健康人及超量电子束照射病员淋巴细胞 核异常的检测

薛开先 周平 王苏 马国建

(江苏省肿瘤防治研究所,南京,210009)

本文报告了 213 例健康人不同年龄组的各种淋巴细胞损伤指标: 核变形、微核、核裂解、核固缩与核空泡等的自然发生率,并检测了 21 例受超量电子束照射的病人的核异常改变。作者认为,与常用的微核测试法相比,核异常检测在不增加工作量的情况下,可更敏感地反映遗传毒理因子对人体细胞不同程度的损伤,可用于受辐射污染人群的监察及体外评价其遗传毒理效应。

关键词:健康人,淋巴细胞核异常,超量电子束照射

核异常测试法(Nuclear Amonaly Test NAT) 是近年来在实验动物中发展起来的体内 短期测试法[6,10,11]。比较研究表明,它比微核测 试法敏感与合理^[8],和 SCE 相比,它们对不同 测试物的敏感性各有特点[9]。 为了探讨在人体 细胞中应用这一方法的可能性,我们首先应用 γ-线体外照射人体全血,观察了多种核损伤指 标及其不同组合的核异常复合指标,发现其中 的一部分与照射剂量呈良好的线性关系[5],接 着又用乙双吗啉、过量电子束 (5-40Gy) 体外 处理人体全血, 亦获得了类似的结果。这些事 实提示,人体外周血淋巴细胞核异常检测,可在 体外评价诱变剂的效应。进一步要把该方法应 用于人群监察,就必须了解健康人不同年龄组 的核异常指标的本底值,并试用于接受明确诱 变剂损伤人群的检测。本工作在213例健康人 群中观察了不同年龄组的核异常情况、并检测 了 21 例受超量电子束照射病人的核异常改变。

材料与方法

(一) 检测对象

健康被检者共 213 人,其中男为 102 人,女 为 111 人,他们是供血员、大学教师、中小学生、医务人员、工人和一些居民。健康人的选择标

准: (1)无明显器质性病变;(2) 无遗传病家族 史;(3) 不吸烟、居住与工作环境无明显污染; (4) 3—6个月内未接受过放射线检查,未服用 过抗癌药与安眠药。

21 例受 7—15MeV. 电子束超量局部 照射的患者,均为本院收治病员,受照后约 3 个月进行采样检查。此间已用过抗菌素、激素、维生素等药物治疗及局部对症处理。

(二)制片与观察

取 2 滴左右手指血,按本实验 室 常 规 制 片^[1,4]。 每例在油镜下计数 2000 个淋巴细 胞。本实验观察的核损伤指标计有: 微核、核变形、核裂解、核空泡与核固缩等^[5]。各种核损伤指标及其复合指标均以‰表示。 微核细胞率表示,平均每计数 1000 个细胞中含有微核的细胞数。其他指标的意义如以往报告^[3]。

观察与结果

(一) 年龄对自发核异常的影响

不同年龄组各种核异常的自然发生率及有

Xue Kaixian et al.: The Test of Nuclear Anomalies in Peripheral Lymphocytes of Healthy Subjects and Patients Irpadiated by Overdose Electron Beam with High Energy 本文于1989年9月22日收到。 关指标列于表 1。 从表 1 可见, 6—45 岁两个年龄组的平均微核率无明显的差异,而 46 岁以上两个年龄组的平均微核率则有明显 的增加 (P < 0.05),但老年前期组与老年组间无明显差异。根据各年龄组被检者的微核率分布,按第 95 百分位数求得不同年龄的微核率正常值上限如下: 6—45岁为 1%; 46—85 岁为 1.5%,并有个别人超过正常值上限。在本观察组微核细胞率的正常值上限与此相同。微核人员出现率亦随年龄增加而上升。

与青少年组相比,中青年组的核变形率明显上升(P<0.01),此后缓慢增加。核裂解率亦随年龄增加而上升,但最明显的上升发生在老年组。在正常人群中核固缩与核空泡发生率很低,在46岁以下的年龄组几乎没有。在本观察组各种核损伤指标在不同性别间无明显差异。

