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SCALARIZATION AND GROUP DECISION MAKING

Yme Mer-Qian

(Tustitute of Syciems Science, Aredemia Sinica)

Scalarization means the replacement of a multiobjective optimization problem by a sca-
lar objective optimization problem, It is known that even though the dominance structure
is a complete ordering set(for example, lexicographic ordering [1]), the scalar objective
may not exist, This paper will present the conditions of existence with general binary re-
lation and wector ordering withour any convexity assumptions for objectives or constraints
which generalize the assumptions {closed convex constant deminance structure) of Jaho's
results[ 2], This paper utilizes this scalar objective to present two ideas cf group decision
making which indude Tanino-Nakayama-Sawaragi’s results as a special case[3],

ScALARIZATION

Let Y be a real linear space, §CY, The core of § is given as cor §=|y€ 5§/ for
any € Y, there exists oy = 0 such that ¥ + 6c € §, Ve € [0, o]}, For any real scalar
A, let 18 = {iy/y€ 5},

Lemma 1, Swppose that SCY ,A5CcorS, W L€ [0,1), Then
u(y) = inf{1/i = 0,761 S} =0,V ¥y Y,
and
cor == {ve€ Y uly) < 1}cSC{ve Yfuly) = 1},

Proof. Simce 0 € cor §, so for any ¥€ Y, there exists « > 0 such that y¢ i-.’i',
o

Yee (0,e], aly) =0,

Let y€ cor 5. There exists @ = 0, such that y + ay€ S, u(y) < —

l+a

<21, Let

y€ Y, wly) <1, By definition of infinimum, there exists A€ (0, 1) such that y € ASc
cor S, The inequality on the right hand side is obvious by definition of w(y).

For two subsets S,8C Y, S+ 8 = {y+ ¥/ye 5,y €8}, Forany ye Y. 5CY,
let y+ S={y+ /e 5},

Lemma 2, [er SCY, cor § 5 ¢,
(1) If ASCS. Wi =0 and y€ cor §, rhen Ay € corS, W1 =10,
(2) It 84 58, then § + corSC corS,
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(3) Ler she assumprions of (1),(2) be satisfied, Then
al{—y + 3Ny —5)c(—y + corS)N{(y — cor§),Vue [0,1),
Proof. (1) Let y1€ 8,y:€ corS, For any 2€ Y, there cxists @ > 0 such that y; +
gz € 8, &€ [0,a,], and ¥+ ¥y + ez § + S5,V 6 [0,m,],0.e.5 ¥ + ¥ € cor§,

(2) Let y€cor §, For any z€ Y, there exists oy = 0 such that ¥ + ere §, Vae
[0,0,], For any definite 1 = 0,1y + laze 158, Viee [0,12], So 1¥€ corS,

(3) Let y€corS, For any z€ S,p€ (0,1),pu(y —s) =y — (1 — u)y — pzé y —
cor§ — SCy —corS, w(z — y)€ —y + cor5, So3) is obtained,

Lemma 3. Suppose that SCY is a conver set, 0 € corS, Then 1SCcorS, Vie [0,
1), and w(y) in Lemma 1 is a positive homogencous convex function on Y,

Proof, (1) For any =€ Y, there exists oy = 0 such that ez e §,Vee [0, o], For
any ¥€ 8§,2€(0, 1) we have 2y + (1 —A)aze §, V(1 —i)ac [0, (1 —)ay], S0
Ay € corS,¥ie [0,1),

(2) For any e = 0,y Y,
w(ay) = @ inf{%/l}ﬂ, ye %} S = auly).

