文章编号 1001-8166(2007)01-0041-08

# 热液条件下 CO<sub>2</sub>和 H<sub>2</sub>反应产烃研究进展

季福武<sup>1,2</sup>周怀阳<sup>1\*</sup>杨群慧<sup>1</sup>

(1.中国科学院广州地球化学研究所,广东 广州 510640 ;2.中国科学院研究生院,北京 100049)

摘 要 热液条件下 CO<sub>2</sub>和 H<sub>2</sub>形成烷烃的反应,提供了自然条件下 CO<sub>2</sub>转化为有机质的一条非生物途径。研究这一过程,对于油气费托非生物成因研究和海底热液生命起源的讨论具有重要意义。 已有研究表明,热力学有利的温度、压强条件和合适的催化剂,是热液条件下 CO<sub>2</sub>和 H<sub>2</sub>发生反应形 成烷烃的必需条件。在热力学有利的条件下,铬铁矿能够催化反应形成 CH<sub>4</sub>、C<sub>2</sub>H<sub>6</sub>和 C<sub>3</sub>H<sub>8</sub>,但还不 清楚是否存在能够促使反应产生 C<sub>4</sub>H<sub>10</sub>等长链烷烃的天然矿物催化剂。含一种或多种过渡金属元 素的磁铁矿,可能是值得考察的对象。另外,研究热液条件下 CO<sub>2</sub>和 H<sub>2</sub>反应形成烷烃的过程和机 理,建立反应所形成烷烃的 C、H 同位素综合判识指标,是今后值得探索的研究课题。

关键词:热液条件 烃:非生物

中图分类号 :P513 文献标识码 :A

1 引 言

CO2通过植物光合作用转化为有机质,再经过 热解或微生物降解转化产生烃,是自然界形成烃的 一般过程。1923 年 Fischer 和 Tropsch 发现,在过渡 金属的催化作用下,合成气(CO +H2)可以发生反 应产生液态烃<sup>[1 ?]</sup>。在过渡金属的催化作用下,气 相 CO2与H2也能够发生反应产生烃<sup>[3 ~7]</sup>。

地质环境中,含低价 Fe的岩石在蚀变过程可产 生 H<sup>2</sup><sup>[<sup>8</sup>-10]</sup>,海水、碳酸盐以及岩浆脱气作用均可提 供 CO<sup>2</sup><sup>[11-13]</sup>,因此也有可能发生反应形成烃<sup>[14]</sup>。 希腊 Milos 岛热液气体中的 CH<sup>4</sup><sup>[15]</sup>,大西洋洋中脊 热液中的 CH<sup>4</sup>、C<sup>2</sup>H<sub>6</sub>和 C<sup>3</sup>H<sup>3</sup><sup>[16-19]</sup>甚至 C16 ~C29 的 链烷烃<sup>[20]</sup> 均被认为是由热液中的 CO<sup>2</sup>与 H<sup>2</sup>反应产 生的。由于地质热液环境中 CO<sup>2</sup>与 H<sup>2</sup>反应的条件 不同于气相条件,并且,其反应的催化剂只能由天然 矿物提供,因此,在热液条件下,热液中溶解态的 CO2和 H2(下文中除特别说明,CO2和 H2均指的是 溶液中溶解态的)能否发生反应产生烃?产生烃的 种类和必需的条件是什么?反应的机理是什么?如 何识别由反应产生的烃?这些问题都需要深入研究 加以认识;弄清这些问题,不仅可为正确认识地质环 境中非生物成因的烃提供资料,还将有助于客观评 估地质环境中非生物成因烃的潜在资源价值<sup>[21 -23]</sup>, 深入理解海底热液系统生命起源学说的讨论<sup>[24 -29]</sup>。

针对热液条件下 CO2和 H2反应形成烷烃这一 问题 国外学者已于 20 世纪 90 年代开始研究,而相 关报道国内很少见。本文对热液条件下 CO2和 H2 反应产烃的研究进展进行了回顾,综合评述了热液 条件下 CO2和 H2反应形成烷烃的依据、天然矿物的 催化作用、反应机理和烃类产物识别指标等方面的 研究成果;并指出,查明具有长链催化作用的天然矿 物催化剂,建立烷烃产物的 C、H 同位素综合判识指 标,是值得研究并有望突破的研究课题。

收稿日期 :2006-06-29 修回日期 :2006-11-20.

<sup>\*</sup>基金项目:国家自然科学基金重点项目"胡安・德富卡洋脊 Endeavour段热液生态环境变化与地球化学制约机理研究"(编号: 40532011);面上项目"热液微生物与金属硫化物相互作用的模拟实验研究"(编号:40473032)和"东北热带太平洋近表层 沉积物生物扰动作用研究"(编号:40406010)联合资助・

作者简介 :季福武(1979-) ,男 ,江苏盱眙人 ,博士研究生 ,主要从事地球化学方面的研究 · E -m ail : jifuwu @ gg.ac.cn.

