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InTrODUCTION

Results of Dicudonné and Hahn cstablish the rotation groups as invariants of their under-
lying spuces, naumely isomorphic rotation groups represent semi-lincarly isometric spaces. Re-
fer to §3 of[1] for 2 complete staternent in the infinite case. For the purposes of this intre-
duction suffice it to say thar subject to a mild dimension sssumption an isomorphism of rota-
tion groups (or even of proper subgroups containing the commutator subgroups) forces the
following space conditions: cquality of dimension, isomorphy of the coefficient ficlds, and se-
mi-linear isometry (with respect to the ficld isomorphism cited above). Morcover, the form
of the group isomorphism is usually directly induced by the semi-linear isometry (there are
some interesting exceptions, for example, in the eight dimensional Cayley case).

The situation for rotation groups of binary quadratic spaces is quite different however.
Clearly, if one of the groups is a rotation group of a binary space then any isomorphic group
is also abelian and, hence, the group of 2 bitary quadratic space (see 43: 12b of [2]).
However, equality of dimensions is the enly one of the three conditions necessary on the
aunderlying spaces. In §2 we produce a series of examples: isomorphic rotation groups defined
over non isomorphic fields (in fact Fields of different characteristic) and isomorphic rotation
groups defined over the same field, but representing anisetrepic and isotropic quadratic spa-
ces. In particular, the grometry of the underlying space is not determined by its  rotation
group. We then take a natural turn to consider the implications of an isomorphism between
the rotation groups of isotropic (hyperbolic) and anisotropic planes defined ever the same
field. We provide some examples of such ficlds among global ficlds and we develop necessary
and sufficient conditons for existence of isemorphisms in the global fidd sctting. We condude
our investigation by developing a set of conditions necessary for a field to support an aniso-
tropic plane whose rotation group is isomorphic to the rotation group of the hyperbolic pla-
ne over the same field. Our main result (which appears as Theorem 3.4) provides that such
a field F (called norm 1 Fields) satisfy the following conditions:

(1) F is infinite of characteristic 0 or 3;

(2) F [».,-';—_1'} is a proper extension of F which is not algebraically closed;
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(3) F & not real closed:
{(4) F admits at least 4 distinct square classes.

50. PreuMmiamies: MNoraTion anp TERMINOLOGY

We employ the notation and terminclogy of [2] specialized as Eollows: H denotes a hy-
perbolic plane and O*(H) denotes its rotztion group, 4 denotes an snisotropic plane and
O%(A) denotes its rotation group, P denotes an arbitrarp plane, not assamed a prior to
be either anisotropic or hyperbolic, and O*{P) denotes its rotation group. If we wish to high-
light the coefficient fidld F we we OY(H, F), O% A4, F), and OY(P, F), Al our
ficlds have characteristic 0 or 5 2 and all quadratic spaces arc regular (non degencrate)
and binary (two dimensional}.

we use Q for the fidd of rational numbers, F; for the finite filld with g clements,
and F(.r) for the field of rarional functions in the transcendental t.

As is well known, OY(P,F) is isomorphic to a subgroup of the multiplicative group of
a fed ([3], p.- 51) in fact OF (H, F) & isomorphic to F¥, the multiplicative group of
F, and O0*(4, F) is isomorphic to the norm 1 group of the quadratic extension E =
F [d’—-dd) where d4 is the discriminant of the apisotropic plane 4, In the latter case

we simplify and extend the notation as follows: we uwse 4 for d4 and # for N —d, we use
@ for the non trivill F automorphism of E = F(4§)-conjugation, N for the norm map from
E to F and E¥ for the norm 1 group of E, A typical element x of E has a unique
expression as ¥ =g + 58 with @ and 4 in F and N(#) = = + o(#) (= - & in exponential
notation), Of coursc = s an clement of norm 1 if and enly if =¥ = x™'; in particular the
only clements of F that are of norm 1 are £1.

§1. Examrns

1.1. The multplicative groups of Qand F.(#) are isomorphic each is a direct product
of a cydic group of order 2 and a2 weak dircet product of countsble number of infinite cye-
lic groups. Thus OY(H,Q) is isomorphic to O*(H,F;(¢)) but the underlying fidds have
differing charscteristic and, hence, are not isomorphic. The geometry is isotropic in both
examples, however.

1.2. 0*(H, Fy) is cyclic of order ¢ — 1 and 0% A, Fy) is cycic of order g + 1,
The 0%(A, F;) and OT(H, F;) are isomorphic eycic geoups of order 6. More generally,
for any pair of twin primes P and g = p + 2 OY(A,F;) and OY(H,F;) are isomorphic
cydic groups of order p + 1,

In this cxample the cocfficient ficlds arc non isomorphic and the geometry is isotropic
in onc and anisotropic in the other.

Examples 1.1 and 1.2 naturally lead to the question of the existence of fidlds F with
O%(H,F) isomorphic to 0F({4,F), Of course this can be regarded as a ficld theoretic que-
stion (no reference to geometry). Mamely, the existence of fields F which admit quadratic
extensions E whose norm 1 group, E¥%, is isomorphic to F¥, It is this question which
occupies our sttention in the remainder of this paper.