表1 不同年龄组健康人的自发淋巴细胞核异常

年龄组(岁)	6-20	2145	4660	61—85	685
例数	45	84	42	42	213
核变形率(‰)	6.41	16.54	18.36	21.61	15.75
微核率(‰)	0.08	0.12	0.30	0.33	0.19
微核细胞率(‰)	0.08	0.12	0.29	0.33	0.19
核裂解率(‰)	0.01	0.13	0.21	0.55	0.20
核固缩率(%)			0.04	0.02	0.01
核空泡率(%)		0.01	0.14	0.05	0.04
核异常率(‰)	0.09	0.26	0.68	0.95	0.44
阳性检出率(%)			2.4	2.4	0.09
微核人员出现率(%)	15.6	19.0	38.1	40.5	26.3

(二) 超量电子束照射对核异常的影响

在一次医用电子直线加速器事故中,一些患者被超量高能电子束局部照射,其中肿瘤患者 17人,非癌患者 4人,多数于受照后 85—93天、1 例为 106 天被采血,因此本组测得的各种核异常改变,实际上是治疗期或恢复期的情况,不能代表原发性核损伤,现根据事故模拟测得的物理剂量将患者分组,并将患者及相应年龄组健康人的各种核异常发生率列于表 2。 从表 2 可见,和对照组相比,各剂量组及全组受照患者的平均微核率、微核人员出现率均有显著增

表 2 周部超量电子束照射病员的淋巴细胞核异常改变

辐射剂量(Gy)	10-19	20-39	40—120	全组	对照组
例数	12	6	3	21	126
微核率(‰)	1.67**	1.17*	2.67**	1.67**	0.18
核变形率(‰)	147.25**	119.33**	117.00**	134.95**	17.14
核裂解率(‰)	1.91**	2.33**	5.67**	2.57**	0.16
微核人员出现 率(%)	83.3**	60.0**	100**	71.4**	25.4
阳性检出率 (%)	50.0**	50.0**	100**	57.1**	0.79

^{*} P<0.05, ** P<0.01

加,并随剂量增加呈上升趋势;各剂量组核变形率亦有显著增加,但随剂量增加而有所下降;各组核裂解率有极显著的增加,并有明显的剂量效应关系;在一半以上超量照射的患者中,其微核率超过正常值上限。

讨 论

核异常包括了不同程度的细胞核损伤。核 变形主要是细胞核形态的明显改变,此时核损 伤较轻。正常人体内淋巴细胞核变形的发生,可 能主要与细胞的衰老有关; 我们用中小剂量的 γ-线^[5]、大剂量电子束与可能有致白血病作用 的抗癌药——乙双吗啉体外处理时发现,淋巴 细胞核变形与剂量间均有良好的线性关系,对 处理因素的敏感性明显优于微核率。微核是以 往常用的核损伤指标,它可从直接通过核变形、 核裂解等核异常形成, 在周期细胞亦可由落后 染色体与染色体断片形成[2,7]。 在正常人群中, 随年龄增加而微核率上升。比较研究表明,在 各种核损伤指标中,在中、小剂量范围内,微核 率对外理因子常有最好的剂量效应关系。核裂 解、核固缩与核空泡的发生可直接导致细胞的 死亡四,是一组最严重的核损伤指标,核裂解似 乎相对较轻。从表 1 可见,在健康人低龄组即 可发生,并随年龄增长而上升;而核固缩与核空 泡在低年龄组基本不发生。比较表 1 中不同年

表 3 健康人群中自发核损伤指标的比较分析

核损伤指标	回归方程	相关系数	P 值
核变形率	$\hat{y} = 4.6533 + 0.2612x^*$	0.9486	>0.05
微核细胞率	$\hat{y} = 0.0065 + 0.005x$	0.9698	<0.05
核裂解率	$\hat{y} = 0.1498 + 0.0089x$	0.9096	>0.05
核异常率	$\hat{y} = 0.1879 + 0.0163x$	0.9804	<0.05