For any ¥.z € Y and arbitrary definite € =0, there exist 4, = 0,4; = 0 such thar 0 =
w(y) == 4 < uly) +8 and 0 < ulz) < L, <ul(e) + B,¥€ 1,5,2€ 1,5, 5o

L (p+a)=—t L4 b %
L+ 4 Li+d; 4, A+ 43 43
u(y+2)==1, + 1 <uly)+ual=) + s,
Let & — 0, Hence #(y + z) < u(y) + u(2),
Let > be a binary reation on ¥, FCVY, ¥€F is called a minimal point of F
with >, if there dees not exists any y€ F, ¥+ ¥, such that ¥y — ¥3>0, Let X be a
real linear space, RC X, Suppose there is a mapping f:R — Y, The mappiag set is

f(R) = {f(#)/xe R}, x€ R is called a minimal sclution of f on R with =, if there
does not exists any x€ R,f(x) == (), such that f(¥) — f{x) =0,

€35,

For any a,be Y, let

la,b] = {¥eY/y —am0,b—y>0},

Theorem 1. Let#=bc a dinary relation on Y, and € FCY be a minimal point of
F aithyz, If there exists e ¥, b=y — 37 0, smuch tha

(2) be[—&,b),b¢ cor[ —b,8],
then
min u(y —§) = u(y — 7y =1,

where
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u(y) = inf{1/1 = 0,y€ L[ —5,b]1},

Froof, Let S=[—&, #] in Lemma 1, Then w(#é) =1 by assumptions (1) and
{2), Since ¥ is a minimal point, so there is no ¥€ F, ¥ s y, such that & — (y — §)
=y —yr=0, Le, there is no y€ F,y== ¥ such that y — g€ [—&,8], So (F—9)N
cor[ —&,61 = &; w(y —#) = 1,¥y€ F by Lemma 1,

Corollary 1, Let = be a binary relation on ¥, € RCX is a minimal solution of
f on R withp=, IE there exists $#€ Y, b= f{¥) — # = 0, such thar the assumptions (1)
and (2) in Theorem 1 are walid, then

min w(f(x) — 9) = w(f(z) —9) — 1,

For any Y€ Y, the subset D{(y) = {z — y/re ¥, z — y=0} is called a domination
strucrure of ¥ oat ¥, Acwaly, for any ¥, 2€ Y,z — y2=0 if and only if z€ ¥ + D(y),
The minimal point (solution) of F with> 15 also called nondominated point (solution) of
F with | D(y)., Meanwhile,

FET
cotla,b] = {y€ Y/y€ [a + corD(a) IN[E — corD(y) 1},
[a,6]=1{ye ¥/ ye[a+D(a)IN[t—D(y1},
Lemma 4, Le a b€ Y,
(1) If —aé corD{a) b€ corD(0), ghen 0€ cor[a.b],

(2) if 0VeD(8)s6 —acD(a), ther be[ay b); if 0€D(a), & —a€ D{a), then
a € [a,b],

(3) If Oécor D(8), or & — adcorD(a), then b€ cor[a, &]: t'f.l:lfmﬂ(a}, or
b—afcorld(a), then af cor[a,8],

(4) If for any y,2€ Y,aD(y) + (1 — a)D(x)CD(ay + (1 —a)z), Vae[0,1],
then [.ﬂ,.l!’] B d conger sel,

Proof, (1),(2),(3) are obvious by definitions of core and D(y),
{4) For any 3,%€ [ayb],e€ [0,1],
ay, + (1 —a)y€ [a + D{a)IN [ — aD{¥)
— (1 = a)D(5)ICla + D(a)IN[6 — Dlay, + (1 — a)3)],
ie., ay; + (1 —a)y,€ [a,5], '

Corollary 2. Let 7€ FCY be a nondominated point of F with | J D(y), and

FEY
(1) aD{(y) + (1 —e)D()CTD(oy + (1 —a)z),V¥,zeV, Yae [0,1];

(2) there exists ¥ Y, b=y — ¥ 0, such that D{—54) iz a cone, 0€ D(&),
0¢écor D(3),b¢€ corD(0) N corD{ —p), Then

ﬁgﬂ{? — 9 =u(y—9)=1,

where
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w(y) = inf{1/1 =>0,y€ 2[(—5 4+ D(—5)IN (4 — D(¥/21N 11

Proof, Let a = —b& in Lemma 4 and § = [—4, #] in lemma 3. Then the conclu-
sion can be obtained casily,