<sup>\*</sup> 通讯作者 :周怀阳(1961-) ,男 ,江苏常熟人 ,研究员 ,主要从事海洋学、地球化学等方面的研究 • E -m ail : zhouhy@gig • ac • cn •



热液条件下,在一定的温度范围内,CO<sub>2</sub>和H<sub>2</sub>反 应生成烃等有机物是可行的<sup>[30,31]</sup>,并且H<sub>2</sub>的活度越 高,对烷烃的形成越有利<sup>[30]</sup>。热液条件下,CO<sub>2</sub> (CO<sub>2,aq</sub>,下标"aq"表示溶解态)和H<sub>2</sub>(H<sub>2,aq</sub>)反应形 成碳数为n的烷烃的方程式可表示如下:

$$CO_{2_{i}aq} + (3 + \frac{1}{n})H_{2_{i}aq} = \frac{1}{n}C_{n}H_{2n_{i}+2_{i}aq} + 2H_{2}O$$
 (1)

我们利用 Helgeson 等<sup>[<sup>32,33</sup>]</sup>、Shock 等<sup>[<sup>34</sup>]</sup>、Johnson 等<sup>[<sup>35</sup>]</sup>提供的公式和数据,以及 Shock 等<sup>[<sup>34,36</sup>]</sup>提 供的 CO<sub>2,24</sub>、H<sub>2,24</sub>和 C1 ~C8 烷烃的基本热力学数 据 运用 SUPCRT92 软件包<sup>[<sup>37</sup>]</sup> 对式(1)在不同温度 和压强条件下生成 C1 ~C8 烷 烃反应的摩尔反应吉布斯函数变(G<sub>m</sub>)进行了计 算,并根据G<sub>m</sub>结果计算反应的平衡常数以及平衡 产物分布,来阐述热液条件下 CO₂和 H₂反应形成烷 烃的依据。

1.1 热液条件下 CO 2和 H 2生成烷烃反应的 G m

对式(1)形成 C1 ~C8 烷烃反应的 G<sub>m</sub>进行计 算,所选择的温度范围为 50 ~500 间隔 50 ;压 强范围为 10 ~100 MPa 间隔 10 MPa 部分计算结果 示于图 1。

从计算结果可以看出 在热液条件下, CO 2 和 H 2 生成 C1 ~C8 烷烃的反应的 Gm 随温度的升高而增 大,随压强的增大而减小(图 1)。在温度低于 350 的热液条件下,压强对该反应 Gm 的影响不 明显;而当温度高于 350 时,随着压强的增大,反 应的 Gm 明显减小。





热液中 CO<sub>2</sub>和 H<sub>2</sub>生成 C1 ~C8 烷烃反应的 G<sub>m</sub> 随温度或压强的改变而变化,其变化趋势相近(图 2)。在相同的温度和压强条件下,反应的 G<sub>m</sub>随着 生成烷烃碳数的增多而变大,但随着烷烃碳数的增 多,生成相邻碳数烷烃反应的 G<sub>m</sub>之间的差值越来 越小(图 2)。我们对反应生成 C4 ~C8 烷烃的 G<sub>m</sub> 进行拟合时发现,在相同的温度和压强条件下,反应 生成这些烷烃的 G<sub>m</sub>与烷烃碳数的对数之间存在很 强的线性关系(R<sup>2</sup> >0.99)。因此,利用这一关系可 近似推出式(1)在不同温度和压强下形成 C8 以上 烷烃反应的 Gm。

2.2 反应平衡时的烷烃产物分布

根据反应的 Gm,可求出反应的平衡常数(lnK) = - Gm RT),再结合反应物和产物的有关热力学性质 (如活度系数),即可推断出反应平衡时体系中烷烃 产物的分布。

设反应系统各物质的活度系数为 1,则反应平 衡时,热液中碳数为 n的烷烃的浓度([C<sub>n</sub>H<sub>2n</sub><sub>+</sub>2]) 与平衡常数(K<sub>n</sub>)及热液中溶解态 CO<sub>2</sub>和 H<sub>2</sub>的浓度 ([CO<sub>2</sub>]和[H<sub>2</sub>])之间存在如下关系:

[C<sub>n</sub>H<sub>2n,2</sub>] = K<sup>n</sup><sub>n</sub> · [CO<sub>2</sub>]<sup>n</sup> · [H<sub>2</sub>]<sup>3n +</sup> (2)
 显然 随着产物烷烃碳数的增加 ,其平衡浓度受
 反应的平衡常数和反应物浓度的影响程度也增强
 (式 2 ,图 3)。CH<sub>4</sub>受反应物浓度降低的影响最小 ,
 并且当反应平衡时 ,CH<sub>4</sub>的含量一般比反应物含量

高出数个数量级(图 3)。如据式(2)估算,在 300、30MPa条件下,当反应平衡时溶解态 CO2和 H2的浓度均为 5 mmol/kg 时,CH4浓度为 500 mmol/ kg;与 CH4浓度相比,此时 C2H6浓度相差约 4 个数 量级,为 0.01 mmol/kg,其它多碳数烷烃的含量 更低。



图 2 生成不同烷烃反应的 Gm

因此,在平衡反应体系中,烷烃的生成大大降低 了反应物的浓度,这将使得平衡产物将以 CH 4 为主, 不利于其它多碳数烷烃的生成。



Fig.3 Equilibrium concentration of dissolved alkanes with dissolved CO 2 and H 2 under hydrotherm al conditions