* x 代表年。

龄组的核损伤指标动态变化表明,随着指标所代表的核损伤指标加重,其自然发生率显著上升的年龄后移,如核变形率最显著上升的年龄为中青年组,微核率为老年前期组,而核裂解则为老年组。在正常人群中核固缩与核空泡发生率很低。

以往的实验已表明^[5],如酌情选择核损伤指标的组合,可提高检测的敏感性,而不影响剂量效应关系。在本组正常人群中,如把与细胞死亡有关的指标:微核细胞率、核裂解率、核固缩率、核空泡率合并为核异常率,不仅提高了方法的敏感性,同时相关系数亦有所增加(参见表3)。本组 21 例超量照射病员的检测结果表明,

(上接第25页)

体丢失和部分 2 号染色体呈单体。 L_{so1} 与 L_{ss3} 、 L_{ss3} -A 和 L_{ss3} -B 共同存在的标记染色体 (Mr) 带型完全一致,这就说明这些白血病细胞都来源于 L_{so1} 白血病细胞。

在辐射和非辐射引起的小鼠粒 细 胞 白 血病,常有 2 号染色体和性染色体的变化,这种变化似乎与小鼠品系无关,与辐射有无关系尚不能肯定,有人提出可能在 2 号染色体上存在控制粒细胞恶性程度的基因^[7]。 性染色体的变化尚需进一步探讨。

也有作者发现在小鼠淋巴细胞白血病有 3 号染色体呈单体的变化^[3],我们经克隆的 L₈₃₃-B 的标记染色体来源于 3 号染色体,也可认为是 3 号染色体三体性, 3 号染色体的变化是 否 与

常用的核损伤指标:微核率、核变形率与受照超剂量间并无明显关系,而代表较严重核损伤指标——核裂解率,却与超剂量间有良好的线性关系(r=0.9652,P<0.01),再结合中小剂量r-线的研究结果^[5]提示,能反映不同损伤程度的、各种核损伤指标的检测,可提供多层次的信息,亦为建立不同辐射水平的生物剂量计,提供了更多可选择的指标。

参考文献

- [1] 薛开先等: 1984。动物学研究,5(3): 255-260。
- [2] 薛开先等: 1986。遗传学报,12(6): 460-463。
- [3] 薛开先等: 1988。遗传,10(4): 37-39。
- [4] 薛开先等: 1988。辐射防护,8(3): 224-226。
- [5] 薛开先等: 1990。遗传学报, 17(1): 70-74。
- [6] 丁 濂: 1987。病理学(白希清主编),科学出版社,第 96页。
- [7] Heddle, J. A. et al.: 1982. Banb. Reports, 13: 367-375.
- [8] Holl, G. et al.: 1980. Mutat. Res., 74: 166.
- [9] Langauer, M. et al.: 1980. Mutat Res., 74:159-
- [10] Proudlock, R. J. et al.: 1986. Mutat Res., 174: 141-143.
- [11] Ronen, A. et al.: 1983. Ann. NY Acad Sci. USA, 407: 479-483.
- [12] de Serres, F. J. et al.: 1984. Mutat Res., 130: 73-77.

肿瘤的恶性程度、细胞的增殖速度有关,目前尚不能肯定。

参考文献

- [1] 中国科学院遗传研究所一室二组: 1976。 遗传学报, 3(3): 231-235。
- [2] 宁益华等: 1982。遗传学报,9(1): 1-7。
- [3] 凌丽华等: 1982。遗传学报,9(2): 105-108。
- [4] 赵乃坤等: 1984。遗传,6(2): 27-28。
- [5] 赵乃坤等: 1984。中国科学(B辑),10: 923-930。
- [6] Arthur, C. U. et al.: 1964. Science, 143: 810— 813.
- [7] Azumi, J. and L. Sachs,: 1977. Proc. Natl. Acad, Sci. USA, 74: 253-257
- [8] Doris, H. W.: 1982. Cytogenetics, 11: 379-387
- [9] Hayata, I. et al.: 1979. J. Natl. Cancer Iust.63:
- [10] Hayata, I. et al.: 1983. Cancer Res., 43: 367-
- [11] Seabright, M. A.: 1971. Lancet, 2: 971-972.