郑州地区汉族人群 Gc 亚型遗传多态性研究1)

齐守文²) 申成斌³) 谭 丽 张书红 郭克民 李家驹 (河南医科大学法医学教研室,郑州, 450052)

本文用超薄聚丙烯酰胺凝胶等电聚焦结合磺基水杨酸沉淀方法,对郑州地区 311 名汉族无关个体的血清样本进行了 Gc 亚型分型。除见到了 6 种常见的表现型外,还检测到 4 种罕见变异型。其基因频率为: $Gc^{1F}=0.4035$, $Gc^{1S}=0.2669$, $Gc^2=0.3200$, $Gc^V=0.0096$ 。经用 Hardy—Weingberg 定律检验,观测值和期望值吻合良好。

关键词: Gc 亚型,遗传多态性,等电聚焦,基因频率

型特异性成分(Group-specific component, Gc) 是一种血清蛋白质, 其主要生理功能是转 运维生素 D, 因此又称为维生素 D结合球蛋白 (Vitamin D-binding globulin, VDBG)[9] 1959年, Hirschfeld^[10] 用免疫电泳方法首先发 现了 Gc 的遗传多态性,确定了 Gc 的三种表 型(Gc1,Gc2,Gc2-1) 是由常染色体上两个等 位基因 Gc^1 和 Gc^2 以共显性方式进行遗传 的。 1977 年 Constans^[7] 将等电聚焦技术应用 于 Gc 蛋白的分析,发现 Gc^1 等位基因可以分 为 Gc^{16} 和 Gc^{18} 两个独立的等位基因,从而提 出了 Gc 三个复等位基因 (Gc^{1F},Gc^{1S},Gc^2) 的 遗传假说,并通过家系调查得到了证实。作为 一种遗传标记, Gc 一向被人类群体遗传学家 及法医学家所重视。目前,国内只有少数几个 地区进行了 Gc 亚型的分布调查[2-5,11],而中原 地区尚未见报道。为此,作者用超薄层聚丙烯 酰胺凝胶等电聚焦 (Ultrathin-layer polyacrylamide gel isoelectric focusing, UTLPAGIEF) 方法对郑州地区汉族人群 Gc 亚型的分布进行 了调查。

材料与方法

(一) 样本来源

随机抽取河南医大一附院血库 311 名无亲 缘关系的健康汉族献血员肘静脉 血 每 人 2—3

毫升,凝血后分离血清,置冰箱中待检。

(二) 仪器及操作

P₁₅₀ 三恒稳压电源 (北京新技术应用研究 所), DYY-III 37A 型电泳槽 (北京六一仪器 厂), HX-10555 恒温循环器(军事医科院)。

自制聚丙烯酰胺凝胶板,大小 $180 \times 120 \times 0.2$ mm,T = 5%,C = 3%,两性电解质 (pH 4.5-5.4,Pharmacia 产品)浓度 2.4%。采用核黄素光聚合系统。 阳极电极液为 1mol/L 磷酸,阴极电极液为 1mol/L 氢氧化钠。 电压 1800V,电流 10mA,功率 20W,冷却温度 8 ∞ 。 预电泳 30 分钟后,用 3×10 mm 滤纸条吸取血清样本,置于距阴极 2cm 的凝胶面上,总聚焦时间为 3hrs。

电泳结束后,将4% 磺基水杨酸溶液喷至 凝胶表面,固定5分钟后,用12%三氯乙酸冲 去凝胶表面上未聚焦的蛋白,在黑色背景下观 察结果。根据白色蛋白带的数目及相对泳动度 进行分型。

Qi Shouwen et al.: A Study on the Polymorphism of Gc Subtypes in Zhengzhou Han Subpopulation