(a) 30 MPa、100 ,设平衡时[CO2]和[H2]均为0.0001mol/kg;(b)
30 MPa、200 ,设平衡时[CO2]和[H2]均为0.001mol/kg;(c)
30 MPa、250 ,设平衡时[CO2]和[H2]均为0.01mol/kg;(d)30 MPa、
300 设平衡时[CO2]和[H2]均为0.01mol/kg;(e)30 MPa、350 ,
设平衡时[CO2]和[H2]均为0.1mol/kg



根据热液条件下 CO2和H2形成不同烷烃反应 的 Gm的计算结果可知,在较大的温度和压强范围 内(如温度小于 350、压强大于 20 MPa),反应的 G<sup>m</sup>小于零,表明反应在热力学上是可行的。由于 反应的 G<sup>m</sup>随着温度的升高而变大,随压强的增大 而减小,因此,高压低温条件是热液条件下 CO<sub>2</sub>和 H<sub>2</sub>反应生成烷烃的热力学有利条件。

对反应平衡产物分布的分析显示 尽管在热力 学有利的条件下,热液中 CO2和H2形成不同烷烃是 可行的。但当反应平衡时,烷烃产物常常以 CH4为 主,不利于生成其它多碳数烷烃。另外,实验研究还 表明,若缺少合适的催化剂,热液中 CO2和 H2形成 烷烃的反应很难进行<sup>[30]</sup>。所以,存在合适的催化 剂,是热液条件下 CO2和 H2反应形成烷烃的必需条 件。反应对催化剂的依赖,为通过选用适当的催化 剂催化相应的产烃过程,在非平衡反应条件下获得 较高含量的多碳数烷烃提供了机会。

因此,在热力学有利的温度和压强条件下,只要存在合适的催化剂,热液中 CO2和H2反应形成种类 丰富的烷烃是可行的。

### 3 天然矿物的催化作用

存在合适的催化剂,是热液条件下 CO<sub>2</sub>和 H<sub>2</sub>反 应形成烷烃的必需条件。地质环境中的反应只能由 天然矿物催化,因此,查明天然矿物的催化作用,成 为热液条件下 CO<sub>2</sub>和 H<sub>2</sub>反应产烃研究的重要内 容<sup>[38-41]</sup>。

#### 3.1 橄榄石及其主要蚀变矿物 在橄榄石的蚀变过程中可产生 H<sub>2</sub> 主要蚀变矿

Fig.2
 G m of reaction (1) to form C1 ~C8 alkanes at different tem peratures and pressures

 左图 30 MPa 右图 300
 pa ~h 依次表示式(1)中n取1 ~8 的反应

物为蛇纹石、水镁石和磁铁矿<sup>[\*,10,38,39]</sup>。

Berndt等<sup>[39]</sup>首先对橄榄石及其蚀变矿物对热 液条件下 CO<sub>2</sub>和 H<sub>2</sub>反应形成烷烃的催化作用进行 了实验研究。在 300 、50 MPa 条件下,以含 NaH-CO<sub>3</sub>(8.9 mm ol/kg)的 NaCl溶液(0.5 m ol/kg)与橄 榄石反应。随着反应的进行,反应溶液中 CO<sub>2</sub>浓 度下降,而 H<sub>2</sub>、CH<sub>4</sub>、C<sub>2</sub>H<sub>6</sub>和 C<sub>3</sub>H<sub>8</sub>浓度上升。反应 69 天后  $\mu_2$ 、CH<sub>4</sub>、C<sub>2</sub>H<sub>6</sub>和 C<sub>3</sub>H<sub>8</sub>的浓度分别达到 158 mm ol/kg、84 µm ol/kg、26 µm ol/kg 和 12 µm ol/kg。由 于过渡金属及其氧化物常用作气相费托合成反应的 催化剂,所以,Berndt等<sup>[39]</sup>认为,实验中产生的 CH<sub>4</sub>、C<sub>2</sub>H<sub>6</sub>和 C<sub>3</sub>H<sub>8</sub>是由橄榄石蚀变过程中产生的磁 铁矿催化 CO<sub>2</sub>和 H<sub>2</sub>反应产生的。

但是 McCollom 等<sup>[39]</sup>在 300 、35 MPa 条件下 以相似的实验材料进行实验 ,却否定了磁铁矿的催 化作用。在实验中 ,McCollom 等<sup>[39]</sup>引入同位素标识 的 NaH <sup>13</sup>CO 3 作为实验材料。反应 21 天 ,他们观测 到的实验产物及其浓度变化与 Berndt等<sup>[38]</sup>的相似 , 但在产物中却没有观测到<sup>13</sup> C 异常的烷烃。这说 明 ,烷烃产物来自实验反应体系原本存在的有机碳 的污染 ,而不是来自给定的碳源通过与 H 2 反应产 生<sup>[38]</sup>。Berndt等<sup>[39]</sup>在实验中忽视了环境有机质的 污染问题。

