文章编号:0253-9837(2007)02-0117-07

Vol. 28 No. 2

催化学报

2007年2月 February 2007

研究论文:117~123

Chinese Journal of Catalysis

氢气对 Ag/Al₂O₃ 和 Cu/Al₂O₃ 催化剂选择性催化

$C_{3}H_{6}$ 还原 NO_x 反应的影响

张秀丽,贺泓,余运波

(中国科学院生态环境研究中心环境化学与生态毒理学重点实验室,北京 100085)

摘要:添加 H₂ 对 Ag/Al₂O₃ 和 Cu/Al₂O₃ 催化剂选择性催化 C₃H₆ 还原 NO_x 反应具有不同的影响. 原位漫反射红外光谱分析 表明,在 Ag/Al₂O₃ 催化剂上, H₂ 的存在促进了 C₃H₆ 部分氧化产物烯醇式物种(RCH=CH-O⁻)和乙酸盐等的形成,烯醇式物 种和硝酸盐为主要反应中间体,二者间的相互反应性能很强,能形成高浓度的反应关键中间体异氰酸酯(-NCO)表面吸附物 种,因此 NO_x 的去除活性提高;而在 Cu/Al₂O₃ 催化剂上, H₂ 的存在并没有促进 C₃H₆ 部分氧化产物的形成,而且抑制了硝酸 盐的形成,进而抑制了 C₃H₆ 部分氧化产物与硝酸盐反应形成表面 – NCO 物种,导致 NO_x 的去除活性降低. 关键词:氢;银;铜;氧化铝;氮氧化物;选择性催化还原;原位漫反射红外光谱;烯醇式物种;异氰酸酯 中图分类号:O643/X7 文献标识码:A

Effect of H₂ on Selective Catalytic Reduction of NO_x by C₃H₆ over Ag/Al₂O₃ and Cu/Al₂O₃ Catalysts

ZHANG Xiuli, HE Hong*, YU Yunbo

(State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China)

Abstract : The effect of H_2 on the selective catalytic reduction (SCR) of NO_x by C_3H_6 was investigated over Ag/ Al₂O₃ and Cu/Al₂O₃ catalysts by steady *in situ* diffuse reflectance infrared Fourier transform spectroscopy. The presence of H_2 might accelerate the partial oxidation of C_3H_6 over Ag/Al₂O₃ to enolic species and acetate. The enolic species can react easily with nitrates to form surface -NCO species. An enhancement of enolic species formation promoted the SCR of NO_x over Ag/Al₂O₃ in the presence of H_2 . As for the Cu/Al₂O₃ catalyst, the addition of H_2 did not influence the partial oxidation of C_3H_6 to acetate but inhibited apparently the formation of nitrates , and subsequently blocked the reaction between acetate and nitrates to form the key -NCO species. This led to the deactivation of Cu/Al₂O₃ in the SCR of NO_x in the presence of H_2 .

Key words : hydrogen ; silver ; copper ; alumina ; nitrogen oxide ; selective catalytic reduction ; *in situ* diffuse reflectance infrared Fourier transform spectroscopy ; enolic species ; isocyanate species

柴油机与贫燃汽油机尾气中高含量 NO_x 的排 放引起了一系列环境问题. 20 世纪 90 年代初, Iwamoto等^[1]和 Held 等^[2]报道了选择性催化低碳 氢化合物(HC)还原 NO_x 技术,为富氧条件下 NO_x 的有效去除提供了可能性.目前,人们已对多种催化剂进行了研究,其中金属氧化物 Al₂O₃ 由于具有高水热稳定性和耐久性而受到了高度的重视,少量过渡金属如 Ag, Cu 和 Co 等的添加一定程度上提

联系人:贺 泓. Tel: (010)62849123; Fax: (010)62923563; E-mail: honghe@rcees.ac.cn.

收稿日期:2006-08-01. 第一作者:张秀丽,女,1978年生,博士.