1.3. Definition. F is called a oorm 1 field if F admits 2 quadratic extension E with
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E¥* isomorphic to F*,
§32. Grosar FiELns

In this parsgraph& will be s global field and K will be a finite galois (pormal,
separsble) extension of % with G = Gal(K /&) s galois group. We use N for the
G-norm and K® a5 porm 1 group in K, See [2] for basic definitions and results on
global Felds. The setting that is pertinent to this psper has K as a quadratic extension of &
(and K=E, k= F, in the notation wed clsewhere in the paper). We we O(k) for the
ring of % integers (in the sense of Dedekind), I1(&) the group of O(R) fractional ideals
(i.e. finitely generated O(k) modules), and P(k) the group of fractional principal ideals.
Then I(k) =T is a free Z-module with countable rank, P(k) = P i3 a submodule of T
and [ /P is a Hinite group. Since submodules of free modules over prindpal ideal domaint
are freePis a free Z-module, and it has countable raok since I[P is finite, Let U(k) = U
be the group of Dirichlet units of & and let C(%) = € be the (finite cyclic) group comisting
of the roots of unity in £,

2.1, Example. The structure of §* i resdily determined it is a direct product of
C{k) snd 2 free Z-module of countsble rank. This follows from the Dirichlet Unit Theo-
rem and the split exact sequence

1 —»U —k*—>p—>1,
2.2. Proposiion. %* is isomorphic to K¥*! if and only if C(k) — € (K)¥™,

Proof. KN is a direct sum of CY™ and a free Z-module. The proposition follows
if the frec part has countably iofinite rank. That this is the casc follows because there are
an infinite number of § primes £ that split completely in K, namely let ¢ be one such prime
and let P be one of its factors in K, Then P™ is principal for some power m, 10 P™ = (§;),
Be K, Then set @y = 1™ foroin G, o= 1. Observe that these o, generate a free Z-
module of infinite rank i K¥, . Q. E. D.

2.3. Example. Let # = Q, If K = k(t) or #(w) where w i3 2 primitive cube root
of uoity, Then CF™ i cydic of order 4 if K = k(7) and cyclic of order 6 if K = f(w),
Since Cy={ %1}, C; and CKX™ arc not cqual, s0 £* is not isomorphic o K¥* by 2.2.
But if K is apy cther quadratic extension then CH™ - Cy. In particular, € is a nerm 1
fiedd and O*(H, Q) = 0*(A, Q) for appropriate anistropic planes over Q-namely, A is
a quadratic extension (but not Q(¢} or Q(w)) and A is given the “norm™ Form.

2.4. Example. It is not difficult to verify that Fi(¢) is a nerm 1 fidd. In §4 we
show that this example is the only onc among the function fidds Fo(y),
£3. Nowm 1 Frerps

In this paragraphwe sssume that Fis a norm 1 field and we deduce a series of pecessary
conditions on F, Refer to §1 for the notation. We wse r for the isomorphism from F* to
EN"].

3.1 F is iofinite and —1 is 2 noa-square in F¥,

Proof. X Fwere Fy then F* has ¢ — 1 clements and E¥** has ¢ + 1 elements, so F*
aod EN*! can not be isomorphic if Fis finite.

-
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Set T(z) = a + #§ for a typical zin F*, Then r(s™) = a—g8 and r(—x) = —
a — 85 since v(x) has norm 1 and r(—1) = —1, Assume —1 == 1" or, equivalently, that
] == — o= (—x)(x), Then 1 =r(1) =1(—r) + 7(x)s0 r(—2) = 7(2)7, and o = 0,
Thus r{z) =88 and —1 =¢(—1) = () = (7 (2)) = P& = —Fd or, equivalently,
1l =p%, Thusdis also a square if —] is a square-but this forees —d to-slso be 2 square
and this is a contradiction. O.E. D,

By 3.1 a norm 1 fidld F admits the quadratic extension F{q""—_l}m-:' F has at least
2 distinet square classes (e. g. the classes containing 1 and —1), Use [z] to dencte the
square class ofsin F, Thus [—1] & [[Jand [—d] == [1], I [—d] = [—1] then [d]=
[1]i.e. 45 2 square. If this s so, then E= F{A}’J:)_ But this 15 absurd since F(af:-mi}
has 4 distinet elements of morm 1, each a solution to the equation 2" =1 (i.e {4+ 1,
iv’J—_l}) and F* has only 2 sach scolutons. Conversely, if [d] == [1] then [—d] =
[ =11 and E -F(qf—_l}_ Of course [e] = [1] i and only if ¥ —& s reducible over
F[x]. Thus we have shown the following

3.2. F has at least 4 square casses namely [1], [—1], [2], and [—d],

In fact we have essentially established the following
3.3. F(+/—1) is not algcbraically closed and F i not real closed.

Proof. ©*=4d remain irreducible in F(4/—1)[2] lest we have F[+/—1] = E and 2
contradiction ss before. The second part follows from the first and [4 Theorem 1.8 or
Theorem 2.5], Q. E. D,

Now let us assume that F has characteristic p = 1, Hence F contains Fy as prime field
and F* contsine FF-but F¥ is characterized as the splitting ficld of x#™! — 1 == ¢, I E¥=
is isomorphic to F* then E¥™! must also contain Fy, Since F; is in the fixed ficld of o
this forces p == 3, Combining these remarks with 3.1, 3.2, and 3.3 we have

3.4, Theorem. If F is ¢ norm 1 ficld with E »= F(sf —d) and EN* fmarp.ﬁf; F
F* then

(1) F ir infintte of characterisic 0 or 3;

(2) F (& —1) is & proper extension of F which is not algebraically closed;
(3) F 1r not read closed;
(4) F admits at least & distinet square classes, namely [11,[—1], [d], end [—d].
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