McCollom 等<sup>[38]</sup>的同位素示踪实验结果表明,橄 榄石及其蚀变矿物对热液条件下 Co<sub>2</sub>和 H<sub>2</sub>反应形 成烷烃的催化作用并不明显。这可能有两方面的原 因:一方面,橄榄石及其主要蚀变矿物(如磁铁矿) 对该反应没有明显催化作用;另一方面,蚀变产物中 存在具有明显催化作用的矿物,然而由于其含量低, 它的催化作用在实验条件下不易被察觉。McCollom 等<sup>[38]</sup>在另一个以新鲜橄榄石(组成中含 Ni和 Cr;在 其蚀变产物中检测到铬铁矿)、NaH<sup>13</sup> CO<sub>3</sub>和 H<sup>13</sup> COOH 为实验材料的实验中,观测到<sup>13</sup> CH<sub>4</sub>,它占 总 CH<sub>4</sub>的 2% ~15%,这可能表明蚀变产物中存在 少量或微量具催化活性的矿物。

3.2 镍铁矿

橄榄石中常含有 Ni, Cr 等过渡金属元素。在蚀 变过程中 橄榄石中含有的 Ni 可能会释放出来形成 镍铁矿<sup>[⁴0]</sup>。Horita 等<sup>[⁴0]</sup>对镍铁矿的催化性能进行 了实验考察。

在 50 MIPa、400 条件下,纯净 Fe 粉(约 0.5 g) 和 Nio( 0.06 g)在去离子水中反应,产生 H<sub>2</sub>、磁铁 矿和镍铁矿(Ni-Fe 合金,Fe 占 0.02 ~0.10)。待 反应完全后(约 5 天),冷却到实验条件,加入 NaH- CO<sub>3</sub>进行反应。在 50 MIPa ,200、300 和 400 条件下 进行的实验结果显示 ,镍铁矿对热液条件下 CO<sub>2</sub>和 H<sub>2</sub>反应形成 CH<sub>4</sub>具有明显的催化作用 ,反应转化率 高 ,例如在 300 、50 MIPa 条件下反应 14 天 ,初始总 CO<sub>2</sub>转化了 87% ,并且反应速度随着镍铁矿含量的 增加而加快<sup>[40]</sup>。不过 ,镍铁矿仅对生成 CH<sub>4</sub>具有催 化作用 ,若经长时间加热 ,其催化活性会降低甚至可 能丧失<sup>[42]</sup>。

3.3 铬铁矿

基性、超基性岩石中含有的 Cr 在岩石蚀变过程 中可能会形成铬铁矿。Foustoukos 等<sup>[41]</sup>实验证实, 在铬铁矿的催化作用下,热液条件下的 CO<sub>2</sub>和 H<sub>2</sub>可 反应形成 CH<sub>4</sub>、C<sub>2</sub>H<sub>6</sub>和 C<sub>3</sub>H<sub>8</sub>。该实验在 390 、40 MPa 条件下进行,实验材料为 FeO (2.5g)、Cr<sub>2</sub>O<sub>3</sub> (3g) 和含 NaH<sup>13</sup> CO<sub>3</sub>(0.03 mol/kg) 的 NaC1 溶液 (0.56 mol/kg,约 37g)。在高温下,FeO 一方面与 H<sub>2</sub>O 反应产生磁铁矿和 H<sub>2</sub>,另一方面它和 Cr<sub>2</sub>O<sub>3</sub>反 应形成铬铁矿。经过 44 天的反应,在反应溶液中观 测到<sup>13</sup> CH<sub>4</sub>、<sup>13</sup>C<sub>2</sub>H<sub>6</sub>和<sup>13</sup>C<sub>3</sub>H<sub>8</sub>;同时,在以 FeO 进行的 对比实验中,反应 120 天,观测到<sup>13</sup> CH<sub>4</sub>,而<sup>13</sup>C<sub>3</sub>H<sub>8</sub>非 常少。这说明铬铁矿对实验中长链烷烃的形成有着 重要的催化作用<sup>[41]</sup>。

### 4 反应机理的探索

Horita 等<sup>[40]</sup>用镍铁矿作为催化剂,成功催化热 液中的 CO<sub>2</sub>(HCO<sub>3</sub>) 与 H<sub>2</sub>反应,形成了 CH<sub>4</sub>。在实 验中,他们发现,热液中 CO<sub>2</sub>和 CH<sub>4</sub>的浓度之和在 实验初期减小,而在实验后期反而增加,这表明在 CO<sub>2</sub>(HCO<sub>3</sub>) 被还原形成 CH<sub>4</sub>的过程中,存在中间物 质。他们 推测,这一中间物质可能是 HCOOH (HCOO<sup>-</sup>)。