基金来源:国家杰出青年科学基金(20425722);国家自然科学基金重点项目(20437010).

高了 Al₂O₃ 的反应活性^[3]. 我们前期的研究结果显 示, Ag/Al₂O₃催化剂-乙醇体系是选择性催化还原 NO_x 的高效体系, 而 Ag/Al₂O₃ 催化剂-HC 体系的 低温活性较差^[4,5]. Satokawa^[6]研究发现,在反应体 系中添加少量 H₂ 能够明显提高 Ag/Al₂O₃ 催化剂 选择性催化 HC 还原 NO, 反应的低温(<623 K)活 性. 原位漫反射红外光谱(DRIFTS)研究表明,硝酸 盐(NO₃⁻) 乙酸盐(CH₃COO⁻) 异氰酸酯 (-NCO)以及烯醇式物种(RCH=CH-O⁻)等是以 Al₂O₃为载体的催化剂上选择性催化还原 NO₂的 重要反应中间体^[7~14].对于在 Ag/Al₂O₃ 催化剂上 发生的反应, Satokawa 等[15]认为, H_2 本身在该体 系中并没有起到还原剂的作用,而是与高浓度的关 键中间体 -- NCO 的形成有关; Shibata 等^[16]认为 H₂ 共存有利于还原剂 C₃H₈ 部分氧化为反应中间体乙 酸盐(CH₃COO⁻); 而 Burch 等^[17]则认为 H₂的存 在促进了有机 C=N 物种的形成和累积.

对于 Al_2O_3 负载的其它催化剂,如 Pt/Al_2O_3 和 Co/Al_2O_3 催化剂上的选择性催化碳氢化合物还原 NO_x 反应,添加 H_2 并没有起到促进作用^[15]. Cu/ Al_2O_3 具有良好的水热稳定性和适中的氧化能力, 我们曾考察了没有 H_2 存在时 Cu/Al_2O_3 催化剂选择性催化 C_3H_6 还原 NO_x 的活性,并同高活性的 Ag/Al_2O_3 催化剂进行了对比^[18],而添加 H_2 对该反应的影响还未见报道.

本文利用原位漫反射红外光谱法考察了 Ag/ Al₂O₃和 Cu/Al₂O₃催化剂上 C₃H₆选择性还原 NO_x 体系中添加的 H₂的作用,着重讨论了 H₂对不同催 化剂上形成的反应中间体 NO₃⁻, RCH=CH-O⁻, CH₃COO⁻以及 -NCO 的影响,以期能合理解释在 H₂存在下两种催化剂之间存在的差异.

1 实验部分

1.1 催化剂的制备与活性评价

参照文献 18 的方法制备活性组分负载量优选 后的 4% Ag/Al₂O₃ 和 10% Cu/Al₂O₃ 催化剂. 催化 剂的活性评价在计算机控制的 6 气路固定床反应装 置上进行.反应配气为: φ (NO) = 0.08%, φ (C₃H₆)=0.171 4%, φ (H₂)=0或1%, φ (O₂)= 10%, N₂为平衡气体. 气体总流量为 2000 ml/ min,接触时间 W/F = 0.018 (g·s)/ml (GHSV = 50 000 h⁻¹),反应尾气中 NO_x 的含量通过 Thermo Environmental Instruments Inc. 42C-HL 型 NO_x 分 析仪检测. NO_x 转化率用 X(NO_x) = ([NO + NO_2]_n - [NO + NO_2]_out 》[NO + NO_2]_n 式计算.

1.2 原位 DRIFTS 分析

催化剂的原位 DRIFTS 分析采用 Thermo Nicolet 公司的 NexusTM 670 型光谱仪测定,分束器为 KBr, MCT/A 检测器,分辨率为4 cm⁻¹.称取约 0.03 g待测4% Ag/Al₂O₃或10% Cu/Al₂O₃催化剂 置于陶瓷小坩埚内,反应气体的流量通过质量流量 计来控制,预先混合后通入原位池,各种气体的浓度 与活性评价完全一致,总流量控制在 300 ml/min, 反应温度通过红外装置自带的 Thermo Spectra-Tech 控温仪来控制.

