•研究论文•

含氯不对称配体 8-羟基喹啉铝配合物电子和光谱性质的 TDDFT 研究

阚玉和*·a,b 朱玉兰"侯丽梅",b 苏忠民*.b

("淮阴师范学院化学系 江苏省低维材料化学重点建设实验室 淮安 223300) (^b东北师范大学化学学院功能材料化学研究所 长春 130024)

摘要 以含时密度泛函理论(TDDFT) B3LYP 方法通过电子结构计算研究了含氯不对称配体 8-羟基喹啉铝配合物 AlQ(ClQ)₂的吸收和发射光谱性质. 计算表明, 第一激发态与基态结构变化主要集中在单一含氯配体中, 与*mer*-AlQ₃相 比, 前线占有轨道离域程度变大而未占据轨道则定域化程度提高. 最大吸收主要来自配体内电荷转移跃迁, 电荷从苯 酚环和氯向含氮的吡啶环跃迁. 电子陷入态计算表明, 抽取电子能量比 AlQ₃ 相应值略大, 与实验结果一致. **关键词** 8-羟基喹啉铝衍生物; 电子光谱; 激发态; 含时密度泛函

Electronic Structure and Optical Spectra of Tris(8-hydroxyquinolinato)aluminum Derivative with Mixed Ligand Containing Chlorine: A TDDFT Study

KAN, Yu-He^{*,a,b} ZHU, Yu-Lan^a HOU, Li-Mei^{a,b} SU, Zhong-Min^{*,b} (^a Department of Chemistry, Huaiyin Teachers College, Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, Huai'an 223300) (^b Institute of Functional Material Chemistry, Northeast Normal University, Changchun 130024)

Abstract Absorption and emission properties of novel mixed ligand complex, $AlQ(ClQ)_2$ (Q = 8-quinolinolate, ClQ=5,7-dichloro-8-quinolinolate) were investigated with electronic structure calculations by time-dependant density functional theory (TDDFT) B3LYP method. The optimized lowest excited state structure has an interesting feature in that only one 5,7-dichloro-8-quinolinolate ligand distorts appreciably, while the others keep their ground state structures. It is more evident that the delocalization in HOMO and localization in LUMO compared with AlQ_3 . The maximal absorption band could be assigned mainly to intra-ligand charge transfer transition character. It mostly originated from transitions starting from the phenoxide side containing chlorine to pyridyl side. The calculation of anion state showed that it has a higher electron extraction potential than AlQ_3 , which agreed with experimental result.

Keywords tris(8-hydroxyquinolinato)aluminum derivative; electronic spectrum; excited state; TDDFT

有机电致发光器件的研究是近年来最为活跃的研究领域之一^[1]. 8-羟基喹啉铝(AlQ₃)具有良好的热稳定性、成膜性和高效的电子传输性能,既可以作为发光层也可以作为电子传输层,是最重要的电致发光材料之一.颜色的调制是发展全彩平板显示的关键技术,通过

改变中心金属离子可以使波长移动,但对其发光效率影 响较大^[2].最常用的调制 AlQ₃发射波长的方法是在三个 羟基喹啉配体上引入相同的推拉电子基团,而含有非对称配体的 AlQ₃衍生物却相对较少^[3,4]. Do 等^[5]报道了一 种新的非对称混合配体 8-羟基喹啉铝配合物 AlQ(ClQ)₂

* E-mail: kanyh@tom.com

Received November 23, 2004; revised January 24, 2005; accepted March 25, 2005. 国家自然科学基金(No. 20373009)和江苏省教育厅自然科学基金(No. 03KJD150049)资助项目.

(CIQ 为 5,7-二氯-8-羟基喹啉)作为发光层的三层器件, 在 550 nm 处获得绿色发光,发光亮度为 780 cd/m²,并 具有良好的热稳定性.量子化学计算方法是研究化合物 光谱的一种有效手段^[6~9].对于 AIQ₃及其衍生物的电子 结构的理论研究已有诸多报道^[10~17],但是对于非对称 配体的 AIQ₃ 衍生物中电子结构与光谱性质的理论研究 却很少见报道^[18].本文采用密度泛函理论(DFT)和组态 相互作用(CIS)方法计算了 AIQ(CIQ)₂的基态和激发态几 何结构,探讨混合配体对配合物光谱产生的贡献,分析 配合物结构与光谱性质间的联系,为设计合成高效有机 电致发光材料提供了理论依据.