针对 Horita 等<sup>[40]</sup>的推测,McCollom 等<sup>[30]</sup>进行 了实验研究。在实验过程中发现,当向反应热液中 加入 NaHCO<sub>3</sub>后,热液中 CO<sub>2</sub>含量从刚加入时的高 值开始减小,而 HCOOH 含量不断增加,然后二者 含量趋于平稳,其中 CO<sub>2</sub>含量的减小与 HCOOH 含量的增加一致,这表明实验反应体系中 CO<sub>2</sub>转 化产生了 HCOOH;当向反应热液中加入 HCOOH 后,热液中 HCOOH 含量从刚加入时的高值开始 减小,而 CO<sub>2</sub>和 H<sub>2</sub>含量增加,并且增加的量与 HCOOH 减小的量一致,这表明 HCOOH 分解成为 CO<sub>2</sub>和 H<sub>2</sub>。根据这些事实,McCollom 等<sup>[30]</sup>认为, 热液中 HCOOH 和 CO<sub>2</sub>可以很快达到平衡,但 是,不能确定 HCOOH 是热液中 CO<sub>2</sub>和 H<sub>2</sub>反应形成 为探明热液中 CO<sub>2</sub>和 H<sub>2</sub>反应形成 CH<sub>4</sub>的过程, Seewald 等<sup>[43]</sup>在 35MPa,150、200 和 300 条件下, 以 HCOOH 和 NaHCO<sub>3</sub>为实验材料开展了实验研究。 实验中,除了观测到 HCOOH 和 CO<sub>2</sub>之间的快速 平衡之外,还观测到 HCOOH 和 CO<sub>2</sub>之间的快速 平衡之外,还观测到 HCOOH 和 CO 之间的平衡、 CH<sub>4</sub>的形成,以及 CH<sub>3</sub>OH 的形成和消耗,并且发现 CH<sub>4</sub>的相对快速生成与 CH<sub>3</sub>OH 高含量一致。实验 产物中没有检测到 CH<sub>2</sub>O,热力学分析也表明此时 CH<sub>2</sub>O 浓度低,因此 Seewald 等<sup>[43]</sup>认为它应该是 HCOOH 形成 CH<sub>3</sub>OH 的中间物质。根据这些实验 结果,Seewald 等认为,热液中 CO<sub>2</sub>和 H<sub>2</sub>反应形成 CH<sub>4</sub>的一般过程是 CO<sub>2</sub>-HCOOH -CH<sub>2</sub>O -CH<sub>3</sub>OH -CH<sub>4</sub> (图 4)。

关于热液条件下 CO2和 H2反应形成其它烷烃 的过程,目前尚未见有相关报道。



图 4 热液条件下 CO 2和 H 2生成 CH 4过程示意图<sup>[43]</sup> Fig.4 Schem atic representation of CH 4 form ation from CO 2 under hydrotherm al conditions<sup>[43]</sup>

### 5 烷烃产物的识别指标研究

人们常用 C 同位素来示踪和识别自然界烃的 来源和成因<sup>[44,45]</sup>。根据统计资料和同位素动力分 馏的基本原理 如果 CH<sub>4</sub>的<sup>13</sup>C <- 30‰(PDB) 烷 烃同系物碳同位素正序分布(<sup>13</sup>C<sub>1</sub> < <sup>13</sup>C<sub>2</sub> < <sup>13</sup>C<sub>3</sub> <<sup>13</sup>C<sub>4</sub>),可认为这些烃是生物成因的;CH<sub>4</sub>的<sup>13</sup>C >- 30‰(PDB),烷烃同系物碳同位素反序分布 (<sup>13</sup>C<sub>1</sub> > <sup>13</sup>C<sub>2</sub> > <sup>13</sup>C<sub>3</sub> > <sup>13</sup>C<sub>4</sub>),则被认为是非生物 成因的<sup>[44]</sup>。C<sub>2</sub>H<sub>6</sub>、C<sub>3</sub>H<sub>8</sub>和C<sub>4</sub>H<sub>10</sub>的碳同位素反序分 布,已经在气相 CO 和H<sub>2</sub>的费托合成实验中被观测 到<sup>[46]</sup>。

但是,在热液实验中,Horita 等<sup>[40]</sup>发现,具有幔 源同位素特征的 CO<sub>2</sub>(<sup>13</sup>C 约为-4‰(PDB))和 H<sub>2</sub> 反应得到的 CH 4的<sup>13</sup> C 可小于 - 53‰(PDB)。Mc-Collom 等<sup>[47]</sup>在实验中观测到 热液中 CO<sub>2</sub>和 H<sub>2</sub>反应 产生的烷烃与共存的 CO<sub>2</sub>相比,其<sup>13</sup> C 相对亏损了 36‰ 与生物成因的相似。因此 碳同位素成分可能 并不是识别热液条件下 CO<sub>2</sub>和 H<sub>2</sub>反应形成的烷烃 的可靠指标<sup>[40,47]</sup>。

非生物合成烃的过程中,碳同位素分馏主要受 动力学过程控制<sup>[45,46]</sup>并且具体的反应机理决定了 同位素分配模式的特征<sup>[46]</sup>。在气相 Co 与H<sub>2</sub>合成 烃的过程中 根据亚甲基反应机理,由于含<sup>12</sup>C 键分 子的键能低于含<sup>13</sup>C 键分子的键能,因此,在反应 中,总是含<sup>12</sup>C 的键优先被"打开"进行链增长,轻 的<sup>12</sup>C 趋于优先富集在更大的分子产物中,从而形 成了 C<sub>2</sub>H<sub>6</sub>、C<sub>3</sub>H<sub>8</sub>和 C<sub>4</sub>H<sub>10</sub>之间的碳同位素反序分布 模式<sup>[46]</sup>。但是,在热液条件下 CO<sub>2</sub>和 H<sub>2</sub>的反应中, 烷烃产物的碳同位素组成相似,彼此之间并没有明 显的碳同位素分馏<sup>[47]</sup>。由于热液条件下 CO<sub>2</sub>和 H<sub>2</sub> 形成烷烃的反应过程和机理还不清楚 所以 该过程