2 结果与讨论

2.1 H₂ 对 Ag/Al₂O₃ 和 Cu/Al₂O₃ 选择性催化
 C₃H₆还原 NO_x 活性的影响

图 1 为添加 H₂ 前后 4% Ag/Al₂O₃ 和 10% Cu/ Al₂O₃ 催化剂选择性催化 C₃H₆ 还原 NO_x 的活性对 比. 对于 Ag/Al₂O₃ 催化剂,反应体系中没有 H₂ 时 (图 1(1)),在 423~573 K 的温度范围内, NO_x 转 化率不足 10%,反应温度升高到 723 K 时转化率最 大 约为 97%;当反应体系添加 1% H₂ 时(图 1 (2)),在 423~523 K 的温度范围内, NO_x 转化率

图 1 不同温度下添加 H₂ 对 Ag/Al₂O₃ 和 Cu/Al₂O₃ 催化剂活性的影响

Fig 1 Effects of H₂ addition on catalytic activity of Ag/Al₂O₃ and Cu/Al₂O₃ for the SCR of NO_x with C₃H₆ at various temperatures

(1) Ag/Al₂O₃, without H₂; (2) Ag/Al₂O₃, with 1 % H₂; (3) Cu/Al₂O₃, without H₂; (4) Cu/Al₂O₃, with 1 % H₂ (Reaction conditions: φ (NO)=0.08%, φ (C₃H₆)=0.1714%,

 φ (O₂)=10%, N₂ balance, total flow=2000 ml/min,

 $GHSV\!=\!50000~h^{-1}.$)

明显提高,在 500 K 时高达 88%,整个反应具有很 宽的温度窗口.对于 Cu/Al₂O₃ 催化剂,反应体系中 没有 H₂ 时,如图 1(3)所示,其活性较低,NO_x 的最 高转化率不到 40%,这与我们以前的报道相一 致^[18];当反应体系中添加 1% H₂ 时,如图 1(4)所 示,在 473~573 K 的温度范围内,与未添加 H₂ 时 相比,NO_x转化率变化不大,但在 623~823 K 的温 度范围内,NO_x转化率则明显下降.由此可见,H₂ 的存在对于 Ag/Al₂O₃和 Cu/Al₂O₃ 催化剂选择性催 化 C₃H₆ 还原 NO_x 的反应过程具有完全不同的影 响.我们推测,这种差异可能缘于 H₂ 对两种催化剂 表面上形成的反应中间体的影响不同.

2.2 原位稳态反应 DRIFTS 分析

2.2.1 H₂ 对 Ag/Al₂O₃ 和 Cu/Al₂O₃ 催 化 剂 上 C₃H₆ 部分氧化反应的影响

催化 C_3H_6 选择性还原 NO_x 反应是一个较为复 杂的过程.通常认为在没有 H_2 存在的体系中, $C_{3}H_{6}$ 部分氧化能形成 $CH_{3}COO^{-}$ 物种,它与 NO_{3}^{-} 物种在关键中间体 – NCO 的形成过程中起到重要 的作用 $^{[3,7]}$; $C_{3}H_{6}$ 部分氧化也能形成高活性的表面 烯醇式物种 RCH=CH-O⁻,但该物种的表面浓度 较低,在 – NCO 的形成中未能起到决定性的作 用 $^{[19]}$.由此可知, $C_{3}H_{6}$ 部分氧化产物的种类与浓 度对 NO_{x} 还原反应具有重要的作用.为此我们以 原位漫反射红外光谱为研究手段,首先考察了 H_{2} 对 $Ag/Al_{2}O_{3}$ 和 $Cu/Al_{2}O_{3}$ 催化剂上还原剂 $C_{3}H_{6}$ 部 分氧化反应的影响.