本研究得到我校附属一院血库全体同志的大力帮助, 深表谢意。

²⁾ 现工作单位: 铁道部郑州警察管理干部学院刑科 室, 450000。

河南省公安厅刑科所。
本文于1991年5月8日收到。

结果与讨论

(一) Gc 亚型基因频率的分布

本文除观察到了 6 种常见的 Gc 亚型 (Gc 1F-1S, Gc1S, Gc2-1S, Gc2-1F, Gc1F, Gc2)外,尚见到 4 种(计 6 个) Gc 亚型的变异型 (见模式图 1)。用 Hardy-Weingberg 定律检验,观测值与期望值吻合良好 (0.975)。经计算,Gc 亚型在郑州地区汉族的非父排除率为 36.4%,个人识别能力为 0.82,属高鉴别能力

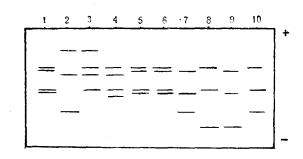


图 1 血清中常见 Gc 亚型及变异型模式图 从 1 至10: 1F-1S;2-1AV;1F-1AV; 1F-1CV;1F-1CV; 1F-1S; 2-1S;1F-2CV;1S-2CV;2-1F。

表 1 311 名郑州汉人 Ge 亚型表型及基因频率分布

表型	N N	测值%	期! N	望值 %	卡方值 X ²	基因频率
2-1F	80	25.72	80.30	25.82	0.0011	$Gc^{1F} = 0.4035$
2-1S	56	18.01	53.12	17.08	0.1561	$Gc^{15} = 0.2669$
1F-1S	61	19.61	66.99	21.54	0.5365	$Gc^2=0.3200$
1F	53	17.04	50.66	16.29	0.1081	$Gc^{V}=0.0096$
2	31	9.97	31.85	10.24	0.0227	
18	24	7.72	22.14	7.12	0.1563	
1F-1AV	1)					
1F-1CV	2					
2-1AV	1 }	1.93	5.91	1.90	0.0014	
1F-2CV	ı		ļ			
1s-2CV	1)					
总计	311	100.00	310.97	99.99	0.9813	1.00

df = 6.0.975 < P < 0.990

表 2 中国不同地区汉族人群 Ge 亚型基因频率比较

地 区	祥本数	G c 1F	Gc²	G e 18	$G\sigma^{\mathbf{v}}$
	311	0.4035	0.3200	0.2669	0.0096
辽宁	356	0.4326	0.2838	0.2725	0.0112
北京	155	0.4774	0.3065	0.2000	0.0161
华北	93	0.2473	0.2634	0.4893	
广州	256	0.4316	0.2734	0.2871	0.0080
成都	125	0.4520	0.2960	0.2550	

类的血型系统¹¹。 表型及基因频率的分布见表 1。

有关 Gc 亚型在中国汉族人群中的 分布,目前只有辽宁、北京、华北、广州及成都五地区进行了调查^[2,3,5,11]。 将本文资料与之相比较列于表 2。 从中可以发现,在中国汉族人群中,Gc 亚型的分布具有如下规律: 1.除华北汉族

外,在其他地区的汉族人群中, Gc^{1F} 基因频率均为最高,其值在 0.40-0.50 之间。 2. 除广州及华北汉族外, Gc^2 的频率均高于 Gc^{1S} ,二者均在 0.20-0.35 之间。 3. 除成都及华北汉族外,在郑州、辽宁、北京、广州汉族中均发现有变异型 (Variant) 基因,其值接近或达到多态水平 (0.01)。 (下转第 15 页)

表 4 两种鼠耳蝠 4 种组织 LDH 同工酶电泳率

组织	种 名	LDH,	LDH,	LDH,	LDH.	LDH,
肾	绒鼠耳蝠	0.42±0.02	0.35±0.01	0.25±0.01	0.15±0.02	0.06±0.01
	毛腿鼠耳蝠	0.43±0.01	0.37±0.02	0.27 <u>±</u> 0.01	0.15±0.01	0.04±0.00
心	绒鼠耳蝠	0.41±0.02	0.31±0.03	0.24±0.02	0.15±0.01	0.04±0.00
	毛腿鼠耳蝠	0.42±0.03	0.32±0.02	0.25±0.02	0.18±0.01	0.02±0.00
脑	绒鼠耳蝠	0.40±0.02	0.34±0.01	0.25±0.01	0.15±0.00	0.04±0.01
	毛腿鼠耳蝠	0.42±0.02	0.35±0.02	0.27±0.02	0.17±0.01	0.04 + 0.00
胸肌	绒鼠耳蝠	0.42±0.03	0.34±0.01	0.27±0.01	0.19±0.02	0.08±0.01
	毛腿鼠耳蝠	0.43±0.04	0.35±0.01	0.28±0.02	0.21±0.01	0.06±0.01