### 6 研究展望

对地质环境中 CO2和H2反应形成烷烃这一非 生物过程进行研究,具有重要的科学和实践意义。 目前,对地质热液环境中 CO2和H2的反应取得了一 定的认识,但是,仍有许多问题需要进一步深入的工 作。如是否存在能够催化反应形成 C3 以上的长链 烷烃(如戊烷)的天然矿物,还需要加以证实;反应 的机理如何,如何建立烷烃产物的有效识别指标,也 需要进行深入的研究加以揭示。

在天然矿物催化剂的查证工作中,含其它一种 或多种过渡金属元素的磁铁矿,值得深入研究。自 然界磁铁矿分布广,并且常含其它过渡金属元素 (如 Co 和 Ni等)<sup>[48]</sup>。因此,尽管磁铁矿对热液条件 下 CO 2 和 H 2 反应形成烷烃的催化性能有限<sup>[38,41]</sup>,但 由于它可为其它含量较低的过渡金属元素提供载体 "平台",从而也可能形成有效的催化剂。

如何对地质环境中由 CO<sub>2</sub>和 H<sub>2</sub>反应形成的烷 烃进行识别 是目前急需要解决的一个问题。碳同 位素成分对判识自然界由 CO<sub>2</sub>和 H<sub>2</sub>反应形成的烷 烃并不可靠,氢同位素的判识作用也需要加以研 究<sup>[47]</sup>。由于在非生物反应合成烃的过程中 动力学 因素是控制同位素分馏的主要因素,并且反应过程 和机理决定了同位素分配模式的特征<sup>[46]</sup>,因此,深 入研究热液条件下 CO2和 H2反应形成烷烃的过程 和机理,揭示烷烃 C、H 同位素的动力分馏特征,尝 试建立识别自然界由 CO2和 H2反应形成的烷烃的 C、H 同位素综合判识指标,是个十分有意义并富有 挑战性的研究课题。

参考文献(References):

- [1] Schulz H. Shorthistory and presenttrends of Fischer-Tropsch synthesis[J]. Applied Catalysis A : General 1999, 186 : 3-12.
- [2] Davis B H. Overview of reactors for liquid phase Fischer-Tropsch synthesis[J]. Catalysis Today 2002, 71:249-300.
- [3] Suo Zhanghuai, Kou Yuan, Wang Hongli. Recent progress in catalytic synthesis of C<sub>2</sub><sup>+</sup> hydrocarbons from CO<sub>2</sub>[J]. Natural Gas Chemical Industry 1998, 23(1):51-56.[索掌怀,寇元,王弘 立.CO<sub>2</sub>催化合成 C<sub>2</sub><sup>+</sup> 烃新进展[J].天然气化工,1998,23 (1):51-56.]
- [4] RiedelT , Claeys M , Schulz H , etal. Comparative study of Fischer-Tropsch synthesis with H  $_2$  /CO and H  $_2$  /CO  $_2$  syngas using Feand Co-based catalysts [J]. Applied Catalysis A : General ,1999 , 186 : 201-213.
- [5] Trovarelli A, Mustazza C, DolcettiJan G, et al. Carbon dioxide hydrogenation on rhodium supported on transition metal oxides : Effect of reduction temperature on product distribution [J]. Applied Catalysis 1990, 65(1) :129-142.
- [6] Chang F W , Kuo M S , Tsay M T , etal. Hydrogenation of CO<sub>2</sub> over nickel catalysts on rice huskash-alum ina prepared by incipient wetness impregnation [J]. Applied Catalysis A : General ,2003 , 247 : 309-320.
- [7] Lee S C , Jang J H , Lee B Y , etal. Promotion of hydrocarbon selectivity in CO 2 hydrogenation by Ru component [J]. Journal of Molecular Catalysis A : Chemical 2004, 210 :131-141.
- [8] Moody J B. Serpentinization : A review [J]. Lithos, 1976, 9: 125-138.
- [9] NealC, Stanger G. Hydrogen generation from mantle source rocks in Omen [J]. Earth and Planetary Science Letters, 1983, 66: 315-320.
- [10] Janecky D R , Seyfried Jr W E. Hydrotherm al serpentinization of peridotite within the oceanic crust : Experimental investigations of mineralogy and major element chemistry [J]. Geochimica et Cosmochimica Acta 1986, 50 :1 357-1 378.
- [11] Chen Youyi. Origins of carbon dioxide in petroliferous basins [J]. Advances in Earth Science,2000,15(6):684-687.[程 有义.含油气盆地二氧化碳成因研究[J].地球科学进展, 2000,15(6):684-687.]
- [12] Holloway JR, O'Day PA. Production of CO<sub>2</sub> and H<sub>2</sub> by dikingeruptive events at mid-ocean ridges: Implications for abiotic organic synthesis and global geochemical cycling[J]. International Geology Review 2000, 42:673-683.
- [13] Resing JA, Lupton JE, Feely RA, et al. CO<sub>2</sub> and <sup>3</sup>He in hydrotherm al plum es: Implications for mid-ocean ridge CO<sub>2</sub> flux [J]. Earth and Planetary Science Letters, 2004, 226:449-464.