119

图 2 是不同温度下,通入 $C_3H_6 + O_2$ 和 $C_3H_6 + O_2 + H_2$ 混合气体达到稳态时, Ag/Al_2O_3 和 Cu/ Al₂O₃催化剂上吸附物种的红外光谱. 当 Ag/Al_2O_3 催化剂上通入 $C_3H_6 + O_2$ 混合气体时,如图 2(a)所 示,谱图中 1 577 和 1 460 cm⁻¹分别属于乙酸盐中 羧基(COO⁻)的反对称和对称伸缩振动吸收 峰^[10,11]; 1 392 和 1 377 cm⁻¹ 归属为表面碳氢物种

in a flow of $C_3H_6 + O_2((a), (c))$ and $C_3H_6 + O_2 + H_2((b), (d))$

(1) 423 K, (2) 473 K, (3) 523 K, (4) 573 K, (5) 623 K, (6) 673 K, (7) 723 K, (8) 773 K (Reaction conditions are the same as in Fig 1, but without NO.) 的甲基和亚甲基的变形振动^[9]; 1 633 cm⁻¹ 为 RCH=CH-O⁻物种的反对称振动^[14,19],该峰在 623 K 出现,其强度随反应温度的升高先增强后减弱. 需要指出的是,Ag/Al₂O₃ 催化剂上高浓度的 RCH=CH-O⁻还应在1416和1336 cm⁻¹处出现 对称伸缩与C-H 变形振动吸收峰^[14],但在该条件 下,RCH=CH-O⁻物种的表面浓度较低,因而以上 两个吸收峰的强度较弱而没有观测到.对比整个温 度范围内各物种的红外吸收峰的强度可知, CH₃COO⁻为主要的表面吸附物种.

当 Ag/Al₂O₃ 催化剂上通入 $C_3H_6 + O_2 + H_2$ 混 合气体时,如图 2(b)所示,明显观察到烯醇式物种 (1633,1411 和 1336 cm⁻¹)和乙酸盐(1577 和 1457 cm⁻¹)的吸收峰,在低温(423~573 K)区,烯 醇式物种 RCH=CH-O⁻和乙酸盐 CH₃COO⁻为主 要表面物种,而较高温度(623~773 K)下,乙酸盐 占主导地位.对比图 2(b)和图 2(a)可以看出,添加 H₂的体系在 423 K 下表面烯醇式物种和乙酸盐的 浓度明显增加,表明 H₂存在下, C_3H_6 的部分氧化 得到促进,特别是有利于烯醇式物种 RCH=CH-O⁻ 的低温形成.

当 Cu/Al₂O₃ 催化剂上通入 C₃H₆ + O₂ 混合气体时,如图 χ c)所示,可以观察到乙酸盐物种(1585和 1454 cm⁻¹)的吸收峰和表面 C-H(1377 cm⁻¹)的变形振动吸收峰^[9,12],1643 cm⁻¹ 归属为 C=C的伸缩振动^[12,18].对比图 χ d)和图 χ c)可以看出, 当 Cu/Al₂O₃ 催化剂上通入 C₃H₆ + O₂ + H₂ 混合气体时,乙酸盐(1581和 1454 cm⁻¹)仍然是主要的表面物种,催化剂表面物种的种类以及表面浓度没有明显的变化.由此可见,添加 H₂并没有影响 Cu/Al₂O₃ 催化剂上 C₃H₆的部分氧化.

对比 Ag/Al₂O₃ 和 Cu/Al₂O₃ 催化剂上 C₃H₆ 部 分氧化反应结果可以看出,H₂ 明显促进了低温条 件下 C₃H₆ 在 Ag/Al₂O₃ 上的部分氧化,尤其是高活 性烯醇式物种的形成.而 Shibata 等^[16]以 C₃H₈ 为 还原剂选择性催化还原 NO_x 时只观察到乙酸盐物 种的形成以及 H₂ 的促进作用.与 Ag/Al₂O₃ 催化剂 相比,在 Cu/Al₂O₃ 催化剂上,H₂ 既没有促进表面 物种浓度的增加,也没有促进 RCH=CH-O⁻物种的 形成.根据前期研究工作^[14,19]可知,与 CH₃COO⁻ 相比,在合适的温度条件下,烯醇式物种与硝酸盐具 有更高的反应活性,形成关键中间体 – NCO. 2.2.2 H₂ 对 Ag/Al₂O₃ 和 Cu/Al₂O₃ 催化剂上硝酸 盐物种形成的影响