1 计算方法

近来研究表明^[7~10,18],杂化密度泛函 B3LYP 计算 AlQ₃ 及其衍生物的几何结构和激发能能获得可信的结 果.采用 DFT-B3LYP 和 HF 方法在极化基组 6-31G(d) 水平上进行几何结构优化,并以频率计算确认最稳定构 型.以基态优化得到的稳定构型为基础,进行配合物单 激发组态相互作用(CIS)^[19]计算得到最低单重激发态的 几何结构.CIS 方法往往过高地估计了激发能^[8,15,16,18], 而近来发展的含时密度泛函理论(TDDFT)^[20]极大地改 善了结果.因此本文用 TDDFT 方法在 6-31G(d)基组水 平上使用杂化 B3LYP 函数计算配合物的基态及第一单 重激发态的垂直跃迁能,探讨分子内基态-激发态间电 子跃迁机理.全部计算采用 Gaussian98 量子化学程序在 Pentium IV 微机上完成.

2 结果与讨论

2.1 基态与激发态几何结构

AlQ₃有面式(facial)和经式(meridional)两种几何异 构体,面式异构体 *fac*-AlQ₃中三个氧原子与三个氮原子 位于八面体相反的面上,具有 *C*₃对称性,而经式异构体 *mer*-AlQ₃为非对称的 *C*₁点群.实验和理论计算都表 明^[10~15,21], *mer*-AlQ₃比面式异构体 *fac*-AlQ₃稳定,是 AlQ₃存在的主要形式.本文对标题化合物 AlQ(ClQ)₂分 别以两种初始几何构建模型进行优化,优化后的几何结 构如图 1 所示,三个配体分别以 a, b 和 c 标记.计算结 果表明,经式结构 *mer*-AlQ(ClQ)₂的总能量比 *fac*-AlQ(ClQ)₂的总能量低 25.1 kJ/mol,即*mer*-AlQ(ClQ)₂ 比 *fac*-AlQ(ClQ)₂更稳定,因此本文采用 *mer*-AlQ(ClQ)₂ 计算结果进行讨论.

分别采用 HF 和 CIS 方法在 6-31G(d)基组水平上计 算 mer-AlQ(ClQ)₂的基态(S₀)和第一单重激发态(S₁)的几 何构型,所得与 Al 原子配位的键长和 mer-AlQ₃中相应 键长的对比结果列于表 1. mer-AlQ(ClQ)₂与 mer-AlQ₃有 相似的几何结构,激发前后的几何变化规律基本一致, 说明氯取代对体系分子几何键长的影响不大,配体 c 的 Al—O 和 Al—N 键长变化最为明显,激发态的 Al—N 键 变短而 Al—O 键增长,这可以从电荷布居计算得到解 释.自然电荷布居分析(NPA)^[22]表明,与基态相比,激发 态配体 c 中 N 原子的电子布居由-0.560 增大到-0.582, 与金属 Al 配位作用增强.表 2 列出了 8-羟基喹啉(QH) 和 mer-AlQ(ClQ)₂中三个配体优化后的基态和激发态键 长对比结果,表中百分比的正负值分别表示激发

mer-AlQ(ClQ)₂

图 1 fac-AlQ(ClQ)₂和 mer-AlQ(ClQ)₂优化后的几何构型 Figure 1 Schematic representation of optimized fac-AlQ(ClQ)₂ and mer-AlQ(ClQ)₂

Table 1	Ground state (S_0) and the lowest	excited state (S_1) bond leng	guis (iii iiii) for <i>mer</i> -AlQ(ClQ) ₂	and <i>mer</i> -AlQ ₃
	S_0		S_1	
	mer-AlQ(ClQ) ₂	<i>mer</i> -AlQ ₃ ^{<i>a</i>}	mer-AlQ(ClQ) ₂	<i>mer</i> -AlQ ₃ ^{a}
Al—O(a)	0.1843	0.1849	0.1841	0.1856
Al—O(b)	0.1854	0.1856	0.1863	0.1852
Al—O(c)	0.1829	0.1827	0.1909	0.1905
Al—N(a)	0.2051	0.2060	0.2095	0.2108
Al—N(b)	0.2170	0.2165	0.2121	0.2116
Al—N(c)	0.2114	0.2106	0.2010	0.2012

表1 *mer*-AlQ(ClQ)₂, *mer*-AlQ₃ 基态(S₀)和第一单重激发态(S₁)的键长对比(nm) e 1. Ground state (S₂) and the lowest excited state (S₂) bond lengths (in nm) for *mer*-AlQ(ClQ)₂ and *mer*-A

^a Ref. [16].

