.75	-4.22	21.22	49.91	80.70	113.16	147.02	182.09	218.26	
P/Pa	3.58×10^{-9}	7.99×10^{3}	$5.29 imes10^8$	$3.58 imes 10^{11}$	$2.94 imes 10^{13}$	7.72×10^{14}	1.01×10^{16}	$8.38 imes 10^{16}$	5.01×10^{17}	
$Pt(s) + T_2O(g) \rightarrow Pt-T(s) + Pt-OT(s)$										
$\Delta G^{\odot} / (\mathrm{kJ} \bullet \mathrm{mol}^{-1})$	-23.24	-1.14	24.86	54.14	85.50	118.54	152.99	188.66	225.41	
P/Pa	7.36×10^{-8}	5.12×10^4	2.30×10^{9}	1.28×10^{12}	$9.36 imes 10^{13}$	2.28×10^{15}	2.83×10^{16}	2.25×10^{17}	1.30×10^{18}	

渐升高. 室温以上, ΔG^{\odot} 为正值, 水蒸汽分子在 Pt 表面 的解离反应热力学不利; 在 200 K 以下, ΔG^{\odot} 为负值, 但大于相应温度下水蒸汽分子在 Pt 表面吸附反应的 ΔG^{\odot} 值. 因此, 100~898.15 K 温度下, 水蒸汽分子在 Pt 表面不会发生解离, 实际反应过程中以完整分子形式参 与反应. 这与实验结果相符^[1~6]. Anderson 等^[12]计算了 水分子在 Pt 表面解离反应的活化能, 认为过高的活化能 是水分子不能解离的原因.

3 结论

利用量子力学的 B3LYP 密度泛函方法, 对氢和氧 原子采用 6-311G**基函数, Pt 原子采用相对论有效原子 实势 RECP, 选择赝势基组 LanL2DZ, 对三种 Pt-OH₂分 子结构优化, 稳态结构 Pt-H₂O 分子 Pt 与 H₂O 不在同一 平面, Pt 倾向于与 O 原子结合.

采用电子与振动近似方法,计算了 Pt-H, Pt-OH, Pt-OH₂ 及同位素分子的热力学函数值.同时计算了 100~898.15 K 温度下,水蒸汽分子在金属 Pt 表面发生 吸附反应的热力学函数值及平衡压力,拟合出了 ΔS^{\odot} , ΔH^{\odot} , ΔG^{\odot} , ln *p* 与温度的函数关系. 200 K 以下,水蒸 汽在 Pt 表面吸附反应的 $\Delta G^{\odot} < 0$ kJ•mol⁻¹,能够稳定吸 附;室温以上水蒸汽在 Pt 表面吸附反应的 ΔG^{\odot} 为正值, 水蒸汽的平衡压力远大于该温度下水的饱和蒸汽压,水 分子在 Pt 表面不能稳定存在,在与 Pt 表面原子发生碰 撞后,又快速离开Pt表面.计算了不同压力下H₂O, D₂O 和 T₂O 蒸汽分子的脱附温度,不同压力下水的氢同位素 分子的脱附温度表现出明显差异,随平衡压力降低, H₂O, D₂O和T₂O分子的脱附温度也逐渐降低,计算值与 实验值基本接近.

计算了 100~898.15 K 温度下,水蒸汽分子在金属 Pt 表面发生解离反应的 ΔG^{\odot} 和平衡压力.室温以上, ΔG^{\odot} 为正值,水蒸汽分子在 Pt 表面的解离反应热力学

不利, 200 K 以下, 解离反应 ΔG^{\odot} 大于相应温度下吸附 反应的 ΔG^{\odot} 值.水蒸汽分子在 Pt 表面不会发生解离, 实际反应过程中以完整分子形式参与反应.