表面硝酸盐物种在 NO_x 选择性还原反应中也 起重要作用^[3,8,13],为此考察了 H₂ 对 Ag/Al₂O₃ 和 Cu/Al₂O₃ 催化剂上反应中间体硝酸盐物种形成的 影响,从而进一步探讨 H₂ 的存在造成两种催化剂 活性变化的原因.图 3 是不同温度下通入 NO + O₂ 和 NO + O₂ + H₂ 混合气体达到稳态时,Ag/Al₂O₃ 和 Cu/Al₂O₃ 催化剂上吸附物种的红外光谱.当混 合气体 NO + O₂ 通入时,Ag/Al₂O₃ 催化剂(图 3 (a)),在1614,1583,1560,1298和1248 cm⁻¹ 处出现明显的吸收峰,可分别归属为双齿硝酸盐的 振动吸收峰(1560和1248 cm⁻¹)以及桥式硝酸盐 的振动吸收峰(1614 cm⁻¹)^{8,11}.

图 \mathfrak{X} b)是混合气体 NO + O₂ + H₂ 通入时 Ag/ Al₂O₃ 催化剂的情况 ,与图 \mathfrak{X} a)对比可知 ,催化剂表 面同样出现了双齿硝酸盐、单齿硝酸盐以及桥式硝 酸盐的振动吸收峰. 二者的差别是 ,在相同温度下 有 H₂ 存在时桥式硝酸盐(1614 cm⁻¹)的振动吸收 峰有所增强 ,其他种类硝酸盐的浓度变化不大 ,表明 H₂ 促进了桥式硝酸盐在 Ag/Al₂O₃ 催化剂表面的形 成.

当混合气体 NO + O_2 通入时,由图 3(c)可见, 在整个温度范围内可以观察到 Cu/Al₂O₃ 催化剂双 齿硝酸盐(1579 和 1298 cm⁻¹)和单齿硝酸盐 (1550 和 1246 cm⁻¹)的振动吸收峰^[8,11].而当混 合气体 NO + O_2 + H_2 通入时(图 3(d)),只在低温 范围(423~523 K)观察到了 Cu/Al₂O₃ 催化剂表面 双齿硝酸盐(1576 和 1300 cm⁻¹)和单齿硝酸盐 (1543 和 1246 cm⁻¹)的振动吸收峰,随着反应温 度的升高,硝酸盐的吸收峰逐渐消失.以上结果表 明, H_2 抑制了 573 K以上硝酸盐物种在 Cu/Al₂O₃ 表面的形成.

2.2.3 H₂ 对 Ag/Al₂O₃ 和 Cu/Al₂O₃ 催化 C₃H₆ 选择性还原 NO_x 反应的影响

利用原位红外光谱研究了 H_2 存在下 C_3H_6 部 分氧化产物与硝酸盐之间的表面反应,着重探讨了 关键中间体 – NCO 的变化,以确定 H_2 对两种催化 剂上 NO_x 还原反应不同影响的原因.图 4 是不同 温度下通入 $NO + C_3H_6 + O_2$ 和 $NO + C_3H_6 + O_2 +$ H_2 混合气体达到稳态时, Ag/Al_2O_3 和 Cu/Al_2O_3 催

Fig 3 In situ DRIFTS spectra of Ag/Al₂O₃ ((a), (b)) and Cu/Al₂O₃ ((c), (d)) in the steady state at various temperatures in a flow of NO + O₂ ((a), (c)) and NO + O₂ + H₂ ((b), (d)) (1)423 K, (2)473 K, (3)523 K, (4)573 K, (5)623 K, (6)673 K, (7)723 K, (8)773 K (Reaction conditions are the same as in Fig 1, but without C₃H₆.)