主,占 63%以上。一般认为,LDH的 H、M 亚基的表达受组织氧张力的调节,氧张力愈高,H亚基愈多,M亚基愈少;氧张力愈低,则M亚基愈多,H亚基愈少。一般哺乳动物骨骼肌中LDH的M亚基为多,起着丙酮酸还原酶的作用,催化丙酮酸还原成乳酸,就是在机体因剧烈运动造成暂时缺氧时,通过无氧呼吸,仍能获得足够能量。 蝙蝠是适应飞行的一类哺乳动物,在长时间不停的飞行中,肌肉一直在不停地剧烈运动,这不但要求胸肌有旺盛的血液循环、发达的线粒体、充足的氧气供应,同时还需要H型的乳酸脱氢酶,将乳酸脱氢转变为丙酮酸,进入线粒体进行彻底氧化,产生大量能量以满足飞

行时肌肉运动的需要。 因此,蝙蝠肌肉 LDH 同工酶和其他哺乳动物不同,它以有氧代谢为主,而其他哺乳动物肌肉 LDH 同工酶以M亚基为主,催化肌内丙酮酸转化为乳酸。蝙蝠胸肌 LDH 的这种明显不同,是它长期适应飞行的结果,也是翼手类动物 LDH 同工酶区别于其他哺乳动物 LDH 同工酶的重要特征。

参考文献

- [1] 刘国富等: 1985。兽类学报,5(3); 223—228。
- [2] 刘吉祥等: 1984。细胞生物学杂志,6(4): 175-178。
- [3] 冯文和等: 1985。兽类学报,5(2): 151-156。
- [4] Goodman, M. et al.: 1969. Brain Res., 14(2): 447-459.

(上接第21页)

(二) Gc 亚型的变异型

自从1977年以来,在第4号染色体的 Gc位点上,已发现了为数众多的变异基因。到1988年,发现的变异基因已达124个^[6-8]。刘玉华、贾静涛^[2]曾在辽宁汉族中检出 Gc1A3和Gc1A8变异型;Zeng^[11]也在广州和北京汉族中检出 Gc1A3和Gc1A8变异型,可见1A3和1A8是中国人中较为常见的变异型。此外,徐玖瑾等^[4]也在少数民族中发现3种Gc1A及1种Gc2C变异型。本文检出的4种计6个Gc基因变异体,分别与Gc1F、Gc1S及Gc2以杂合子形式存在(图1)。其中2种Gc1CV及1种Gc2CV是否为中国人中新发现的变异型,有待进一步研究证实。

参考文献

- [1] 贾静涛: 1988。法医血型血清学,辽宁科技出版社: 第9页。
- [2] 刘玉华,贾静涛: 1989。中国医科大学学报, 18(3): 187-190。
- [3] 赵渠,吴梅筠: 1987。中国法医学杂志,2(2): 85-87。
- [4] 徐玖瑾,等: 1987。人类学学报,6(4): 306—314。
- [5] 陈良忠,崔梅影: 1985。科学通报,(4): 292—295。
- [6] Cleve H, Constans J: 1988. Vox. Sang. 54: 215—225.
- [7] Constans J, Viau M: 1977. Science, 198: 1070--1071.
- [8] Constans J, et al: 1979. Hum. Genet., 48: 143-149.
- [9] Daiger SP, et al: 1975. Proc. Natl. Acad Sci. USA, 72: 2076—2080.
- [10] Hirschfeld J: 1959. Acad Path. Microbiol. Scand., 47: 160-168.
- [11] Zhi-min Zeng, Omotok K: 1987. Jpn. J. Hum. Genes., 32: 83—88.