Corollary 3. Supposc that D(y) is independent of ¥, ie., Diy) =D, Vye ¥,
¥€ F is a minimal point of F with D, D being a convex cone, 0 € D,0 € corD, If there
exists ¥ Y, =¥ — ¥+ 0, such that b€ corD, then

ming(¥ — ) =uly —¥) =1,
YeF

where
u(y) = inf{1/1=0,ye 1[(—5&+ mniéd—mn

and u(y) is a positive homogeneous convex functon on Y, Furthermore, if FCF + D,
then for any ¥, z€ Y,

zrylie, zey+ D) =ulz —7) =uly —9),

Prooj, The First conclusion is a straight consequence of Corollary 2, For the second
conclusion, we only need prove that when ¥, 2€ F,s€y+ D,zs —9€1 [(—é&+ DIN
(b —D)V,1 =0, we have ¥ — P A[{—=b+ DIN(E —D)], Since bE D, ¥y —FE D =
AD = i(—b+ b+ D)cA(—b+ D),y —P€2—9—DEMé —D) — D= (b — D)
— iD= 1(6 — D)}, so ¥y —¥€ Al(—&+ DYN(&— D)1,

Remark, The assumptions of Corollary 3 are weaker than Jahn’s theorem (without
closedness and pointedness of D),

The corollaries about the nondominared solution can be established in correspondence
with Corollaries 2 and 3,

Suppose that the binary relation > has the following properties:
(I) Addition invariant: For any ¥,,%;,%:€ Y,
Y=+ Y0 +y,
(I1) Multiple invariant: For any ¥,,%;€ ¥, and real scalar a = 0,
NV = afymal,,

£ 3 may be denoted by ¥z, Then for any a, € ¥, & — a7 0 is equivalent to &3=a,
and [a,6] = {ye Y/a<y<&},

Lemma 5. Let b€ Y, bx0,6 % 0,0€ cor[—&,8], Then

(1) [—&.4) is a conver set, and aly) = inf{L/1 =0, ¥€ L[—&, #]} ds a conver
funciion on Y ;

(2) cor[—d,8]1 = {ye Y/uly) < 1}C[—b,b1C{ye Y/uly) < 1};

(3) w(d) = u(—&) =1 when > is reflexive (ypy, VYEY) and anmtisymmerric
(mPZ¥urzrh =y =1);

(4) for any y,z€ Y, 0<y<lz = u(y) < u(s) when > ir transitive (3. > y1.9:2y,
==y 7).
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e,

Proof, (1), (2) are true by lemmas 1,3 and (1), (I1), *&#e[—%, &] by (I) and
reflexivity, . If A € cor[ —&, 5], then there exists & = 0 such that & + ab=j, Hence =0,
# = 0 by antisymmetry, This i a contradiction, So &€ cor[ —&,8], w(®) = 1, Similarly,
w(—&) =1, {3) helds,

Since 0€ cor[—#, £], for any z€ Y, there exists 4 = 0 such that z€i[—54, &],
‘When 0<y=z,i = 0,z€ A[—&, &1, we hav- y<1b by transitivity, S0 —lb<0=y=<
b,y € A[—5,8], (4) holds,

Theorem 2. L:t = has properties (I) and (1), ¥e FCY, €Y, 0€ cor[? — ¥,
y —F]1., Then

(1) uly) = inf{d/y€ A9 —¥,¥ — $1,4 = 0} is convex on Y,

(2) If =is transitive, then uw(y) is monotone increasing (¥, €Y, 0<y<z=uly)
< u(z)); if y»9, V7€ F, then y,2€ Fysz = a(y — ) < ulz —9),

(3) Ij=is reflexive and antisymmetric and Y€ F is a minimal point, then
min u(y — 9) = u(5 —9) = 1,
YEF
Proof, Let b=y — 9, (1) holds by lemma 5(1), Since ¥ is a minimal point, so

for any YEF,y ==y, ¥y —F€cor[—5,b], Hence u(y — )= 1=ul(y—9), VyeF,
by Lemma 5(2),(3).(3) helds, (2) holds by Lemma 5(4),