化剂上吸附物种的红外光谱. 当 Ag/Al₂O₃ 催化剂 上通入 NO + C₃H₆ + O₂ 混合气体后,如图 4(a)所 示,催化剂表面出现了双齿硝酸盐(1589 和 1300 cm⁻¹),单齿硝酸盐(1554 和 1232 cm⁻¹),乙酸盐 (1574 和 1460 cm⁻¹),烯醇式物种(1633 cm⁻¹) 以及 - NCO 物种(2230 cm⁻¹)的振动吸收峰^[14,19]. 在低温 423 和 473 K 时,催化剂表面主要为硝酸盐 物种;随着反应温度的升高,出现了烯醇式物种,该 物种能迅速与吸附的硝酸盐反应,生成活泼的反应 中间体 - NCO;而乙酸盐物种的变化不大. - NCO 是碳氢化合物选择性还原 NO_x 的关键中间体,该物 种能继续与体系中的 NO_x和 O₂反应生成最终产物 N₂和 CO₂.

当 Ag/Al₂O₃ 催化剂上通入 NO + C₃H₆ + O₂ + H₂ 混合气体后,如图 4(b)所示,观察到催化剂表面 有双齿硝酸盐(1585 和 1301 cm⁻¹)、乙酸盐 (1574 和 1460 cm⁻¹), 烯醇式物种(1633 cm⁻¹) 以及 -NCO 物种(2231 cm⁻¹)和 -CN (2150 cm⁻¹)的振动吸收峰^[11,14,19]. Satsuma 等^[3]提出, 制约 Al₂O₃ 为载体的催化剂上选择性催化碳氢化合 物还原 NO₂ 反应活性的关键因素是催化剂表面部 分氧化产物和硝酸盐的反应速率以及二者的表面浓 度.因此对比图 4(b)和图 4(a)可以看出,最明显的 差别是:在低温 423 和 473 K 下, H2 的存在促进了 烯醇式物种的形成,导致表面-NCO物种的出现温 度降低,同时该物种的表面浓度明显增加.我们曾 经报道了烯醇式物种与硝酸盐具有优良的反应性 能,在合适的温度条件下,能迅速转化为关键中间体 -NCO^[14]. 因此,对于有 H₂存在的 Ag/Al₂O₃催化 $C_{3}H_{6}$ 选择性还原 NO $_{x}$ 体系,低温下出现的烯醇式 物种及其表面浓度的提高,促进了低温下-NCO物 种的形成和表面浓度的增加,使得 – NCO 物种与体

系中的 NO_x 和 O₂ 反应生成最终产物 N₂ 和 CO₂ 的 温度明显降低,这与 H₂存在下 Ag/Al₂O₃ 催化剂上 出现的 NO_x 还原反应低温活性提高的结果吻合.

对于 Cu/Al₂O₃ 催化剂,当混合气体 NO+C₃H₆ + O₂ 通入时,由图 4(c)可见,在整个实验温度范围 内可以观察到双齿硝酸盐(1579 和 1300 cm⁻¹)和 乙酸盐(1585 和 1454 cm⁻¹)的特征振动吸收 峰^[11,12].在 2233 和 2150 cm⁻¹出现的吸收峰可 分别归属为 – NCO 和 – CN 物种^[11,12].图 4(d)为 Cu/Al₂O₃ 催化剂表面通入 NO+C₃H₆ + O₂ + H₂ 得 到的红外光谱,与图 4(c)相比,H₂存在时,低温下 催化剂表面的硝酸盐物种(1576 和 1304 cm⁻¹)的 浓度明显降低;高温下硝酸盐的吸收峰基本消失. 同时,在 H₂存在的条件下,在整个温度范围内关键 中间体 – NCO 物种几乎消失,催化剂表面只出现了 微弱的 – CN 物种的吸收峰.由此推断,H₂的存在 阻碍了 Cu/Al₂O₃ 催化剂表面硝酸盐物种的形成,从 而破坏了该物种与乙酸盐物种的平衡,使两者生成 -NCO 的反应受到了抑制,从而不利于整个反应的 顺利进行,这与图1的活性数据相吻合.