表 2 mer-AlQ(ClQ)₂三个配体和 8-羟基喹啉(QH)基态(S_0)和第一单重激发态(S_1)键长(nm)

Table 2 Ground-state and excited-state bond lengths (in nm) for the a-, b-, and c-quinolate ligands in mer-AlQ(ClQ)₂ and for 8-hydroxyquinoline (QH)

	S ₀ [HF/6-31G(d)]			S ₁ [CIS/6-31G(d)]			% diff ^a					
	QH	a-Q	b-Q	c-Q	QH	a-Q	b-Q	c-Q	QH	a-Q	b-Q	c-Q
N(1)—C(2)	0.1293	0.1299	0.1300	0.1299	0.1360	0.1299	0.1300	0.1370	5.182	0.000	0.000	5.466
C(2)—C(3)	0.1416	0.1410	0.1409	0.1407	0.1367	0.1410	0.1408	0.1357	-3.460	0.000	-0.071	-3.554
C(3)—C(4)	0.1357	0.1362	0.1362	0.1361	0.1415	0.1362	0.1363	0.1417	4.274	0.000	0.073	4.115
C(4)—C(9)	0.1418	0.1417	0.1417	0.1415	0.1399	0.1417	0.1416	0.1397	-1.340	0.000	-0.071	-1.272
C(9)—C(5)	0.1418	0.1418	0.1420	0.1420	0.1402	0.1419	0.1421	0.1418	-1.128	0.071	0.070	-0.141
C(5)—C(6)	0.1360	0.1362	0.1357	0.1356	0.1424	0.1363	0.1357	0.1411	4.706	0.073	0.000	4.056
C(6)—C(7)	0.1414	0.1416	0.1413	0.1411	0.1363	0.1416	0.1413	0.1360	-3.607	0.000	0.000	-3.614
C(7)—C(8)	0.1360	0.1369	0.1371	0.1371	0.1422	0.1369	0.1371	0.1444	4.559	0.000	0.000	5.325
C(8)—O	0.1339	0.1309	0.1291	0.1289	0.1313	0.1308	0.1291	0.1253	-1.942	-0.076	0.000	-2.793
C(8)—C(10)	0.1426	0.1428	0.1431	0.1434	0.1423	0.1427	0.1433	0.1432	-0.210	-0.070	0.140	-0.139
C(10)—N	0.1353	0.1354	0.1351	0.1356	0.1321	0.1353	0.1352	0.1340	-2.365	-0.074	0.074	-1.180
C(10)—C(9)	0.1402	0.1395	0.1396	0.1396	0.1431	0.1395	0.1396	0.1410	2.068	0.000	0.000	1.003

^{*a*}% diff defined as $(R_{\text{CIS}} - R_{\text{HF}})/R_{\text{HF}} \times 100\%$.

态的键长的增大和减小.可以看出,自由配体 QH 的单 双键长变化为 0.210%~5.182%,由于没有中心金属的 限制而变化显著; mer-AlQ(ClQ)₂中,配体 a 和配体 b 的 键长变化分别为 0%~0.076%和 0%~0.140%,变化很 小,而配体 c 与自由配体 QH 的键长交替变化规律一致, 键长变化尤为明显,为 0.139%~5.466%,说明第一激 发态与基态结构变化主要集中在配体 c 中,而其它两个 配体变化不大.

2.2 电子结构与分子轨道

配合物的光谱性质与分子电子结构密切相关,前线 分子轨道上的电子受核束缚较小.为探讨发光金属配合 物 *mer*-AlQ(ClQ)₂ 的电子跃迁实质,对 *mer*-AlQ(ClQ)₂ 基态和激发态的电子结构进行系统分析.以 B3LYP/ 6-31G(d)优化得到稳定几何构型为基准,用参与组合的 各原子的轨道系数的平方和的百分比表示该部分在某 个分子轨道中的贡献,分析 mer-AlQ(ClQ)₂ 基态结构中 金属和配体的前线分子轨道成分.将 mer-AlQ(ClQ)₂的 所有原子分为6部分: (1)Al 原子; (2)配体 a; (3)配体 b(不 含两个氯原子); (4)配体 b 上的两个氯原子(Cl_b); (5)配体 c(不含两个氯原子); (6) 配体 c 上的两个氯原子(Cl_c),前 线占有轨道和空轨道各取 10 个,结果列于表 3. 由计算 可知,和 mer-AlQ₃的 B3LYP/6-31G(d)结果^[10]相比, HOMO 能量降低(-5.4 eV 对-5.0 eV),但 HOMO-LUMO 的能隙减小(3.13 eV 对 3.27 eV),因此其光谱将 产生红移.在前线轨道中,中心金属 Al 的贡献很小,不 对称配位并没有改变金属在配合物中的作用.前线分子 轨道中毗邻 HOMO 与 LUMO 的每一组三个轨道能量接 近,而其每个分子轨道的电子云主要定域在其中一个配