Corollary 4. Let DCY be a pointed convex cone, cor D s ¢, y<=z<>z€y+
D, ¥eEFCY, #€Y, ¥y€ 7+ corD, Then

(1) uly) = inf{2/ye A[(# —F+ DIN(F—F —D)],A >0} is convex on Y,

(2) For any ¥,z€ Y, ¥€ D1 (x — D), there xﬁun be a(9) =u(z);if FCY¥+ D,
ghen for any y,2€ F,2z€ ¥y 4+ D, there must be vy — #) < u(z—9),

(3) I y€ F is a nondominated point of F with D, then
min u(ly — 9 =u(y —9) =1,
Theorem 3. (Converse of Theorem 2), Let > be a binary relaion on Y, y€ FCT,
P Y, 0€ cor[F — F,i'- — 1. l:li.%k‘{}" —'f} - #(;._ f}, where H(jr} = inf{lf‘}'f A[#

— ¥, ¥ — 21, A= 0}, If # is stricily monotone increasing ai y (for any Y€ F, y<7y,
vy >u(y —9) <u(y—19)), then § s a minimal point of F with=,

Two Ioeas oF Grovr Decsion Maxing
Lemma 6. Les S;CY,0€ corSi(i = 1,++,7), §= [ 8.,
=]
u(y) = inf{d/ye L8, = 0},0;(y) = inf{A/yE 15,1 =0}, i=1,20,r, Then
(1) 2(y) = maxa;(y),¥VYE Y,
bpae
{2) ff S,{:—' I,--',r} afe congex, then

u(y) = :Jég_m(r}.'f? €Y,
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Proof, (1) is obvious by the defipitions of w(y) and w;(y). For arbitrary definite
>0, there exist 1; =0, & L;8(r=1,+++,r) such tha

Li<uy) +e= r_l;t_gu.-(ﬂ+8[i== 1,-00,r),
It 5 is convex, 0€ S{j==1,+:+,r), then

Y€ 1,8 = (max ;) —ai—
15ige max 1,
Ly

1;[_'{1'['1]1 lj}.'!-,;,f —= 1 LAY
15iagr

Hence

aly) =< maxl; << maxa;(y) + &,
1 iisr

Let =0, Then (27 hclds,

When r decision makers (DM) have their own preferences »;{i=1, --+, ), what
group preferences will be possible?

Suppose that ¥ € FCY is a minimal point of F with 7;, There exists #€ ¥ such
that ¥3=#.¥yc F, 0€ cor[# — ¥ ,¥ — #'], By Lemma 6 and Theorem 2, let §;, =

[# — 7,7 — 9], §= (| §;, We may define a group preference:
=g

y<z<>maxu,(y — §) < maxu;(z — #),
1isr 1<iar

where w;(y) = inf{d/y € 15;,1 = 0}, The optimal solutioa ¥ of

H —_ Y = o
mi fﬁ;"“ ) ]gﬁ}ﬂ-(f #')

can be considered as a preference point of F owith 7, When F = f(R), the optimal so-

lution ¥ cf

min max u,(f(x) — 9) = max u,(f(F) — )

is a preference solution of f(%) on R with =,
Consider V-min(e{f(x)), -+ (f(x)))., Each DM should give a weighted vector
FER

w' € E, that reflects the strength of his own wveto right, For example (in[31), w' = (1,
son 1, 14+ 41,0+, 1)7, where 4; == 0 13 the strength of the s-th DM’s wveto right
The group preference can be defined by

£,8€ R, P <2 e wTu(f(2) < wTu(f(#)) i = 1,1,
where w(f) = (w(f)s---,u(f))7, So the group domination structure is a convex cone

D= {d/wTd=0,4==1,-+-,r}. The polar cone of D is D* = ‘EE o' [Va; = l)]-,,

For any o; = 0(i=1,-++,r), the optimal soluion cf

f‘f:( Z ﬂ:w‘}ru(f(x}}

hi=1

can be considered as a preference solution of f(s) on R withy=,
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