3 结论

在选择性催化 C_3H_6 还原 NO_x 反应中, H_2 促进了 Ag/Al_2O_3 催化剂上烯醇式物种的形成,高浓度的烯醇式物种与硝酸盐反应形成高表面浓度的 -NCO,从而促进了反应的进行.与 Ag/Al_2O_3 催化剂相比, H_2 并没有改变 Cu/Al_2O_3 催化剂上乙酸盐的表面浓度,也没有促进烯醇式物种的形成,同时 H_2 抑制了硝酸盐的形成,因此破坏了 Cu/Al_2O_3 催化剂表面部分氧化产物与硝酸盐物种之间的平衡,使形成 -NCO 的反应受到了抑制,从而抑制了整个反应的顺利进行.

- 1 Iwamoto M , Yahiro H , Shundo S , Yu-u Y , Mizuno N. Appl Catal , 1991 , 69(1):L15
- 2 Held W, König A, Richter T, Pupper L. Society of Automobile Engineering (SAE) Paper, 1990, 900496
- 3 Satsuma A, Shimizu K. Progr Energ Combust Sci , 2003, 29(1):71
- 4 贺泓,余运波,刘俊锋,张润铎,张长斌,王进.催化学 报(He H, Yu Y B, Liu J F, Zhang R D, Zhang Ch B, Wang J. *Chin J Catal*), 2004, **25**(6):460
- 5 贺泓,张润铎,余运波,刘俊锋.催化学报(HeH,Zhang RD,YuYB,LiuJF. Chin J Catal),2003,24(10): 788
- 6 Satokawa S. Chem Lett , 2000 , (3): 294
- 7 Sumiya S , He H , Abe A , Takezawa N , Yoshida K. J Chem Soc , Faraday Trans , 1998 , 94(15):2217
- 8 Kameoka S, Ukisu Y, Miyadera T. Phys Chem Chem Phys, 2000, 2(3):367
- 9 Martínez-Arias A, Fernández-García M, Iglesias-Juez A, Anderson J A, Conesa J C, Soria J. Appl Catal B, 2000, 28(1):29

- 10 Shimizu K , Shibata J , Yoshida H , Satsuma A , Hattori T. Appl Catal B , 2001 , 30(1-2):151
- 11 Meunier F C , Zuzaniuk V , Breen J P , Olsson M , Ross J R H. Catal Today , 2000 , 59(3-4):287
- 12 Shimizu K , Kawabata H , Maeshima H , Satsuma A , Hattori T. J Phys Chem B , 2000 , 104(13):2885
- 13 Shimizu K , Kawabata H , Satsuma A , Hattori T. J Phys Chem B , 1999 , 103(25): 5240
- 14 Yu Y B , He H , Feng Q C. J Phys Chem B , 2003 , 107
 (47):13090
- 15 Satokawa S , Shibata J , Shimizu K , Satsuma A , Hattori T. Appl Catal B , 2003 , 42(2):179
- 16 Shibata J , Shimizu K , Satokawa S , Satsuma A , Hattori T. Phys Chem Chem Phys , 2003 , 5(10):2154
- Burch R , Breen J P , Hill C J , Krutzsch B , Konrad B , Jobson E , Cider L , Eränen K , Klingstedt F , Lindfors L E. Top Catal , 2004 , 30-31(1-4):19
- 18 He H , Zhang C B , Yu Y B. Catal Today , 2004 , 90(3-4):191
- 19 He H , Yu Y B. Catal Today , 2005 , 100(1-2):37

(Ed ChRH)