Table 3	One-electron energies and percentage composition of frontier molecular orbital for mer-AlQ(ClQ) ₂							
МО	<i>E</i> /eV	Al	а	b	Cl _b	с	Cl _c	
161	0.51	0.3	0.4	1.7	0.1	95.0	2.5	
160	0.49	0.5	0.2	0.4	0.0	54.2	44.6	
159	0.24	0.5	0.1	54.4	44.8	0.1	0.0	
158	0.20	0.3	0.5	94.2	2.6	2.2	0.2	
157	-0.63	0.1	98.9	0.7	0.0	0.2	0.0	
156	-0.88	0.1	0.2	4.2	0.1	93.8	1.6	
155	-1.18	0.0	0.7	93.2	1.6	4.2	0.1	
154	-1.78	0.6	92.6	4.3	0.1	2.4	0.0	
153	-2.00	0.7	2.8	0.7	0.0	95.0	0.8	
LUMO	-2.27	0.7	3.6	93.7	0.9	1.1	0.0	
НОМО	-5.40	0.5	23.1	0.5	0.0	65.6	10.3	
150	-5.56	1.0	75.3	1.0	0.1	19.4	3.3	
149	-5.74	0.6	0.8	83.8	13.7	0.9	0.1	
148	-7.02	0.0	0.0	0.3	0.1	77.2	22.3	
147	-7.07	0.0	99.6	0.2	0.0	0.1	0.0	
146	-7.29	0.0	0.3	77.1	22.2	0.3	0.1	
145	-7.75	5.0	59.2	9.0	0.2	25.7	0.9	
144	-7.99	1.3	78.4	2.3	0.2	15.9	1.9	
143	-8.05	0.9	0.3	0.7	0.1	77.8	20.1	
142	-8.15	2.5	8.0	32.5	0.6	7.4	49.0	

表3 前线分子轨道能量和百分组成

体上,与 *mer*-AlQ₃的理论研究结果一致^[10,11].最高占据 轨道(HOMO)的电子云主要集中在配体 c 上(65.6%),Cl 原子上也有一定量的布居(10.3%),其余主要分布在配 体 a 上(23.1%),而配体 b 几乎没有贡献;最低空轨道 (LUMO)的电子云则更加定域,主要集中在配体 b 上

(93.7%)(图 2). 总的来说,与 mer-AlQ₃相比,前线占有 轨道离域程度变大而未占据轨道则定域化程度提高 (mer-AlQ₃中, HOMO 的配体 a, b, c 的贡献分别为 12.2%, 0.5%和 86.7%,而 LUMO 中分别为 15.3%, 83.3%, 0.5%^[10]).图 2 是 mer-AlQ(ClQ)₂基态(S₀)和第一单重激 发态(S₁)的前线分子轨道图,由图我们可以清楚地看到, 基态 HOMO 中电子云主要分布在配体 c 并定域在苯酚 环上,而 LUMO 则是在配体 b 中并集中在吡啶环上,激 发态的 HOMO 和 LUMO 均定域在单一配体 c 上,基态 和激发态的前线分子轨道中氯均有明显贡献,而难以发 现中心金属 Al 的贡献.分析分子轨道的节点图可以很 好解释基态与激发态配体结构键长变化,由于 HOMO 的成键特征消失,而在激发态 LUMO 的反键特征成为 主体,因此 N(1)—C(2)键减弱,键长增加;相反,LUMO 的成键特征使 C(2)—C(3)键长变短(表 2).