- [14] W elhan J A. Origin of methane in hydrothermal systems [J]. Chemical Geology ,1988 ,71 :183-198.
- [15] Botz R , Stuben D , W inckler G , et al. Hydrotherm al gases offshore Milos Island , Greece [J]. Chem ical Geology ,1996 , 130 : 161-173.
- [16] Charlou J L , BougaultH , Appriou P , etal. Different TDM /CH<sub>4</sub> hydrotherm al plum e signatures : TAG site at 26 °N and serpentinized ultrabasic diapir at 15 °05 N on the Mid-Atlantic ridge [J]. Geochim ica et Cosm ochim ica Acta ,1991 ,55 : 3 209-3 223.
- [17] Rona P A , Bougault H , Charlou J L , et al. Hydrotherm alcirculation , serpentinization , and degassing at a rift valley-fracture zone intersection : Mid-Atlantic ridge near 15 N , 45 W [J]. Geology , 1992 , 20 : 783-786.
- [18] Charlou J L , Fouquet Y A , Bougault H , et al. Intense CH 4 degassing generated by serpentization of ultramatic rocks at the intersection of the 15 °20 N fracture zone and the Mid-Atlantic Ridge [J]. Geochimica et Cosm ochimica Acta ,1998 ,62 2 323-2 333.
- [19] Charlou J L , Donval J P , Fouquet Y , et al. Geochem istry of high H<sub>2</sub> and CH<sub>4</sub> ventiluids issuing from ultramatic rocks at the Rainbow hydrothermal field (36 14 N , MAR) [J]. Chemical Geology ,2002 , 191 :345-359.
- [20] Holm N G , Charlou J L. Initial indications of abiotic form ation of hydrocarbons in the Rainbow ultramatic hydrothermal system , Mid-Atlantic Ridge [J]. Earth and Planetary Science Letters, 2001,191,1-8.
- [21] Szatmari P. Petroleum formation by Fischer-Tropsch synthesis in plate tectonics [J]. The American Association of Petroleum Geologists Bulletin ,1989,73(8) :989-998.
- [22] Zhang Jinglian, Zhang Pingzhong, LüXimin, et al. New advance of inorganic origin on petroleum [J]. Advances in Earth Science, 1998, 13(1):44-50.[张景廉,张平中,吕锡敏,等.油气无机成因学说的新进展[J].地球科学进展,1998,13(1):44-50.]
- [23] LüGongxuan, Chou Linjun, Zhang Bing, et al. Formation on mechanism of abiogenic of hydrocarbons and organics generation in deep strata [J]. Natural Gas Geoscience, 2006, 17(1):14-18.[吕功煊, 丑凌军,张兵,等.深层及非生物成烃的催化 机制[J].天然气地球科学, 2006, 17(1):14-18.]
- [24] Corliss J B , Baross J A , Hoffm an S E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth [J]. Oceanologica Acta 1981, 4(SP): 59-69.
- [25] Joyce G. Hydrotherm al vents too hot? [J]. Nature 1988, 334 : 564.
- [26] MillerSL, BadaJS. Submarine hot spring and the origin of life [J].Nature 1988, 334:609-611.
- [27] Corliss J B. The flow of energy, natural learning system and the creation of life on earth [J]. Acta Astronautica 1989, 19(11): 869-873.
- [28] Corliss J B. Hot spring and the origin of life [J]. Nature 1990, 347:624.
- [29] McCollom T M , Ritter G , Sim oneit B R T. Lipid synthesis under

hydrotherm al conditions by Fischer-Tropsch-Type reactions [ J] . Origins of Life and Evolution of the Biosphere ,1999 , 29 :153-166 .

- [30] Shock E L , Schulte M D. Organic synthesis during fluid mixing in hydrotherm al system s [J]. Journal of Geophysical Research , 1998 ,103(E12) :28 513-28 537.
- [31] Simoneit B R T. Prebictic organic synthesis under hydrothermal conditions: An overview [J]. Advances in Space Research ,2004 , 33:88-94.
- [32] Helgeson H C , kirkham D H. Theoretical prediction of the therm odynamic behavior of aqueous electrolytes at high pressures and tem peratures : Summary of the therm odynamic /electrostatic properties of the solvent [J]. Am erican Journal of Science ,1974 , 274 :1 089 -1 198.
- [33] Helgeson H C , Kirkham D H , Flowers G C. Theoretical prediction of the therm odynam ic behavior of aqueous electrolytes at high pressures and temperatures: Calculation of activity coefficients, osmotic coefficients, and apparentm olaland standard and relative partial molal properties to 600 and 5kb [J]. Am erican Journal of Science 1981, 281 : 1 249-1 516.
- [34] Shock E L , Helgeson H C , Sverjensky D A. Calculation of the therm odynamic and transport properties of faqueous species at high pressures and tem peratures : Standard partial molal properties of inorganic neutral species [J]. Geochimica et Cosm ochimica Acta , 1989 , 53 : 2 157 - 2 183.
- [35] Johnson JW , Norton D. Criticalphenom ena in hydrotherm al system s : state , therm odynamic , and transport properties of H<sub>2</sub>O in the criticalregion [J]. Am erican Journal of Science , 1991 , 291 : 541-648.
- [36] Shock E L , Helgeson H C. Calculation of the therm odynam ic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species [J]. Geochim ica et Cosm ochim ica Acta , 1990, 54 : 915-945.
- [37] Johnson JM , Oelkers E H , Helgeson H C. SUPCR T92 : A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5 000 bar and 0 to 1 000 [J]. Computers & Geosciences, 1992, 18(7): 899-947.
- [38] McCollom T M , Seewald J S. A reassessment of the potential for reduction of dissolved CO 2 to hydrocarbons during serpent inization of olive [J]. Geochimica et Cosm ochimica Acta 2001, 65(21):

3 769-3 778.