References

- 1 Langenbach, E.; Spitzer, A.; Lüth, H. Surf. Sci. 1984, 147, 179.
- Kiskinova, M.; Pirug, G.; Bonzel, H. P. Surf. Sci. 1985, 150, 319.
- 3 Glebov, A. L.; Graham, A. P.; Menzel, A. Surf. Sci. 1999, 427~428, 22.
- 4 Jacobi, K.; Bedürftig, K.; Wang, Y.; Ertl, G. Surf. Sci. 2001, 472, 9.
- 5 Haq, S.; Harnett, J.; Hodgson, A. Surf. Sci. 2002, 505, 171.
- 6 Grecea, M. L.; Backus, E. H. G.; Riedüller, B.; Eichler, A.; Kleyn, A. W.; Bonn, M. J. Phys. Chem. B 2004, 108, 12575.
- 7 Istiu, G.; Maluendes, S. A.; Castro, E. A.; Arvia, A. J. J. Phys. Chem. 1988, 92, 2512.
- 8 Nagy, G.; Denuault, G. J. Electroanal. Chem. 1997, 433, 153.
- 9 Nagy, G.; Denuault, G. J. Electroanal. Chem. 1998, 450, 159.
- Meng, S.; Xu, L. F.; Wang, E. G.; Cao, S. Phys. Rev. Lett. 2002, 89, 176104-1.
- 11 Ogasawara, H.; Brena, B.; Nyberg, M.; Pelmenschikov, A.; Pettersson, L. G. M.; Nilsson, A. Phys. Rev. Lett. 2002, 89, 276102-1.
- 12 Anderson, A. B.; Neshev, N. M.; Sidik, R. A.; Shiller, S. *Electrochim. Acta* 2002, 47, 2999.
- Wang, H. Y.; Fu, Y. B.; Zhu, Z. H. Chin. J. Chem. Phys. 2005, 18, 341 (in Chinese). (王和义,傅依备,朱正和,化学物理学报, 2005, 18, 341.)
- 14 Xiong, B. T.; Meng, D. Q.; Xue, W. D.; Zhu, Z. H.; Jiang, G.; Wang, H. Y. Acta Phys. Sin. 2003, 53, 1617 (in Chinese).
 (熊必涛,蒙大桥,薛卫东,朱正和,蒋刚,王红艳,物理 学报, 2003, 53, 1617.)
- 15 Zhu, Y.; Jiang, G.; Yu, G. F.; Zhu, Z. H.; Wang, H. Y.; Fu,

Y. B. Acta Phys.-Chim. Sin. 2005, 21, 1343 (in Chinese). (朱瑜, 蒋刚, 于桂凤, 朱正和, 王和义, 傅依备, 物理化 学学报, 2005, 21, 1343.)

- Luo, D. L.; Zhu, Z. H.; Jiang, G.; Meng, D. Q.; Xue, W. D. Acta Phys.-Chim. Sin. 2001, 17, 626 (in Chinese).
 (罗德礼,朱正和,蒋刚,蒙大桥,薛卫东,物理化学学报, 2001, 17, 626.)
- Luo, D. L.; Jiang, G.; Zhu, Z. H.; Meng, D. Q.; Xue, W. D. Acta Phys.-Chim. Sin. 2001, 17, 913 (in Chinese).
 (罗德礼,蒋刚,朱正和,蒙大桥,薛卫东,物理化学学报, 2001, 17, 913.)
- 18 Li, Q.; Xu, C. G.; Wang, H. Y.; Zhu, Z. H. Acta

Phys.-Chim. Sin. **2002**, *18*, 952 (in Chinese). (李权, 徐成刚, 王红艳, 朱正和, 物理化学学报, **2002**, *18*, 952.)

- 19 Zhu, Z. H. Atomic and Molecular Reaction Statics, Science Press, Beijing, 1996 (in Chinese).
 (朱正和,原子分子反应静力学,科学出版社,北京, 1996.)
- 20 Robert, C. W.; Melvin, J. A. *CRC Handbook of Chemistry and Physics*, CRC Press, Inc., Boca Raton, Florida, **2003**.
- Michaelides, A.; Ranea, V. A.; de Andres, P. L.; King, D. A. *Phys. Rev. Lett.* 2003, *90*, 216102.

(A0605089 CHENG, B.; ZHENG, G. C.)