2.3 吸收光谱与发射光谱

采用 TD-DFT 方法在 B3LYP/6-31G(d)水平上分别 对基态和第一激发单重态的结构计算垂直跃迁能,得到 *mer*-AlQ(ClQ)₂吸收光谱和发射光谱.表4列出吸收光谱 前 20 个态中振子强度(f)大于 0.01 的结果.计算所得振 子强度最大的吸收位于 442 nm,与实验最大吸收波长 399 nm 相差不大, 最大吸收并非由第一激发态贡献, 而 是基态到第三激发态的激发, 主要由 HOMO(151)→ LUMO+1 (153)跃迁贡献, 分子轨道分析表明, HOMO 轨道主要定域在配体 c 的苯酚和氯上, 而 LUMO+1 轨 道主要集中在配体 c 的吡啶环上, 因此, 跃迁主要表现 为配体内跃迁, 电荷从配体 c 中含氧的苯酚环和氯原子 向含氮的吡啶环跃迁.同时基态到第三激发态的激发还 有部分 HOMO-1(150)→LUMO(152)的跃迁参与, 即配 体 a 到配体 b 的配体间的跃迁. 第一激发位于 472.4 nm, 主要源于 HOMO→LUMO 的跃迁, 主要由从配体 c 向配 体b电荷转移产生,但其振子强度为0.003,电子云空间 重叠很小, 与第2与3激发态相比具有很低的跃迁可能 性. 值得注意的是, 振子强度较大的激发主要都是来自 于配体内的电荷转移. 由 CIS 优化第一激发单重态计算 所得最大发射波长位于 573 nm, 可以指认为 HOMO→LUMO 的 π - π *电子跃迁. 计算估计的 Stokes 位移是 131 nm, 与实验值 119 nm 吻合很好.

表4 B3LYP/6-31G(d)计算 mer-AlQ(ClQ)₂的吸收光谱性质 Table 4 Absorption spectrum for mer-AlQ(ClQ)₂ with B3LYP/6-31G(d)

Stata	Wavelength/nm	£	Composition	Eve [5]	
State	(Energy/eV)	J	Composition	Exp.	
2	450 2(2 75)	0.0202	150→152(76%)		
2	430.2(2.73)	0.0203	151→153(10%)		
2	442 1(2 80)	0.0495	151→153(70%)	2 00 ^a	
3	442.1(2.80)		150→152(12%)	399"	
4	424 1(2.96)	0.0450	149→152(82%)		
	434.1(2.80)		151→153(5%)		
C	402 2(2.07)	0.0192	151→154(72%)		
0	405.3(5.07)	0.0185	151→154(12%)		
11	220 0(2 87)	0.0126	150→155(75%)		
	320.0(3.87)		151→156(13%)		
12	21((2,02))	0.0241	149→155(47%)		
	310.0(3.92)		151→156(21%)		
			151→156(35%)		
13	314.9(3.94)	0.0162	149→155(22%)		
			150→155(17%)		

^a in THF solution.

2.4 阴离子态

AlQ₃是良好的电子传输材料,根据结构和轨道的相 似性可以预测 mer-AlQ(ClQ)₂也将具有类似性质,为此 我们优化了 mer-AlQ(ClQ)₂ 阴离子态结构.结果表明, 与中性态结构相比键长呈明显的变化规律,配体 a, b 和 c 中的键长变化分别为~0.0011,~0.0038 和~0.0008 nm, 配体 b 中的键长变化最大,而且主要集中在吡啶部 分. 从前面讨论我们知道(表 3, 图 2), mer-AlQ(ClQ)₂的 HOMO 主要定域在配体 c 的苯酚环, 因而最容易氧化失 去电子形成空穴位; 相反, 配体 b 的吡啶部分是最低能 量的空轨道态, 容易还原得到电子形成电子陷入态. 这 与所得 mer-AlQ(ClQ)₂ 阴离子几何结构变化一致. 体系 携带一个负电荷, 对金属 Al 与各配体的配位作用产生 影响, 金属 Al 与配体 b 中 N 的键长 Al—N(b)变化最明 显, 由中性态的 0.2128 nm 变为 0.2012 nm, 其 HOMO 电 子云定域在配体 b 上, 增加的负电荷使之与金属 Al 离子 作用增强, Al—N(b)键长变短, 而其它两个 Al—N 键长 略有增长. 电子陷入态的能量计算表明, 抽取电子能量 为 1.29 eV, 比 AlQ₃ 相应值(1.13 eV)略大, 说明 mer-AlQ(ClQ)₂ 比 mer-AlQ₃接受电子能力差, 电子传输 性能降低, 这是导致 mer-AlQ(ClQ)₂ 发光效率降低的主 要因素之一.