- [39] Berndt M E , Allen D E , Seyfried Jr W E. Reduction of CO<sub>2</sub> during serpentinization of olive at 300 and 500 bar [J]. Geology , 1996, 24(4) 351-354.
- [40] Horita J, Berndt M E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions [J]. Science ,1999, 285 ;1 055-1 057.
- [41] Foustoukos D I, Seyfried Jr W E. Hydrocarbons in hydrothermal vent fluids: The role of chrom ium -bearing catalysts [J]. Science, 2004, 304;1002-1005.
- [42] McCollom T M , Seewald J S. Experimental constraints on the hydrothermal reactivity of organic acids and anions: . Formic acid and formate [J]. Geochimica et Cosmochimica Acta ,2003 , 67(19) ;3 625-3 644.
- [43] Seewald JS, Zolotov MY, McCollom TM. Experimental investigation of single carbon compounds under hydrothermal conditions [J]. Geochimica et Cosm ochimica Acta 2006, 70:446-460.
- [44] Dai Jinxing. Identification and distinction of various alkane gases
  [J].Science in China(Series B),1992 (2):185-193.[戴金星.
  各类烷烃气的鉴别[J].中国科学:B辑,1992 (2):185-193.]
- [45] Wang Xianbin, Li Chunyuan, Chen Jianfa, et al. On abiogenic natural gas[J].Chinese Science Bulletin, 1997, 42(12):1233-1241.[王先彬,李春园,陈践发,等.论非生物成因天然气 [J].科学通报, 1997, 42(12):1233-1241.]
- [46] Hu Guixing, Ou Yang Ziyuan, W ang Xianbin, et al. Carbon isotope fractionation in the process of Fischer-Tropsch reaction in primitive solar nebula [J]. Science in China (Series D), 1998, 41(2):202-207.[胡桂兴,欧阳自远,王先彬,等.原始太 阳星云条件下 Fischer-Tropsch 反应中的碳同位素分馏[J]. 中国科学 P 辑, 1997, 27(5):395-400.]
- [47] McCollom T M , Seewald J S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrotherm al conditions [J]. Earth and Planetary Science Letters, 2006, 243:74-84.
- [48] Xue Chunji, Ji Jinsheng, Yang Qianjin. Subvolcanic hydrothermal metallogeny of the Cihai iron (cobalt) deposit, Xinjiang [J]. Mineral Deposits 2000, 19(2) 156-164.[薛春纪,姬金 生,杨前进・新疆磁海铁(钴)矿床次火山热液成矿学[J]. 矿床地质, 2000, 19(2) 156-164.]

## Review on the Researches about Abiotic Synthesis of Hydrocarbons from Dissolved CO $_2$ and H $_2$ under Hydrotherm al Conditions

JI Fu-wu<sup>1,2</sup>, ZHOU Huai-yang<sup>1</sup>, YANG Qun-hui<sup>1</sup>

(1.Guangzhou Institute of Geochem istry, Chinese Academ y of Sciences, Guangzhou 510640, China;
 2. Graduate University of Chinese Academ y of Sciences, Beijing 100049, China)

Abstract : It is energetically feasible for hydrocarbons to be synthesized from dissolved carbon dioxide and hydrogen under appropriate hydrotherm al conditions. Hydrocarbons form ed this way may contribute to oil and gas accumulation and provide the precursor organic compounds for the origin and evolution of life on the early earth. It is reported that the form ation of hydrocarbons will be hampered for kinetic reasons, and CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub> may produced from CO<sub>2</sub> and H<sub>2</sub> catalyzed by awaruite and chrom ite under hydrotherm al conditions. More research work is needed to confirm whether there are some natural minerals which can catalysis dissolved carbon dioxide and hydrogen to produce C<sub>4</sub>H<sub>10</sub> and other longer chain hydrocarbons. Magnetite that bears one or more other transitional m etal elements may be potential. It is also needed to reveal the mechanism of the reaction and the C , H isotope fractions in this process , which may be useful to establish a criterion for discriminating the abiotic hydrocarbons form ed from CO<sub>2</sub> and H<sub>2</sub> from those originated from organic matter under hydrotherm al conditions.

Key w ords : Hydrotherm al condition ; Hydrocarbon ; Abiotic.

欐

### 2007 年第 2 期要目

| 复杂自然环境时空定量信息的获取与融合处理的理论与应用 |     |     |      |      |      | 金亚秋  |
|----------------------------|-----|-----|------|------|------|------|
| 西北区冰雹日气候分析及预测方法研究赵         | 赵红岩 | 赵庆云 | ,杨瑜峰 | ,汤懋苍 | ,康凤琴 | 白彦芳  |
| 糜棱岩化过程中矿物变形温度计             |     | 向必伟 | ,朱 光 | ,王勇生 | ,谢成龙 | 胡召齐  |
| 气候变化对半干旱雨养农业区春小麦生长的影响      |     | 赵鸿  | ,肖国举 | ,王润元 | ,邓振镛 | ,王鹤龄 |