References

- 1 Hung, L. S.; Chen, C. H. Mater. Sci. Eng., R 2002, 39, 143.
- 2 Ballardini, R.; Varani, G.; Indelli, M. T.; Scandola, F. *Inorg. Chem.* **1986**, *25*, 3858.
- 3 (a) Bryan, P. S.; Lovecchio, F. V.; Van Slyke, S. A. US 5141671, 1992 [Chem. Abstr. 1993, 118, 157402].
 (b) Van Slyke, S. A.; Bryan, P. S.; Lovecchio, F. V. US 5150006, 1992 [Chem. Abstr. 1993, 119, 105561].
- 4 Qiu, Y.; Shao, Y.; Zhang, D.-Q.; Hong, X.-Y. Jpn. J. Appl. Phys. 2000, 39, 1151.
- 5 Jang, H.; Do, L. M.; Kim, Y.; Gon Kim, J.; Zyung, T.; Do, Y. Synth. Met. 2001, 121, 1669.
- Kan, Y.-H.; Su, Z.-M.; Sun, S.-L.; Chen, L.-H.; Zhu, Y.-L.; Ren, A.-M.; Feng, J.-K. *Chem. J. Chin. Univ.* 2002, 23, 444 (in Chinese).
 (阚玉和, 苏忠民, 孙世玲, 陈丽华, 朱玉兰, 任爱民, 封 继康, 高等学校化学学报, 2002, 23, 444.)
- 7 Zhu, Y.-L.; Kan, Y.-H.; Lin, Y.-K.; Pan, W.-L.; Su, Z.-M.; Cui, H.-B. *Acta Chim. Sinica* 2003, 61, 1196 (in Chinese).
 (朱玉兰, 阚玉和, 林元奎, 潘万龙, 苏忠民, 崔亨波, 化 学学报, 2003, 61, 1196.)
- Liao, Y.; Su, Z.-M.; Chen, Y.-G.; Kan, Y.-H.; Duan, H.-X.; Qiu, Y.-Q.; Wang, R.-S. *Chem. J. Chin. Univ.* 2003, 24, 477 (in Chinese).
 (廖奕, 苏忠民, 陈亚光, 阚玉和, 段红霞, 仇永清, 王荣 顺, 高等学校化学学报, 2003, 24, 477.)
- 9 Meng, S.-C.; Huang, Z.-H.; Xu, D.; Kan, Y.-H.; Tang, Q.-L. Acta Chim. Sinica 2004, 62, 1065 (in Chinese).
 (孟素慈,黄宗浩,徐栋,阚玉和,唐前林,化学学报, 2004, 62, 1065.)
- 10 Amati, M.; Lelj, F. J. Phys. Chem. A 2003, 107, 2560.
- Curioni, A.; Boero, M.; Andreoni, W. Chem. Phys. Lett. 1998, 294, 263.
- 12 Zhang, R. Q.; Lee, C. S.; Lee, S. T. J. Chem. Phys. 2000,

112, 8614.

 Su, Z.-M.; Cheng, H.; Gao, H.-Z.; Sun, S.-L.; Chu, B.; Wang, R.-S.; Wang, Y. Chem. J. Chin. Univ. 2000, 21, 1416 (in Chinese).
 (苏忠民, 程红, 高洪泽, 孙世玲, 初蓓, 王荣顺, 王悦,

高等学校化学学报, 2000, 21, 1416.)

- 14 Sugimoto, M.; Anzai, M.; Sakanoue, K.; Sakaki, S. Appl. Phys. Lett. 2001, 79, 2348.
- 15 Halls, M. D.; Schlegel, H. B. Chem. Mater. 2001, 13, 2632.
- 16 Han, Y. K.; Lee, S. U. Chem. Phys. Lett. 2002, 366, 9.
- 17 Zhang, J. P.; Frenking, G. Chem. Phys. Lett. 2004, 394, 120.
- 18 Gao, H. Z.; Su, Z. M.; Qin, C. S.; Mo, R. G.; Kan, Y. H. Int. J. Quantum Chem. 2004, 97, 992.

- 19 Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. 1992, 96, 135.
- 20 Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218.
- 21 Kushto, G. P.; Iizumi, Y.; Kido, J.; Kafafi, Z. H. J. Phys. Chem. A **2000**, 104, 3670.
- 22 (a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. *Phys.* **1985**, *83*, 735.

(b) Reed, A. E.; Weinhold, F. J. Chem. Phys. **1985**, 83, 1736.

(c) Reed, A. E.; Curtis, L. A.; Weinhold, F. Chem. Rev. **1988**, 88, 899.

(A0411231 CHENG, B.; ZHENG, G. C.)